
6 Applications of Integrals

The previous chapter dealt exclusively with the computation of definite and indefinite integrals as
well as some discussion of their properties and interpretations. It is now time to start looking at
some applications of integrals. Note as well that we should probably say applications of definite
integrals as that is really what we’ll be looking at in this section.

In addition, we should note that there are a lot of different applications of (definite) integrals out
there. We will look at the ones that can easily be done with the knowledge we have at our disposal
at this point. Once we have covered the next chapter, Integration Techniques, we will be able to
take a look at a few more applications of integrals. At this point we would not be able to compute
many of the integrals that arise in those later applications.

In this chapter we’ll take a look at using integrals to compute the average value of a function and the
work required to move an object over a given distance. In addition we will take a look at a couple
of geometric applications of integrals. In particular we will use integrals to compute the area that
is between two curves and note that this application should not be too surprising given one of the
major interpretations of the definite integral. We will also see how to compute the volume of some
solids. We will compute the volume of solids of revolution, i.e. a solid obtained by rotating a curve
about a given axis. In addition, we will compute the volume of some slightly more general solids in
which the cross sections can be easily described with nice 2D geometric formulas (i.e. rectangles,
triangles, circles, etc.).
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6.1 Average Function Value

The first application of integrals that we’ll take a look at is the average value of a function. The
following fact tells us how to compute this.

Average Function Value
The average value of a continuous function f (x) over the interval [a, b] is given by,

favg =
1

b− a

∫ b

a
f (x) dx

To see a justification of this formula see the Proof of Various Integral Properties section of the
Extras appendix.

Let’s work a couple of quick examples.

Example 1
Determine the average value of each of the following functions on the given interval.

(a) f (t) = t2 − 5t+ 6 cos (π t) on
[−1, 52]

(b) R (z) = sin (2z) e1−cos(2z) on [−π, π]

Solution

(a) f (t) = t2 − 5t+ 6 cos (π t) on
[−1, 52]

There’s really not a whole lot to do in this problem other than just use the formula.

favg =
1

5
2 − (−1)

∫ 5
2

−1
t2 − 5t+ 6 cos (π t) dt

=
2

7

(
1

3
t3 − 5

2
t2 +

6

π
sin (πt)

)∣∣∣∣
5
2

−1

=
12

7π
− 13

6

= −1.620993

You caught the substitution needed for the third term right?

So, the average value of this function of the given interval is −1.620993.
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(b) R (z) = sin (2z) e1−cos(2z) on [−π, π]
Again, not much to do here other than use the formula. Note that the integral will need
the following substitution.

u = 1− cos (2z)

Here is the average value of this function,

Ravg =
1

π − (−π)
∫ π

−π
sin (2z) e1−cos(2z) dz

=
1

4π
e1−cos(2z)

∣∣∣∣
π

−π
= 0

So, in this case the average function value is zero. Do not get excited about getting
zero here. It will happen on occasion. In fact, if you look at the graph of the function
on this interval it’s not too hard to see that this is the correct answer.

There is also a theorem that is related to the average function value.

The Mean Value Theorem for Integrals
If f (x) is a continuous function on [a, b] then there is a number c in [a, b] such that,

∫ b

a
f (x) dx = f (c) (b− a)

Note that this is very similar to the Mean Value Theorem that we saw in the Derivatives Applica-
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tions chapter. See the Proof of Various Integral Properties section of the Extras appendix for the
proof.

Note that one way to think of this theorem is the following. First rewrite the result as,

1

b− a

∫ b

a
f (x) dx = f (c)

and from this we can see that this theorem is telling us that there is a number a < c < b such
that favg = f (c). Or, in other words, if f (x) is a continuous function then somewhere in [a, b] the
function will take on its average value.

Let’s take a quick look at an example using this theorem.

Example 2
Determine the number c that satisfies the Mean Value Theorem for Integrals for the function
f (x) = x2 + 3x+ 2 on the interval [1, 4].

Solution

First let’s notice that the function is a polynomial and so is continuous on the given interval.
This means that we can use the Mean Value Theorem. So, let’s do that.∫ 4

1
x2 + 3x+ 2 dx =

(
c2 + 3c+ 2

)
(4− 1)(

1

3
x3 +

3

2
x2 + 2x

)∣∣∣∣
4

1

= 3
(
c2 + 3c+ 2

)
99

2
= 3c2 + 9c+ 6

0 = 3c2 + 9c− 87

2

This is a quadratic equation that we can solve. Using the quadratic formula we get the
following two solutions,

c =
−3 +√67

2
= 2.593

c =
−3−√67

2
= −5.593

Clearly the second number is not in the interval and so that isn’t the one that we’re after.
The first however is in the interval and so that’s the number we want.

Note that it is possible for both numbers to be in the interval so don’t expect only one to be
in the interval.
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6.2 Area Between Curves

In this section we are going to look at finding the area between two curves. There are actually two
cases that we are going to be looking at.

In the first case we want to determine the area between y = f (x) and y = g (x) on the interval
[a, b]. We are also going to assume that f (x) ≥ g (x). Take a look at the following sketch to get an
idea of what we’re initially going to look at.

In the Area and Volume Formulas section of the Extras appendix we derived the following formula
for the area in this case.

A =

∫ b

a
f (x)− g (x) dx (6.1)

The second case is almost identical to the first case. Here we are going to determine the area
between x = f (y) and x = g (y) on the interval [c, d] with f (y) ≥ g (y).
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In this case the formula is,

A =

∫ d

c
f (y)− g (y) dy (6.2)

Now Equation 6.1 and Equation 6.2 are perfectly serviceable formulas, however, it is sometimes
easy to forget that these always require the first function to be the larger of the two functions. So,
instead of these formulas we will instead use the following “word” formulas to make sure that we
remember that the area is always the “larger” function minus the “smaller” function.

In the first case we will use,

Area Between Curves, Case 1

A =

∫ b

a

(
upper

function

)
−

(
lower

function

)
dx, a ≤ x ≤ b (6.3)

In the second case we will use,

Area Between Curves, Case 2

A =

∫ d

c

(
right

function

)
−

(
left

function

)
dy, c ≤ y ≤ d (6.4)

Using these formulas will always force us to think about what is going on with each problem and
to make sure that we’ve got the correct order of functions when we go to use the formula.

Let’s work an example.

Example 1
Determine the area of the region enclosed by y = x2 and y =

√
x.

Solution

First of all, just what do we mean by “area enclosed by”. This means that the region we’re
interested in must have one of the two curves on every boundary of the region. So, here is
a graph of the two functions with the enclosed region shaded.
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Note that we don’t take any part of the region to the right of the rightmost intersection point
of these two graphs. In this region there is no boundary on the right side and so this region
is not part of the enclosed area. Remember that one of the given functions must be on the
boundary of the enclosed region.

Also, from this graph it’s clear that the upper function will be dependent on the range of x’s
that we use. Because of this you should always sketch of a graph of the region. Without a
sketch it’s often easy to mistake which of the two functions is the larger. In this case most
would probably say that y = x2 is the upper function and they would be right for the vast
majority of the x’s. However, in this case it is the lower of the two functions.

The limits of integration for this will be the intersection points of the two curves. In this case
it’s pretty easy to see that they will intersect at x = 0 and x = 1 so these are the limits of
integration.

So, the integral that we’ll need to compute to find the area is,

A =

∫ b

a

(
upper

function

)
−

(
lower

function

)
dx

=

∫ 1

0

√
x− x2 dx

=

(
2

3
x

3
2 − 1

3
x3

)∣∣∣∣
1

0

=
1

3

Before moving on to the next example, there are a couple of important things to note.

First, in almost all of these problems a graph is pretty much required. Often the bounding region,
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which will give the limits of integration, is difficult to determine without a graph.

Also, it can often be difficult to determine which of the functions is the upper function and which is
the lower function without a graph. This is especially true in cases like the last example where the
answer to that question actually depended upon the range of x’s that we were using.

Finally, unlike the area under a curve that we looked at in the previous chapter the area between
two curves will always be positive. If we get a negative number or zero we can be sure that we’ve
made a mistake somewhere and will need to go back and find it.

Note as well that sometimes instead of saying region enclosed by we will say region bounded by.
They mean the same thing.

Let’s work some more examples.

Example 2
Determine the area of the region bounded by y = xe−x2 , y = x+ 1, x = 2, and the
y-axis.

Solution

In this case the last two pieces of information, x = 2 and the y-axis, tell us the right and left
boundaries of the region. Also, recall that the y-axis is given by the line x = 0. Here is the
graph with the enclosed region shaded in.

Here, unlike the first example, the two curves don’t meet. Instead we rely on two vertical
lines to bound the left and right sides of the region as we noted above
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Here is the integral that will give the area.

A =

∫ b

a

(
upper

function

)
−

(
lower

function

)
dx

=

∫ 2

0
x+ 1− xe−x2

dx

=

(
1

2
x2 + x+

1

2
e−x2

)∣∣∣∣
2

0

=
7

2
+

e−4
2

= 3.5092

Example 3
Determine the area of the region bounded by y = 2x2 + 10 and y = 4x+ 16.

Solution

In this case the intersection points (which we’ll need eventually) are not going to be easily
identified from the graph so let’s go ahead and get them now. Note that for most of these
problems you’ll not be able to accurately identify the intersection points from the graph and
so you’ll need to be able to determine them by hand. In this case we can get the intersection
points by setting the two equations equal.

2x2 + 10 = 4x+ 16

2x2 − 4x− 6 = 0

2 (x+ 1) (x− 3) = 0

So, it looks like the two curves will intersect at x = −1 and x = 3. If we need them we
can get the y values corresponding to each of these by plugging the values back into either
of the equations. We’ll leave it to you to verify that the coordinates of the two intersection
points on the graph are (−1, 12) and (3, 28).

Note as well that if you aren’t good at graphing knowing the intersection points can help in
at least getting the graph started. Here is a graph of the region.
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With the graph we can now identify the upper and lower function and so we can now find
the enclosed area.

A =

∫ b

a

(
upper

function

)
−

(
lower

function

)
dx

=

∫ 3

−1
4x+ 16− (

2x2 + 10
)
dx

=

∫ 3

−1
−2x2 + 4x+ 6 dx

=

(
−2

3
x3 + 2x2 + 6x

)∣∣∣∣
3

−1

=
64

3

Be careful with parenthesis in these problems. One of the more common mistakes students make
with these problems is to neglect parenthesis on the second term.

Example 4
Determine the area of the region bounded by y = 2x2 + 10, y = 4x + 16, x = −2 and
x = 5.

Solution

So, the functions used in this problem are identical to the functions from the first problem.
The difference is that we’ve extended the bounded region out from the intersection points.

© Paul Dawkins Calculus – 506 –



Chapter 6 : Applications of Integrals Section 6.2 : Area Between Curves

Since these are the same functions we used in the previous example we won’t bother finding
the intersection points again.

Here is a graph of this region.

Okay, we have a small problem here. Our formula requires that one function always be the
upper function and the other function always be the lower function and we clearly do not
have that here. However, this actually isn’t the problem that it might at first appear to be.
There are three regions in which one function is always the upper function and the other is
always the lower function. So, all that we need to do is find the area of each of the three
regions, which we can do, and then add them all up.

Here is the area.

A =

∫ −1

−2
2x2 + 10− (4x+ 16) dx+

∫ 3

−1
4x+ 16− (

2x2 + 10
)
dx

+

∫ 5

3
2x2 + 10− (4x+ 16) dx

=

∫ −1

−2
2x2 − 4x− 6 dx+

∫ 3

−1
−2x2 + 4x+ 6 dx+

∫ 5

3
2x2 − 4x− 6 dx

=

(
2

3
x3 − 2x2 − 6x

)∣∣∣∣
−1

−2
+

(
−2

3
x3 + 2x2 + 6x

)∣∣∣∣
3

−1
+

(
2

3
x3 − 2x2 − 6x

)∣∣∣∣
5

3

=
14

3
+

64

3
+

64

3

=
142

3
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Example 5
Determine the area of the region enclosed by y = sin(x), y = cos(x), x = π

2 , and the
y-axis.

Solution

First let’s get a graph of the region.

So, we have another situation where we will need to do two integrals to get the area. The
intersection point will be where

sin(x) = cos(x)

in the interval. We’ll leave it to you to verify that this will be x = π
4 . The area is then,

A =

∫ π
4

0
cos(x)− sin(x) dx+

∫ π/2

π/4
sin(x)− cos(x) dx

= (sin(x) + cos(x))
∣∣∣∣
π
4

0

+

(
− cos(x)− sin(x)

)∣∣∣∣
π/2

π/4

=
√
2− 1 +

(√
2− 1

)
= 2

√
2− 2 = 0.828427

We will need to be careful with this next example.
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Example 6
Determine the area of the region enclosed by x = 1

2y
2 − 3 and y = x− 1.

Solution

Don’t let the first equation get you upset. We will have to deal with these kinds of equations
occasionally so we’ll need to get used to dealing with them.

As always, it will help if we have the intersection points for the two curves. In this case we’ll
get the intersection points by solving the second equation for x and then setting them equal.
Here is that work,

y + 1 =
1

2
y2 − 3

2y + 2 = y2 − 6

0 = y2 − 2y − 8

0 = (y − 4) (y + 2)

So, it looks like the two curves will intersect at y = −2 and y = 4 or if we need the full
coordinates they will be : (−1,−2) and (5, 4).

Here is a sketch of the two curves.

Now, we will have a serious problem at this point if we aren’t careful. To this point we’ve been
using an upper function and a lower function. To do that here notice that there are actually
two portions of the region that will have different lower functions. In the range [−3,−1] the
parabola is actually both the upper and the lower function.
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To use the formula that we’ve been using to this point we need to solve the parabola for y.
This gives,

y = ±√2x+ 6

where the “+” gives the upper portion of the parabola and the “-” gives the lower por-
tion.

Here is a sketch of the complete area with each region shaded that we’d need if we were
going to use the first formula.

The integrals for the area would then be,

A =

∫ −1

−3

√
2x+ 6− (−√2x+ 6

)
dx+

∫ 5

−1

√
2x+ 6− (x− 1) dx

=

∫ −1

−3
2
√
2x+ 6 dx+

∫ 5

−1

√
2x+ 6− x+ 1 dx

=

∫ −1

−3
2
√
2x+ 6 dx+

∫ 5

−1

√
2x+ 6 dx+

∫ 5

−1
−x+ 1 dx

=
2

3
u

3
2

∣∣∣∣
4

0

+
1

3
u

3
2

∣∣∣∣
16

4

+

(
−1

2
x2 + x

)∣∣∣∣
5

−1
= 18

While these integrals aren’t terribly difficult they are more difficult than they need to be.

Recall that there is another formula for determining the area. It is,

A =

∫ d

c

(
right

function

)
−

(
left

function

)
dy, c ≤ y ≤ d
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and in our case we do have one function that is always on the left and the other is always
on the right. So, in this case this is definitely the way to go. Note that we will need to rewrite
the equation of the line since it will need to be in the form x = f (y) but that is easy enough
to do. Here is the graph for using this formula.

The area is,

A =

∫ d

c

(
right

function

)
−

(
left

function

)
dy

=

∫ 4

−2
(y + 1)−

(
1

2
y2 − 3

)
dy

=

∫ 4

−2
−1

2
y2 + y + 4 dy

=

(
−1

6
y3 +

1

2
y2 + 4y

)∣∣∣∣
4

−2
= 18

This is the same that we got using the first formula and this was definitely easier than the
first method.

So, in this last example we’ve seen a case where we could use either formula to find the area.
However, the second was definitely easier.

Students often come into a calculus class with the idea that the only easy way to work with functions
is to use them in the form y = f (x). However, as we’ve seen in this previous example there are
definitely times when it will be easier to work with functions in the form x = f (y). In fact, there are
going to be occasions when this will be the only way in which a problem can be worked so make
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sure that you can deal with functions in this form.

Let’s take a look at one more example to make sure we can deal with functions in this form.

Example 7
Determine the area of the region bounded by x = −y2 + 10 and x = (y − 2)2.

Solution

First, we will need intersection points.

−y2 + 10 = (y − 2)2

−y2 + 10 = y2 − 4y + 4

0 = 2y2 − 4y − 6

0 = 2 (y + 1) (y − 3)

The intersection points are y = −1 and y = 3. Here is a sketch of the region.

This is definitely a region where the second area formula will be easier. If we used the first
formula there would be three different regions that we’d have to look at.
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The area in this case is,

A =

∫ d

c

(
right

function

)
−

(
left

function

)
dy

=

∫ 3

−1
−y2 + 10− (y − 2)2 dy

=

∫ 3

−1
−2y2 + 4y + 6 dy

=

(
−2

3
y3 + 2y2 + 6y

)∣∣∣∣
3

−1
=

64

3
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6.3 Solids of Revolution / Method of Rings

In this section we will start looking at the volume of a solid of revolution. We should first define just
what a solid of revolution is. To get a solid of revolution we start out with a function, y = f (x), on
an interval [a, b].

We then rotate this curve about a given axis to get the surface of the solid of revolution. For
purposes of this discussion let’s rotate the curve about the x-axis, although it could be any vertical or
horizontal axis. Doing this for the curve above gives the following three dimensional region.
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What we want to do over the course of the next two sections is to determine the volume of this
object.

In the Area and Volume Formulas section of the Extras appendix we derived the following formulas
for the volume of this solid.

Volume Formulas

V =

∫ b

a
A (x) dx V =

∫ d

c
A (y) dy

where, A (x) and A (y) are the cross-sectional area functions of the solid. There are many ways to
get the cross-sectional area and we’ll see two (or three depending on how you look at it) over the
next two sections. Whether we will use A (x) or A (y) will depend upon the method and the axis of
rotation used for each problem.

One of the easier methods for getting the cross-sectional area is to cut the object perpendicular
to the axis of rotation. Doing this the cross section will be either a solid disk if the object is solid
(as our above example is) or a ring if we’ve hollowed out a portion of the solid (we will see this
eventually).

In the case that we get a solid disk the area is,

A = π(radius)2

where the radius will depend upon the function and the axis of rotation.

In the case that we get a ring the area is,

Area of Ring

A = π

⎛
⎝(

outer
radius

)2

−
(

inner
radius

)2
⎞
⎠

where again both of the radii will depend on the functions given and the axis of rotation. Note as
well that in the case of a solid disk we can think of the inner radius as zero and we’ll arrive at the
correct formula for a solid disk and so this is a much more general formula to use.

Also, in both cases, whether the area is a function of x or a function of y will depend upon the axis
of rotation as we will see.

This method is often called the method of disks or the method of rings.

Let’s do an example.
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Example 1
Determine the volume of the solid obtained by rotating the region bounded by y = x2−4x+5,
x = 1, x = 4, and the x-axis about the x-axis.

Solution

The first thing to do is get a sketch of the bounding region and the solid obtained by rotating
the region about the x-axis. We don’t need a picture perfect sketch of the curves we just
need something that will allow us to get a feel for what the bounded region looks like so we
can get a quick sketch of the solid. With that in mind we can note that the first equation is just
a parabola with vertex (2, 1) (you do remember how to get the vertex of a parabola right?)
and opens upward and so we don’t really need to put a lot of time into sketching it.

Here are both of these sketches.

Okay, to get a cross section we cut the solid at any x. Below are a couple of sketches
showing a typical cross section. The sketch on the right shows a cut away of the object with
a typical cross section without the caps. The sketch on the left shows just the curve we’re
rotating as well as its mirror image along the bottom of the solid.
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In this case the radius is simply the distance from the x-axis to the curve and this is nothing
more than the function value at that particular x as shown above. The cross-sectional area
is then,

A (x) = π
(
x2 − 4x+ 5

)2
= π

(
x4 − 8x3 + 26x2 − 40x+ 25

)
Next, we need to determine the limits of integration. Working from left to right the first cross
section will occur at x = 1 and the last cross section will occur at x = 4. These are the limits
of integration.

The volume of this solid is then,

V =

∫ b

a
A (x) dx

= π

∫ 4

1
x4 − 8x3 + 26x2 − 40x+ 25 dx

= π

(
1

5
x5 − 2x4 +

26

3
x3 − 20x2 + 25x

)∣∣∣∣
4

1

=
78π

5

In the above example the object was a solid object, but the more interesting objects are those that
are not solid so let’s take a look at one of those.
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Example 2
Determine the volume of the solid obtained by rotating the portion of the region bounded by
y = 3

√
x and y =

x

4
that lies in the first quadrant about the y-axis.

Solution

First, let’s get a graph of the bounding region and a graph of the object. Remember that we
only want the portion of the bounding region that lies in the first quadrant. There is a portion
of the bounding region that is in the third quadrant as well, but we don’t want that for this
problem.

There are a couple of things to note with this problem. First, we are only looking for the vol-
ume of the “walls” of this solid, not the complete interior as we did in the last example.

Next, we will get our cross section by cutting the object perpendicular to the axis of rotation.
The cross section will be a ring (remember we are only looking at the walls) for this example
and it will be horizontal at some y. This means that the inner and outer radius for the ring
will be x values and so we will need to rewrite our functions into the form x = f (y). Here
are the functions written in the correct form for this example.

y = 3
√
x ⇒ x = y3

y =
x

4
⇒ x = 4y

Here are a couple of sketches of the boundaries of the walls of this object as well as a typical
ring. The sketch on the left includes the back portion of the object to give a little context to
the figure on the right.
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The inner radius in this case is the distance from the y-axis to the inner curve while the outer
radius is the distance from the y-axis to the outer curve. Both of these are then x distances
and so are given by the equations of the curves as shown above.

The cross-sectional area is then,

A (y) = π
(
(4y)2 − (

y3
)2)

= π
(
16y2 − y6

)

Working from the bottom of the solid to the top we can see that the first cross-section will
occur at y = 0 and the last cross-section will occur at y = 2. These will be the limits of
integration. The volume is then,

V =

∫ d

c
A (y) dy

= π

∫ 2

0
16y2 − y6 dy

= π

(
16

3
y3 − 1

7
y7

)∣∣∣∣
2

0

=
512π

21

With these two examples out of the way we can now make a generalization about this method. If
we rotate about a horizontal axis (the x-axis for example) then the cross-sectional area will be a
function of x. Likewise, if we rotate about a vertical axis (the y-axis for example) then the cross-
sectional area will be a function of y.

The remaining two examples in this section will make sure that we don’t get too used to the idea
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of always rotating about the x or y-axis.

Example 3
Determine the volume of the solid obtained by rotating the region bounded by y = x2 − 2x

and y = x about the line y = 4.

Solution

First let’s get the bounding region and the solid graphed.

Again, we are going to be looking for the volume of the walls of this object. Also, since we
are rotating about a horizontal axis we know that the cross-sectional area will be a function
of x.

Here are a couple of sketches of the boundaries of the walls of this object as well as a typical
ring. The sketch on the left includes the back portion of the object to give a little context to
the figure on the right.
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Now, we’re going to have to be careful here in determining the inner and outer radius as
they aren’t going to be quite as simple they were in the previous two examples.

Let’s start with the inner radius as this one is a little clearer. First, the inner radius is NOT x.
The distance from the x-axis to the inner edge of the ring is x, but we want the radius and
that is the distance from the axis of rotation to the inner edge of the ring. So, we know that
the distance from the axis of rotation to the x-axis is 4 and the distance from the x-axis to the
inner ring is x. The inner radius must then be the difference between these two. Or,

inner radius = 4− x

The outer radius works the same way. The outer radius is,

outer radius = 4− (
x2 − 2x

)
= −x2 + 2x+ 4

Note that given the location of the typical ring in the sketch above the formula for the outer
radius may not look quite right but it is in fact correct. As sketched the outer edge of the ring
is below the x-axis and at this point the value of the function will be negative and so when
we do the subtraction in the formula for the outer radius we’ll actually be subtracting off a
negative number which has the net effect of adding this distance onto 4 and that gives the
correct outer radius. Likewise, if the outer edge is above the x-axis, the function value will
be positive and so we’ll be doing an honest subtraction here and again we’ll get the correct
radius in this case.

The cross-sectional area for this case is,

A (x) = π
((−x2 + 2x+ 4

)2 − (4− x)2
)
= π

(
x4 − 4x3 − 5x2 + 24x

)
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The first ring will occur at x = 0 and the last ring will occur at x = 3 and so these are our
limits of integration. The volume is then,

V =

∫ b

a
A (x) dx

= π

∫ 3

0
x4 − 4x3 − 5x2 + 24x dx

= π

(
1

5
x5 − x4 − 5

3
x3 + 12x2

)∣∣∣∣
3

0

=
153π

5

Example 4
Determine the volume of the solid obtained by rotating the region bounded by y = 2

√
x− 1

and y = x− 1 about the line x = −1.

Solution

As with the previous examples, let’s first graph the bounded region and the solid.

Now, let’s notice that since we are rotating about a vertical axis and so the cross-sectional
area will be a function of y. This also means that we are going to have to rewrite the functions
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to also get them in terms of y.

y = 2
√
x− 1 ⇒ x =

y2

4
+ 1

y = x− 1 ⇒ x = y + 1

Here are a couple of sketches of the boundaries of the walls of this object as well as a typical
ring. The sketch on the left includes the back portion of the object to give a little context to
the figure on the right.

The inner and outer radius for this case is both similar and different from the previous ex-
ample. This example is similar in the sense that the radii are not just the functions. In this
example the functions are the distances from the y-axis to the edges of the rings. The center
of the ring however is a distance of 1 from the y-axis. This means that the distance from the
center to the edges is a distance from the axis of rotation to the y-axis (a distance of 1) and
then from the y-axis to the edge of the rings.

So, the radii are then the functions plus 1 and that is what makes this example different from
the previous example. Here we had to add the distance to the function value whereas in the
previous example we needed to subtract the function from this distance. Note that without
sketches the radii on these problems can be difficult to get.

So, in summary, we’ve got the following for the inner and outer radius for this example.

outer radius = y + 1 + 1 = y + 2

inner radius =
y2

4
+ 1 + 1 =

y2

4
+ 2
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The cross-sectional area is then,

A (y) = π

(
(y + 2)2 −

(
y2

4
+ 2

)2
)

= π

(
4y − y4

16

)

The first ring will occur at y = 0 and the final ring will occur at y = 4 and so these will be our
limits of integration.

The volume is,

V =

∫ d

c
A (y) dy

= π

∫ 4

0
4y − y4

16
dy

= π

(
2y2 − 1

80
y5

)∣∣∣∣
4

0

=
96π

5
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6.4 Solids of Revolution / Method of Cylinders

In the previous section we started looking at finding volumes of solids of revolution. In that section
we took cross sections that were rings or disks, found the cross-sectional area and then used the
following formulas to find the volume of the solid.

V =

∫ b

a
A (x) dx V =

∫ d

c
A (y) dy

In the previous section we only used cross sections that were in the shape of a disk or a ring. This
however does not always need to be the case. We can use any shape for the cross sections as
long as it can be expanded or contracted to completely cover the solid we’re looking at. This is a
good thing because as our first example will show us we can’t always use rings/disks.

Example 1
Determine the volume of the solid obtained by rotating the region bounded by
y = (x− 1) (x− 3)2 and the x-axis about the y-axis.

Solution

As we did in the previous section, let’s first graph the bounded region and solid. Note that
the bounded region here is the shaded portion shown. The curve is extended out a little past
this for the purposes of illustrating what the curve looks like.

So, we’ve basically got something that’s roughly doughnut shaped. If we were to use rings
on this solid here is what a typical ring would look like.
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This leads to several problems. First, both the inner and outer radius are defined by the
same function. This, in itself, can be dealt with on occasion as we saw in a example in the
Area Between Curves section. However, this usually means more work than other methods
so it’s often not the best approach.

This leads to the second problem we got here. In order to use rings we would need to put
this function into the form x = f (y). That is NOT easy in general for a cubic polynomial
and in other cases may not even be possible to do. Even when it is possible to do this
the resulting equation is often significantly messier than the original which can also cause
problems.

The last problem with rings in this case is not so much a problem as it’s just added work. If we
were to use rings the limit would be y limits and this means that we will need to know how high
the graph goes. To this point the limits of integration have always been intersection points
that were fairly easy to find. However, in this case the highest point is not an intersection
point, but instead a relative maximum. We spent several sections in the Applications of
Derivatives chapter talking about how to find maximum values of functions. However, finding
them can, on occasion, take some work.

So, we’ve seen three problems with rings in this case that will either increase our work load
or outright prevent us from using rings.

What we need to do is to find a different way to cut the solid that will give us a cross-sectional
area that we can work with. One way to do this is to think of our solid as a lump of cookie
dough and instead of cutting it perpendicular to the axis of rotation we could instead center
a cylindrical cookie cutter on the axis of rotation and push this down into the solid. Doing
this would give the following picture,
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Doing this gives us a cylinder or shell in the object and we can easily find its surface area.
The surface area of this cylinder is,

A (x) = 2π (radius) (height)

= 2π (x)
(
(x− 1) (x− 3)2

)
= 2π

(
x4 − 7x3 + 15x2 − 9x

)

Notice as well that as we increase the radius of the cylinder we will completely cover the
solid and so we can use this in our formula to find the volume of this solid. All we need are
limits of integration. The first cylinder will cut into the solid at x = 1 and as we increase x to
x = 3 we will completely cover both sides of the solid since expanding the cylinder in one
direction will automatically expand it in the other direction as well.

The volume of this solid is then,

V =

∫ b

a
A (x) dx

= 2π

∫ 3

1
x4 − 7x3 + 15x2 − 9x dx

= 2π

(
1

5
x5 − 7

4
x4 + 5x3 − 9

2
x2

)∣∣∣∣
3

1

=
24π

5

The method used in the last example is called the method of cylinders or method of shells. The
formula for the area in all cases will be,
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Area of Cylinder

A = 2π (radius) (height)

There are a couple of important differences between this method and the method of rings/disks
that we should note before moving on. First, rotation about a vertical axis will give an area that is
a function of x and rotation about a horizontal axis will give an area that is a function of y. This is
exactly opposite of the method of rings/disks.

Second, we don’t take the complete range of x or y for the limits of integration as we did in the
previous section. Instead we take a range of x or y that will cover one side of the solid. As we noted
in the first example if we expand out the radius to cover one side we will automatically expand in
the other direction as well to cover the other side.

Let’s take a look at another example.

Example 2
Determine the volume of the solid obtained by rotating the region bounded by y = 3

√
x, x = 8

and the x-axis about the x-axis.

Solution

First let’s get a graph of the bounded region and the solid.

Okay, we are rotating about a horizontal axis. This means that the area will be a function of
y and so our equation will also need to be written in x = f (y) form.

y = 3
√
x ⇒ x = y3

© Paul Dawkins Calculus – 528 –



Chapter 6 : Applications of Integrals Section 6.4 : Volume with Cylinders

As we did in the ring/disk section let’s take a couple of looks at a typical cylinder. The sketch
on the left shows a typical cylinder with the back half of the object also in the sketch to give
the right sketch some context. The sketch on the right contains a typical cylinder and only
the curves that define the edge of the solid.

In this case the width of the cylinder is not the function value as it was in the previous
example. In this case the function value is the distance between the edge of the cylinder
and the y-axis. The distance from the edge out to the line is x = 8 and so the width is then
8− y3. The cross-sectional area in this case is,

A (y) = 2π (radius) (width)
= 2π (y)

(
8− y3

)
= 2π

(
8y − y4

)

The first cylinder will cut into the solid at y = 0 and the final cylinder will cut in at y = 2 and
so these are our limits of integration.

The volume of this solid is,

V =

∫ d

c
A (y) dy

= 2π

∫ 2

0
8y − y4 dy

= 2π

(
4y2 − 1

5
y5

)∣∣∣∣
2

0

=
96π

5

The remaining examples in this section will have axis of rotation about axis other than the x and
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y-axis. As with the method of rings/disks we will need to be a little careful with these.

Example 3
Determine the volume of the solid obtained by rotating the region bounded by y = 2

√
x− 1

and y = x− 1 about the line x = 6.

Solution

Here’s a graph of the bounded region and solid.

Here are our sketches of a typical cylinder. Again, the sketch on the left is here to provide
some context for the sketch on the right.
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Okay, there is a lot going on in the sketch to the left. First notice that the radius is not just
an x or y as it was in the previous two cases. In this case x is the distance from the y-axis
to the edge of the cylinder and we need the distance from the axis of rotation to the edge of
the cylinder. That means that the radius of this cylinder is 6− x.

Secondly, the height of the cylinder is the difference of the two functions in this case.

The cross-sectional area is then,

A (x) = 2π (radius) (height)
= 2π (6− x)

(
2
√
x− 1− x+ 1

)
= 2π

(
x2 − 7x+ 6 + 12

√
x− 1− 2x

√
x− 1

)

Now the first cylinder will cut into the solid at x = 1 and the final cylinder will cut into the solid
at x = 5 so there are our limits.

Here is the volume.

V =

∫ b

a
A (x) dx

= 2π

∫ 5

1
x2 − 7x+ 6 + 12

√
x− 1− 2x

√
x− 1 dx

= 2π

(
1

3
x3 − 7

2
x2 + 6x+ 8(x− 1)

3
2 − 4

3
(x− 1)

3
2 − 4

5
(x− 1)

5
2

)∣∣∣∣
5

1

= 2π

(
136

15

)

=
272π

15

The integration of the last term is a little tricky so let’s do that here. It will use the substitu-
tion,

u = x− 1 du = dx x = u+ 1

∫
2x
√
x− 1 dx = 2

∫
(u+ 1)u

1
2 du

= 2

∫
u

3
2 + u

1
2 du

= 2

(
2

5
u

5
2 +

2

3
u

3
2

)
+ c

=
4

5
(x− 1)

5
2 +

4

3
(x− 1)

3
2 + c

We saw one of these kinds of substitutions back in the substitution section.
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Example 4
Determine the volume of the solid obtained by rotating the region bounded by x = (y − 2)2

and y = x about the line y = −1.

Solution

We should first get the intersection points there.

y = (y − 2)2

y = y2 − 4y + 4

0 = y2 − 5y + 4

0 = (y − 4) (y − 1)

So, the two curves will intersect at y = 1 and y = 4. Here is a sketch of the bounded region
and the solid.

Here are our sketches of a typical cylinder. The sketch on the left is here to provide some
context for the sketch on the right.
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Here’s the cross-sectional area for this cylinder.

A (y) = 2π (radius) (width)

= 2π (y + 1)
(
y − (y − 2)2

)
= 2π

(−y3 + 4y2 + y − 4
)

The first cylinder will cut into the solid at y = 1 and the final cylinder will cut in at y = 4. The
volume is then,

V =

∫ d

c
A (y) dy

= 2π

∫ 4

1
−y3 + 4y2 + y − 4 dy

= 2π

(
−1

4
y4 +

4

3
y3 +

1

2
y2 − 4y

)∣∣∣∣
4

1

=
63π

2
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6.5 More Volume Problems

In this section we’re going to take a look at some more volume problems. However, the problems
we’ll be looking at here will not be solids of revolution as we looked at in the previous two sections.
There are many solids out there that cannot be generated as solids of revolution, or at least not
easily and so we need to take a look at how to do some of these problems.

Now, having said that these will not be solids of revolutions they will still be worked in pretty much
the same manner. For each solid we’ll need to determine the cross-sectional area, either A (x) or
A (y), and they use the formulas we used in the previous two sections,

Volume Formulas

V =

∫ b

a
A (x) dx V =

∫ d

c
A (y) dy

The “hard” part of these problems will be determining what the cross-sectional area for each solid
is. Each problem will be different and so each cross-sectional area will be determined by different
means.

Also, before we proceed with any examples we need to acknowledge that the integrals in this
section might look a little tricky at first. There are going to be very few numbers in these problems.
All of the examples in this section are going to be more general derivation of volume formulas for
certain solids. As such we’ll be working with things like circles of radius r and we’ll not be giving a
specific value of r and we’ll have heights of h instead of specific heights, etc.

All the letters in the integrals are going to make the integrals look a little tricky, but all you have to
remember is that the r’s and the h’s are just letters being used to represent a fixed quantity for the
problem, i.e. it is a constant. So, when we integrate we only need to worry about the letter in the
differential as that is the variable we’re actually integrating with respect to. All other letters in the
integral should be thought of as constants. If you have trouble doing that, just think about what
you’d do if the r was a 2 or the h was a 3 for example.

Let’s start with a simple example that we don’t actually need to do an integral that will illustrate how
these problems work in general and will get us used to seeing multiple letters in integrals.

© Paul Dawkins Calculus – 534 –



Chapter 6 : Applications of Integrals Section 6.5 : More Volume Problems

Example 1
Find the volume of a cylinder of radius r and height h.

Solution

Now, as we mentioned before starting this example we really don’t need to use an integral
to find this volume, but it is a good example to illustrate the method we’ll need to use for
these types of problems.

We’ll start off with the sketch of the cylinder below.

We’ll center the cylinder on the x-axis and the cylinder will start at x = 0 and end at x = h

as shown. Note that we’re only choosing this particular set up to get an integral in terms of
x and to make the limits nice to deal with. There are many other orientations that we could
use.

What we need here is to get a formula for the cross-sectional area at any x. In this case
the cross-sectional area is constant and will be a disk of radius r. Therefore, for any x we’ll
have the following cross-sectional area,

A (x) = πr2

Next the limits for the integral will be 0 ≤ x ≤ h since that is the range of x in which the
cylinder lives. Here is the integral for the volume,

V =

∫ h

0
πr2 dx = πr2

∫ h

0
dx = πr2x

∣∣h
0
= πr2h

So, we get the expected formula.
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Also, recall we are using r to represent the radius of the cylinder. While r can clearly take
different values it will never change once we start the problem. Cylinders do not change
their radius in the middle of a problem and so as we move along the center of the cylinder
(i.e. the x-axis) r is a fixed number and won’t change. In other words, it is a constant that
will not change as we change the x. Therefore, because we integrated with respect to x the
r will be a constant as far as the integral is concerned. The r can then be pulled out of the
integral as shown (although that’s not required, we just did it to make the point). At this point
we’re just integrating dx and we know how to do that.

When we evaluate the integral remember that the limits are x values and so we plug into
the x and NOT the r. Again, remember that r is just a letter that is being used to repre-
sent the radius of the cylinder and, once we start the integration, is assumed to be a fixed
constant.

As noted before we started this example if you’re having trouble with the r just think of what
you’d do if there was a 2 there instead of an r. In this problem, because we’re integrating
with respect to x, both the 2 and the r will behave in the same manner. Note however that
you should NEVER actually replace the r with a 2 as that WILL lead to a wrong answer. You
should just think of what you would do IF the r was a 2.

So, to work these problems we’ll first need to get a sketch of the solid with a set of x and y axes to
help us see what’s going on. At the very least we’ll need the sketch to get the limits of the integral,
but we will often need it to see just what the cross-sectional area is. Once we have the sketch we’ll
need to determine a formula for the cross-sectional area and then do the integral.

Let’s work a couple of more complicated examples. In these examples the main issue is going to
be determining what the cross-sectional areas are.

Example 2
Find the volume of a pyramid whose base is a square with sides of length L and whose
height is h.

Solution

Let’s start off with a sketch of the pyramid. In this case we’ll center the pyramid on the y-axis
and to make the equations easier we are going to position the point of the pyramid at the
origin.
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Now, as shown here the cross-sectional area will be a function of y and it will also be a
square with sides of length s. The area of the square is easy, but we’ll need to get the length
of the side in terms of y. To determine this, consider the figure on the right above. If we
look at the pyramid directly from the front we’ll see that we have two similar triangles and
we know that the ratio of any two sides of similar triangles must be equal. In other words,
we know that,

s

L
=

y

h
⇒ s =

y

h
L =

L

h
y

So, the cross-sectional area is then,

A (y) = s2 =
L2

h2
y2

The limit for the integral will be 0 ≤ y ≤ h and the volume will be,

V =

∫ h

0

L2

h2
y2 dy =

L2

h2

∫ h

0
y2 dy =

L2

h2

(
1

3
y3

)∣∣∣∣
h

0

=
1

3
L2h

Again, do not get excited about the L and the h in the integral. Once we start the problem
if we change y they will not change and so they are constants as far as the integral is
concerned and can get pulled out of the integral. Also, remember that when we evaluate
will only plug the limits into the variable we integrated with respect to, y in this case.

Before we proceed with some more complicated examples we should once again remind you to
not get excited about the other letters in the integrals. If we’re integrating with respect to x or y
then all other letters in the formula that represent fixed quantities (i.e. radius, height, length of a
side, etc.) are just constants and can be treated as such when doing the integral.
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Now let’s do some more examples.

Example 3
For a sphere of radius r find the volume of the cap of height h.

Solution

A sketch is probably best to illustrate what we’re after here.

We are after the top portion of the sphere and the height of this is portion is h. In this case
we’ll use a cross-sectional area that starts at the bottom of the cap, which is at y = r − h,
and moves up towards the top, which is at y = r. So, each cross-section will be a disk of
radius x. It is a little easier to see that the radius will be x if we look at it from the top as
shown in the sketch to the right above. The area of this disk is then,

πx2

This is a problem however as we need the cross-sectional area in terms of y. So, what we
really need to determine what x2 will be for any given y at the cross-section. To get this let’s
look at the sphere from the front.
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In particular look at the triangle POR. Because the point R lies on the sphere itself we can
see that the length of the hypotenuse of this triangle (the line OR) is r, the radius of the
sphere. The line PR has a length of x and the line OP has length y so by the Pythagorean
Theorem we know,

x2 + y2 = r2 ⇒ x2 = r2 − y2

So, we now know what x2 will be for any given y and so the cross-sectional area is,

A (y) = π
(
r2 − y2

)

As we noted earlier the limits on y will be r − h ≤ y ≤ r and so the volume is,

V =

∫ r

r−h
π
(
r2 − y2

)
dy

= π

(
r2y − 1

3
y3

)∣∣∣∣
r

r−h

= π

(
h2r − 1

3
h3

)
= πh2

(
r − 1

3
h

)

In the previous example we again saw an r in the integral. However, unlike the previous two
examples it was not multiplied times the x or the y and so could not be pulled out of the integral.
In this case it was like we were integrating 4 − y2 and we know how to integrate that. So, in this
case we need to treat the r2 like the 4 and so when we integrate that we’ll pick up a y.
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Example 4
Find the volume of a wedge cut out of a cylinder of radius r if the angle between the top and
bottom of the wedge is π

6 .

Solution

We should really start off with a sketch of just what we’re looking for here.

On the left we see how the wedge is being cut out of the cylinder. The base of the cylinder is
the circle give by x2 + y2 = r2 and the angle between this circle and the top of the wedge is
π
6 . The sketch in the upper right position is the actual wedge itself. Given the orientation of
the axes here we get the portion of the circle with positive y and so we can write the equation
of the circle as y =

√
r2 − x2 since we only need the positive y values. Note as well that this

is the reason for the way we oriented the axes here.

We get positive y’s and we can write the equation of the circle as a function only of x’s.

Now, as we can see in the two sketches of the wedge the cross-sectional area will be a right
triangle and the area will be a function of x as we move from the back of the cylinder, at
x = −r, to the front of the cylinder, at x = r.

The right angle of the triangle will be on the circle itself while the point on the x-axis will have
an interior angle of π

6 . The base of the triangle will have a length of y and using a little right
triangle trig we see that the height of the rectangle is,

height = y tan
(π
6

)
=

1√
3
y

So, we now know the base and height of our triangle, in terms of y, and we have an equation
for y in terms of x and so we can see that the area of the triangle, i.e. the cross-sectional
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area is,

A (x) =
1

2
(y)

(
1√
3
y

)
=

1

2

√
r2 − x2

(
1√
3

√
r2 − x2

)
=

1

2
√
3

(
r2 − x2

)

The limits on x are −r ≤ x ≤ r and so the volume is then,

V =

∫ r

−r
1

2
√
3

(
r2 − x2

)
dx =

1

2
√
3

(
r2x− 1

3
x3

)∣∣∣∣
r

−r
=

2r3

3
√
3

The next example is very similar to the previous one except it can be a little difficult to visualize the
solid itself.

Example 5
Find the volume of the solid whose base is a disk of radius r and whose cross-sections are
equilateral triangles.

Solution

Let’s start off with a couple of sketches of this solid. The sketch on the left is from the “front”
of the solid and the sketch on the right is more from the top of the solid.
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The base of this solid is the disk of radius r and we move from the back of the disk at x = −r
to the front of the disk at x = r we form equilateral triangles to form the solid. A sample
equilateral triangle, which is also the cross-sectional area, is shown above to hopefully make
it a little clearer how the solid is formed.

Now, let’s get a formula for the cross-sectional area. Let’s start with the two sketches be-
low.

In the left hand sketch we are looking at the solid from directly above and notice that we
“reoriented” the sketch a little to put the x and y-axis in the “normal” orientation. The solid
vertical line in this sketch is the cross-sectional area. From this we can see that the cross-
section occurs at a given x and the top half will have a length of y where the value of y will
be the y-coordinate of the point on the circle and so is,

y =
√

r2 − x2

Also, because the cross-section is an equilateral triangle that is centered on the x-axis the
bottom half will also have a length of y. Thus, the base of the cross-section must have a
length of 2y.

The sketch to the right is of one of the cross-sections. As noted above the base of the triangle
has a length of 2y. Also note that because it is an equilateral triangle the angles are all π

3 .
If we divide the cross-section in two (as shown with the dashed line) we now have two right
triangles and using right triangle trig we can see that the length of the dashed line is,

dashed line = y tan
(π
3

)
=
√
3 y

Therefore, the height of the cross-section is
√
3 y. Because the cross-section is a triangle

we know that that it’s area must then be,

A (x) =
1

2
(2y)

(√
3 y

)
=

1

2

(
2
√

r2 − x2
)(√

3
√
r2 − x2

)
=
√
3
(
r2 − x2

)
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Note that we used the cross-sectional area in terms of x because each of the cross-sections
is perpendicular to the x-axis and this pretty much forces us to integrate with respect to
x.

The volume of the solid is then,

V (x) =

∫ r

− r

√
3
(
r2 − x2

)
dx =

√
3

(
r2x− 1

3
x3

)∣∣∣∣
r

− r

=
4√
3
r3

The final example we’re going to work here is a little tricky both in seeing how to set it up and in
doing the integral.

Example 6
Find the volume of a torus with radii r and R.

Solution

First, just what is a torus? A torus is a donut shaped solid that is generated by rotating the
circle of radius r and centered at (R, 0) about the y-axis. This is shown in the sketch to the
left below.

One of the trickiest parts of this problem is seeing what the cross-sectional area needs to
be. There is an obvious one. Most people would probably think of using the circle of radius
r that we’re rotating about the y-axis as the cross-section. It is definitely one of the more
obvious choices, however setting up an integral using this is not so easy.

So, what we’ll do is use a cross-section as shown in the sketch to the right above. If we cut
the torus perpendicular to the y-axis we’ll get a cross-section of a ring and finding the area
of that shouldn’t be too bad. To do that let’s take a look at the two sketches below.
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The sketch to the left is a sketch of the full cross-section. The sketch to the right is more im-
portant however. This is a sketch of the circle that we are rotating about the y-axis. Included
is a line representing where the cross-sectional area would be in the torus.

Notice that the inner radius will always be the left portion of the circle and the outer radius
will always be the right portion of the circle. Now, we know that the equation of this is,

(x−R)2 + y2 = r2

and so if we solve for x we can get the equations for the left and right sides as shown above
in the sketch. This however means that we also now have equations for the inner and outer
radii.

inner radius : x = R−
√

r2 − y2 outer radius : x = R+
√
r2 − y2

The cross-sectional area is then,

A (y) = π(outer radius)2 − π(inner radius)2

= π

[(
R+

√
r2 − y2

)2 −
(
R−

√
r2 − y2

)2
]

= π
[
R2 + 2R

√
r2 − y2 + r2 − y2 −

(
R2 − 2R

√
r2 − y2 + r2 − y2

)]
= 4πR

√
r2 − y2

Next, the lowest cross-section will occur at y = −r and the highest cross-section will occur
at y = r and so the limits for the integral will be −r ≤ y ≤ r.

The integral giving the volume is then,

V =

∫ r

−r
4πR

√
r2 − y2 dy = 2

∫ r

0
4πR

√
r2 − y2 dy = 8πR

∫ r

0

√
r2 − y2 dy
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Note that we used the fact that because the integrand is an even function and we’re integrat-
ing over [−r, r] we could change the lower limit to zero and double the value of the integral.
We saw this fact back in the Computing Definite Integrals section.

We’ve now reached the second really tricky part of this example. With the knowledge that
we’ve currently got at this point this integral is not possible to do. It requires something called
a trig substitution and that is a topic for Calculus II. Luckily enough for us, and this is the
tricky part, in this case we can actually determine the integral’s value using what we know
about integrals.

Just for a second let’s think about a different problem. Let’s suppose we wanted to use an
integral to determine the area under the portion of the circle of radius r and centered at the
origin that is in the first quadrant. There are a couple of ways to do this, but to match what
we’re doing here let’s do the following.

We know that the equation of the circle is x2 + y2 = r2 and if we solve for x the equation of
the circle in the first (and fourth for that matter) quadrant is,

x =
√

r2 − y2

If we want an integral for the area in the first quadrant we can think of this area as the region
between the curve x =

√
r2 − y2 and the y-axis for 0 ≤ y ≤ r and this is,

A =

∫ r

0

√
r2 − y2 dy

In other words, this integral represents one quarter of the area of a circle of radius r and
from basic geometric formulas we now know that this integral must have the value,

A =

∫ r

0

√
r2 − y2 dy =

1

4
πr2

So, putting all this together the volume of the torus is then,

V = 8Rπ

∫ r

0

√
r2 − y2 dy = 8πR

(
1

4
πr2

)
= 2Rπ2r2
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6.6 Work

This is the final application of integral that we’ll be looking at in this course. In this section we will
be looking at the amount of work that is done by a force in moving an object.

In a first course in Physics you typically look at the work that a constant force, F , does when moving
an object over a distance of d. In these cases the work is,

W = Fd

However, most forces are not constant and will depend upon where exactly the force is acting. So,
let’s suppose that the force at any x is given by F (x). Then the work done by the force in moving
an object from x = a to x = b is given by,

W =

∫ b

a
F (x) dx

To see a justification of this formula see the Proof of Various Integral Properties section of the
Extras appendix.

Notice that if the force is constant we get the correct formula for a constant force.

W =

∫ b

a
F dx

= Fx

∣∣∣∣
b

a

= F (b− a)

where b− a is simply the distance moved, or d.

So, let’s take a look at a couple of examples of non-constant forces.

Example 1
A spring has a natural length of 20 cm. A 40 N force is required to stretch (and hold the
spring) to a length of 30 cm. How much work is done in stretching the spring from 35 cm to
38 cm?

Solution

This example will require Hooke’s Law to determine the force. Hooke’s Law tells us that the
force required to stretch a spring a distance of x meters from its natural length is,

F (x) = k x

where k > 0 is called the spring constant. It is important to remember that the x in this
formula is the distance the spring is stretched from its natural length and not the actual
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length of the spring.

So, the first thing that we need to do is determine the spring constant for this spring. We can
do that using the initial information. A force of 40 N is required to stretch the spring

30 cm− 20 cm = 10 cm = 0.1 m

from its natural length. Using Hooke’s Law we have,

40 = 0.10k ⇒ k = 400

So, according to Hooke’s Law the force required to hold this spring x meters from its natural
length is,

F (x) = 400x

We want to know the work required to stretch the spring from 35cm to 38cm. First, we need
to convert these into distances from the natural length in meters. Doing that gives us x’s of
0.15m and 0.18m.

The work is then,

W =

∫ 0.18

0.15
400x dx

= 200x2
∣∣∣∣
0.18

0.15

= 1.98 J

Example 2
We have a cable that weighs 2 lbs/ft attached to a bucket filled with coal that weighs
800 lbs. The bucket is initially at the bottom of a 500 ft mine shaft. Answer each of the
following about this.

(a) Determine the amount of work required to lift the bucket to the midpoint of the shaft.

(b) Determine the amount of work required to lift the bucket from the midpoint of the shaft
to the top of the shaft.

(c) Determine the amount of work required to lift the bucket all the way up the shaft.

Solution
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Before answering either part we first need to determine the force. In this case the force will
be the weight of the bucket and cable at any point in the shaft.

To determine a formula for this we will first need to set a convention for x. For this problem
we will set x to be the amount of cable that has been pulled up. So at the bottom of the shaft
x = 0, at the midpoint of the shaft x = 250 and at the top of the shaft x = 500. Also, at any
point in the shaft there is 500− x feet of cable still in the shaft.

The force then for any x is then nothing more than the weight of the cable and bucket at that
point. This is,

F (x) = weight of cable + weight of bucket/coal
= 2 (500− x) + 800

= 1800− 2x

We can now answer the questions.

(a) Determine the amount of work required to lift the bucket to the midpoint of the
shaft.

In this case we want to know the work required to move the cable and bucket/coal from
x = 0 to x = 250. The work required is,

W =

∫ 250

0
F (x) dx

=

∫ 250

0
1800− 2x dx

=
(
1800x− x2

)∣∣∣∣
250

0

= 387500 ft - lb

(b) Determine the amount of work required to lift the bucket from the midpoint of
the shaft to the top of the shaft.

In this case we want to move the cable and bucket/coal from x = 250 to x = 500. The
work required is,

W =

∫ 500

250
F (x) dx

=

∫ 500

250
1800− 2x dx

=
(
1800x− x2

)∣∣∣∣
500

250

= 262500 ft - lb
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(c) Determine the amount of work required to lift the bucket all the way up the shaft.

In this case the work is,

W =

∫ 500

0
F (x) dx

=

∫ 500

0
1800− 2x dx

=
(
1800x− x2

)∣∣∣∣
500

0

= 650000 ft - lb

Note that we could have instead just added the results from the first two parts and we
would have gotten the same answer to the third part.

Example 3
A 20 ft cable weighs 80 lbs and hangs from the ceiling of a building without touching the
floor. Determine the work that must be done to lift the bottom end of the chain all the way
up until it touches the ceiling.

Solution

First, we need to determine the weight per foot of the cable. This is easy enough to get,

80 lbs
20 ft

= 4 lb/ft

Next, let x be the distance from the ceiling to any point on the cable. Using this convention
we can see that the portion of the cable in the range 10 < x ≤ 20 will actually be lifted. The
portion of the cable in the range 0 ≤ x ≤ 10 will not be lifted at all since once the bottom of
the cable has been lifted up to the ceiling the cable will be doubled up and each portion will
have a length of 10 ft. So, the upper 10 foot portion of the cable will never be lifted while the
lower 10 ft portion will be lifted.

Now, the very bottom of the cable, x = 20, will be lifted 10 feet to get to the midpoint and
then a further 10 feet to get to the ceiling. A point 2 feet from the bottom of the cable, x = 18

will lift 8 feet to get to the midpoint and then a further 8 feet until it reaches its final position
(if it is 2 feet from the bottom then its final position will be 2 feet from the ceiling). Continuing
on in this fashion we can see that for any point on the lower half of the cable, i.e. 10 ≤ x ≤ 20

it will be lifted a total of 2 (x− 10).

As with the previous example the force required to lift any point of the cable in this range is
simply the distance that point will be lifted times the weight/foot of the cable. So, the force
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is then,

F (x) = (distance lifted) (weight per foot of cable)
= 2 (x− 10) (4)

= 8 (x− 10)

The work required is now,

W =

∫ 20

10
8 (x− 10) dx

=
(
4x2 − 80x

)∣∣∣∣
20

10

= 400 ft - lb

Provided we can find the force, F (x), for a given problem then using the above method for de-
termining the work is (generally) pretty simple. However, there are some problems where this
approach won’t easily work. Let’s take a look at one of those kinds of problems.

Example 4
A tank in the shape of an inverted cone has a height of 15 meters and a base radius of
4 meters and is filled with water to a depth of 12 meters. Determine the amount of work
needed to pump all of the water to the top of the tank. Assume that the density of the water
is 1000 kg/m3.

Solution

Okay, in this case we cannot just determine a force function, F (x) that will work for us. So,
we are going to need to approach this from a different standpoint.

Let’s first set x = 0 to be the lower end of the tank/cone and x = 15 to be the top of
the tank/cone. With this definition of our x’s we can now see that the water in the tank will
correspond to the interval [0, 12].

So, let’s start off by dividing [0, 12] into n subintervals each of width Δx and let’s also let x∗i
be any point from the ith subinterval where i = 1, 2, . . . n. Now, for each subinterval we will
approximate the water in the tank corresponding to that interval as a cylinder of radius ri
and height Δx.

Here is a quick sketch of the tank. Note that the sketch really isn’t to scale and we are
looking at the tank from directly in front so we can see all the various quantities that we need
to work with.
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The red strip in the sketch represents the “cylinder” of water in the ith subinterval. A quick
application of similar triangles will allow us to relate ri to x∗i (which we’ll need in a bit) as
follows.

ri
x∗i

=
4

15
⇒ ri =

4

15
x∗i

Okay, the mass, mi, of the volume of water, Vi, for the ith subinterval is simply,

mi = density × Vi

We know the density of the water (it was given in the problem statement) and because we
are approximating the water in the ith subinterval as a cylinder we can easily approximate
the volume as,

Vi ≈ π(radius)2 (height)

We can now approximate the mass of water in the ith subinterval,

mi ≈ (1000)
[
πr2iΔx

]
= 1000π

(
4

15
x∗i

)2

Δx =
640

9
π(x∗i )

2Δx

To raise this volume of water we need to overcome the force of gravity that is acting on the
volume and that is, F = mig, where g = 9.8m/s2 is the gravitational acceleration. The force
to raise the volume of water in the ith subinterval is then approximately,

Fi = mig ≈ (9.8)
640

9
π(x∗i )

2Δx

Next, in order to reach to the top of the tank the water in the ith subinterval will need to travel
approximately 15− x∗i to reach the top of the tank. Because the volume of the water in the
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ith subinterval is constant the force needed to raise the water through any distance is also
a constant force.

Therefore, the work to move the volume of water in the ith subinterval to the top of the tank,
i.e. raise it a distance of 15− x∗i , is then approximately,

Wi ≈ Fi (15− x∗i ) = (9.8)
640

9
π(x∗i )

2 (15− x∗i )Δx

The total amount of work required to raise all the water to the top of the tank is then approx-
imately the sum of each of the Wi for i = 1, 2, . . . n. Or,

W ≈
n∑

i=1

(9.8)
640

9
π(x∗i )

2 (15− x∗i )Δx

To get the actual amount of work we simply need to take n→∞. I.e. compute the following
limit,

W = lim
n→∞

n∑
i=1

(9.8)
640

9
π(x∗i )

2 (15− x∗i )Δx

This limit of a summation should look somewhat familiar to you. It’s probably been some
time, but recalling the definition of the definite integral we can see that this is nothing more
than the following definite integral,

W =

∫ 12

0
(9.8)

640

9
πx2 (15− x) dx = (9.8)

640

9
π

∫ 12

0
15x2 − x3 dx

= (9.8)
640

9
π

(
5x3 − 1

4
x4

)∣∣∣∣
12

0

= 7, 566, 362.543 J

As we’ve seen in the previous example we sometimes need to compute “incremental” work and
then use that to determine the actual integral we need to compute. This idea does arise on occasion
and we shouldn’t forget it!
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