Questions for Module \# 10

Q. 1 Use Gauss' method to solve each system or conclude 'many solutions' or 'no solutions'.
(a) $2 x+2 y=5$
(b) $-x+y=1$
(c) $x-3 y+z=1$
$x-4 y=0$
$x+y=2$
$x+y+2 z=14$
(d) $-x-y=1$ $-3 x-3 y=2$
(e) $\quad 4 y+z=20$
(f) $2 x+z+w=5$

$$
\begin{aligned}
2 x-2 y+z & =0 \\
x+z & =5
\end{aligned}
$$

$y \quad-w=-1$

$$
3 x-z-w=0
$$

$$
x+y-z=10 \quad 4 x+y+2 z+w=9
$$

Q. 2 (a) Can the equation $3 x-2 y=5$ be derived, by a sequence of Gaussian reduction

Solution steps, from the equations in this system?

$$
\begin{array}{r}
x+y=1 \\
4 x-y=6
\end{array}
$$

(b) Can the equation $5 x-3 y=2$ be derived, by a sequence of Gaussian reduction steps, from the equations in this system?

$$
\begin{aligned}
& 2 x+2 y=5 \\
& 3 x+y=4
\end{aligned}
$$

(c) Can the equation $6 x-9 y+5 z=-2$ be derived, by a sequence of Gaussian reduction steps, from the equations in the system?

$$
\begin{aligned}
& 2 x+y-z=4 \\
& 6 x-3 y+z=5
\end{aligned}
$$

Q. 3 Show that the simultaneous equations given here, $x+z=1$ $2 x+y+z=0$
can be reduced to: $\left[\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 2\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right\}=\left\{\begin{array}{c}1 \\ -2 \\ 2\end{array}\right\}$

$$
x+y+2 z=1
$$

Q. 4 Make up a four equations/four unknowns system having

Solution
(a) a one-parameter solution set;
(b) a two-parameter solution set;
(c) a three-parameter solution set.
Q. 5 Solve the equations below and give the solution in vector notation. Identify the

Solution particular solution and the solution of the homogeneous equation.
(a) $2 x+y-z=1$
(b) $x-z=1$
$y+2 z-w=3$
(c) $x-y+z=0$
$4 x-y=3$

$$
x+2 y+3 z-w=7
$$

$$
\begin{aligned}
y+w & =0 \\
3 x-2 y+3 z+w & =0 \\
-y-w & =0
\end{aligned}
$$

(d) $a+2 b+3 c+d-e=1$
$3 a-b+c+d+e=3$
Q. 6 Is the given vector in the set generated by the given set?
(a) $\binom{2}{3},\left\{\binom{1}{4},\binom{1}{5}\right\}$
(b) $\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right),\left\{\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)\right\}$
(c) $\left(\begin{array}{l}1 \\ 3 \\ 0\end{array}\right),\left\{\left(\begin{array}{l}1 \\ 0 \\ 4\end{array}\right),\left(\begin{array}{l}2 \\ 1 \\ 5\end{array}\right),\left(\begin{array}{l}3 \\ 3 \\ 0\end{array}\right),\left(\begin{array}{l}4 \\ 2 \\ 1\end{array}\right)\right\}$
(d) $\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 1\end{array}\right),\left\{\left(\begin{array}{l}2 \\ 1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}3 \\ 0 \\ 0 \\ 2\end{array}\right)\right\}$
Q. 7 Evaluate the determinant of each.

Solution
(a) $\left(\begin{array}{cc}2 & 0 \\ -1 & 3\end{array}\right)$
(b) $\left(\begin{array}{ccc}2 & 1 & 1 \\ 0 & 5 & -2 \\ 1 & -3 & 4\end{array}\right)$
(c) $\left(\begin{array}{lll}2 & 3 & 4 \\ 5 & 6 & 7 \\ 8 & 9 & 1\end{array}\right)$
Q. 8 Singular or nonsingular? Use the determinant to decide.

Solution
(a) $\left(\begin{array}{lll}2 & 1 & 1 \\ 3 & 2 & 2 \\ 0 & 1 & 4\end{array}\right)$
(b) $\left(\begin{array}{lll}1 & 0 & 1 \\ 2 & 1 & 1 \\ 4 & 1 & 3\end{array}\right)$
(c) $\left(\begin{array}{ccc}2 & 1 & 0 \\ 3 & -2 & 0 \\ 1 & 0 & 0\end{array}\right)$
Q. 9 The cross product of the vectors

$$
\vec{x}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \quad \vec{y}=\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)
$$

is the vector computed as this determinant.

$$
\vec{x} \times \vec{y}=\operatorname{det}\left(\left(\begin{array}{lll}
\vec{e}_{1} & \vec{e}_{2} & \vec{e}_{3} \\
x_{1} & x_{2} & x_{3} \\
y_{1} & y_{2} & y_{3}
\end{array}\right)\right)
$$

Note that the first row is composed of vectors, the vectors from the standard basis for \mathbb{R}^{3}. Show that the cross product of two vectors is perpendicular to each vector.
Q. 11 Show that each of these is a vector space.
(a) The set of linear polynomials $\mathcal{P}_{1}=\left\{a_{0}+a_{1} x \mid a_{0}, a_{1} \in \mathbb{R}\right\}$ under the usual polynomial addition and scalar multiplication operations
(b) The set of 2×2 matrices with real entries under the usual matrix operations
(c) The set of three-component row vectors with their usual operations
(d) The set

$$
L=\left\{\left.\left(\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right) \in \mathbb{R}^{4} \right\rvert\, x+y-z+w=0\right\}
$$

under the operations inherited from \mathbb{R}^{4}

