## Questions for Module \# 9

Q. 1 Sketch the direction field for the following differential equation. Sketch the set of integral Solution curves for this differential equation. Determine how the solutions behave as $t \rightarrow \infty$ and if this behavior depends on the value of $y(0)$ describe this dependency.

$$
y^{\prime}=\left(y^{2}-y-2\right)(1-y)^{2}
$$

Q. 2 Sketch the direction field for the following differential equation. Sketch the set of integral Solution curves for this differential equation.

$$
y^{\prime}=y-x
$$

Q. $3 \quad$ Verify that $\quad \cos (x) y^{\prime}+\sin (x) y=2 \cos ^{3}(x) \sin (x)-1 \quad y\left(\frac{\pi}{4}\right)=3 \sqrt{2}, \quad 0 \leq x<\frac{\pi}{2}$ has the solution, $y(x)=-\frac{1}{2} \cos (x) \cos (2 x)-\sin (x)+7 \cos (x)$
Q. 4 Find the solution to the following IVP.

Solution

$$
t y^{\prime}+2 y=t^{2}-t+1 \quad y(1)=\frac{1}{2}
$$

Q. 5 Verify that $\quad t y^{\prime}-2 y=t^{5} \sin (2 t)-t^{3}+4 t^{4} \quad y(\pi)=\frac{3}{2} \pi^{4}$
has the solution, $y(t)=-\frac{1}{2} t^{4} \cos (2 t)+\frac{1}{2} t^{3} \sin (2 t)+\frac{1}{4} t^{2} \cos (2 t)-t^{3}+2 t^{4}+\left(\pi-\frac{1}{4}\right) t^{2}$
Q. 6 Find the solution to the following IVP and determine all possible behaviors of the solution as Solution $t \rightarrow \infty$. If this behavior depends on the value of $y_{0}$ give this dependence.

$$
2 y^{\prime}-y=4 \boldsymbol{\operatorname { s i n }}(3 t) \quad y(0)=y_{0}
$$

Q. 7 Solve the following IVP and find the interval of validity for the solution.

Solution

$$
y^{\prime}=\frac{3 x^{2}+4 x-4}{2 y-4} \quad y(1)=3
$$

Q. 8 Solve the following IVP and find the interval of validity of the solution.

Solution

$$
y^{\prime}=\mathbf{e}^{-y}(2 x-4) \quad y(5)=0
$$

Q. 9 For the linear homogeneous $2^{\text {nd }}$ order ode $a y^{\prime \prime}+b y^{\prime}+c y=0$ show that if $y_{1}(t)$ and $y_{2}(t)$ are two solutions then so is $y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$. Will this remain true for the equation $p(t) y^{\prime \prime}+q(t) y^{\prime}+r(t) y=0$ ?
Q. 10 Solve the following IVP: $\quad y^{\prime \prime}-9 y=0 \quad y(0)=2 \quad y^{\prime}(0)=-1$

Solution
Q. 11 Solve the following IVP: $\quad y^{\prime \prime}-8 y^{\prime}+17 y=0 \quad y(0)=-4 \quad y^{\prime}(0)=-1$
Q. 12 Solve the following IVP: $\quad y^{\prime \prime}-4 y^{\prime}+4 y=0 \quad y(0)=12 \quad y^{\prime}(0)=-3 \quad$ Solution
Q. 13 Solve the following IVP: $\quad 16 y^{\prime \prime}-40 y^{\prime}+25 y=0 \quad y(0)=3 \quad y^{\prime}(0)=-\frac{9}{4} \quad$ Solution
Q. 14 Verify that the solution to $2 t^{2} y^{\prime \prime}+t y^{\prime}-3 y=0, \quad t>0 \quad$ is $y(t)=c_{1} t^{-1}+c_{2} t^{\frac{3}{2}}$
Q. 15 Prove that $y_{1}(t)=\mathbf{e}^{\lambda t} \cos (\mu t)$ and $y_{2}(t)=\mathbf{e}^{\lambda t} \sin (\mu t)$ are a set of fundamental Solution solutions to an equation of the form $a y^{\prime \prime}+b y^{\prime}+c y=0$.

