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Matter is normally classified as being in one of three states: solid, liquid, or gas. From 
everyday experience we know that a solid has a definite volume and shape, a liquid has a 

definite volume but no definite shape, and an unconfined gas has neither a definite volume 

nor a definite shape. These descriptions help us picture the states of matter, but they are 

somewhat artificial. For example, asphalt and plastics are normally considered solids, but 

over long time intervals they tend to flow like liquids. Likewise, most substances can be a 

solid, a liquid, or a gas (or a combination of any of these three), depending on the tempera-

ture and pressure. In general, the time interval required for a particular substance to change 

its shape in response to an external force determines whether we treat the substance as a 

solid, a liquid, or a gas.

A fluid is a collection of molecules that are randomly arranged and held together by 

weak cohesive forces and by forces exerted by the walls of a container. Both liquids and 

gases are fluids.

In our treatment of the mechanics of fluids, we’ll be applying principles and analysis 

models that we have already discussed. First, we consider the mechanics of a fluid at rest, 

that is, fluid statics, and then study fluids in motion, that is, fluid dynamics.

14.1 Pressure
Fluids do not sustain shearing stresses or tensile stresses such as those discussed in 
Chapter 12; therefore, the only stress that can be exerted on an object submerged in 
a static fluid is one that tends to compress the object from all sides. In other words, 
the force exerted by a static fluid on an object is always perpendicular to the surfaces 
of the object as shown in Figure 14.1. We discussed this situation in Section 12.4.

14.1

At any point on the surface of 
the object, the force exerted by 
the fluid is perpendicular to the 
surface of the object.

Figure 14.1  The forces exerted 
by a fluid on the surfaces of a sub-
merged object.
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Find the volume of the water filling the mattress: V 5 (2.00 m)(2.00 m)(0.300 m) 5 1.20 m3

Use Equation 1.1 and the density of fresh water (see 
Table 14.1) to find the mass of the water bed:

M 5 rV 5 (1 000 kg/m3)(1.20 m3) 5 1.20 3 103 kg

Find the weight of the bed: Mg 5 (1.20 3 103 kg)(9.80 m/s2) 5  1.18 3 104 N

The pressure in a fluid can be measured with the device pictured in Figure 14.2. 
The device consists of an evacuated cylinder that encloses a light piston connected 
to a spring. As the device is submerged in a fluid, the fluid presses on the top of 
the piston and compresses the spring until the inward force exerted by the fluid 
is balanced by the outward force exerted by the spring. The fluid pressure can be 
measured directly if the spring is calibrated in advance. If F is the magnitude of the 
force exerted on the piston and A is the surface area of the piston, the pressure P of 
the fluid at the level to which the device has been submerged is defined as the ratio 
of the force to the area:

P ;
F
A

  (14.1)

Pressure is a scalar quantity because it is proportional to the magnitude of the force 
on the piston.
 If the pressure varies over an area, the infinitesimal force dF on an infinitesimal 
surface element of area dA is

 dF 5 P dA (14.2)

where P is the pressure at the location of the area dA. To calculate the total force 
exerted on a surface of a container, we must integrate Equation 14.2 over the surface.
 The units of pressure are newtons per square meter (N/m2) in the SI system. 
Another name for the SI unit of pressure is the pascal (Pa):

 1 Pa ; 1 N/m2 (14.3)

 For a tactile demonstration of the definition of pressure, hold a tack between 
your thumb and forefinger, with the point of the tack on your thumb and the 
head of the tack on your forefinger. Now gently press your thumb and forefinger 
together. Your thumb will begin to feel pain immediately while your forefinger will 
not. The tack is exerting the same force on both your thumb and forefinger, but 
the pressure on your thumb is much larger because of the small area over which 
the force is applied.

Q uick Quiz 14.1  Suppose you are standing directly behind someone who steps 
back and accidentally stomps on your foot with the heel of one shoe. Would you 
be better off if that person were (a) a large, male professional basketball player 
wearing sneakers or (b) a petite woman wearing spike-heeled shoes?

P ;
F
A

Q

Vacuum

A

F
S

Figure 14.2  A simple device for 
measuring the pressure exerted 
by a fluid.

Pitfall Prevention 14.1
Force and Pressure Equations 
14.1 and 14.2 make a clear distinc-
tion between force and pressure. 
Another important distinction 
is that force is a vector and pressure 
is a scalar. There is no direction 
associated with pressure, but the 
direction of the force associated 
with the pressure is perpendicular 
to the surface on which the pres-
sure acts.

Example 14.1   The Water Bed

The mattress of a water bed is 2.00 m long by 2.00 m wide and 30.0 cm deep.

(A)  Find the weight of the water in the mattress.

Conceptualize  Think about carrying a jug of water and how heavy it is. Now imagine a sample of water the size of a 
water bed. We expect the weight to be relatively large.

Categorize  This example is a substitution problem.

S O L U T I O N

which is approximately 2 650 lb. (A regular bed, including mattress, box spring, and metal frame, weighs approximately 
300 lb.) Because this load is so great, it is best to place a water bed in the basement or on a sturdy, well- supported floor.
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(B)  Find the pressure exerted by the water bed on the floor when the bed rests in its normal position. Assume the 
entire lower surface of the bed makes contact with the floor.

S O L U T I O N

When the water bed is in its normal position, the area in 
contact with the floor is 4.00 m2. Use Equation 14.1 to 
find the pressure:

P 5
1.18 3 104 N

4.00 m2 5 2.94 3 103 Pa

 What if the water bed is replaced by a 300-lb regular bed that is supported by four legs? Each leg has a 
circular cross section of radius 2.00 cm. What pressure does this bed exert on the floor?

Answer  The weight of the regular bed is distributed over four circular cross sections at the bottom of the legs. There-
fore, the pressure is

 P 5
F
A

5
mg

4 1pr 2 2  5
300 lb

4p 10.020 0 m 22 a 1 N
0.225 lb

b
 5 2.65 3 105 Pa

This result is almost 100 times larger than the pressure due to the water bed! The weight of the regular bed, even 
though it is much less than the weight of the water bed, is applied over the very small area of the four legs. The high 
pressure on the floor at the feet of a regular bed could cause dents in wood floors or permanently crush carpet pile.

WHAT IF ?

14.2 Variation of Pressure with Depth
As divers well know, water pressure increases with depth. Likewise, atmospheric 
pressure decreases with increasing altitude; for this reason, aircraft flying at high 
altitudes must have pressurized cabins for the comfort of the passengers.

We now show how the pressure in a liquid increases with depth. As Equation 1.1 
describes, the density of a substance is defined as its mass per unit volume; Table 
14.1 lists the densities of various substances. These values vary slightly with temper-
ature because the volume of a substance is dependent on temperature (as shown in 
Chapter 19). Under standard conditions (at 08C and at atmospheric pressure), the 
densities of gases are about 1

1 000 the densities of solids and liquids. This difference 
in densities implies that the average molecular spacing in a gas under these condi-
tions is about ten times greater than that in a solid or liquid.

14.2

Table 14.1 Densities of Some Common Substances at Standard 

Temperature (08C) and Pressure (Atmospheric)

Substance r (kg/m3) Substance r (kg/m3)

Air 1.29 
Air (at 20°C and 

atmospheric pressure) 1.20
Aluminum 2.70 3 103

Benzene 0.879 3 103

Brass 8.4 3 103

Copper 8.92 3 103

Ethyl alcohol 0.806 3 103

Fresh water 1.00 3 103

Glycerin 1.26 3 103

Gold 19.3 3 103

Helium gas 1.79 3 1021

Hydrogen gas 8.99 3 1022

Ice 0.917 3 103

Iron 7.86 3 103

Lead 11.3 3 103

Mercury 13.6 3 103

Nitrogen gas 1.25
Oak 0.710 3 103

Osmium 22.6 3 103

Oxygen gas 1.43
Pine 0.373 3 103

Platinum 21.4 3 103

Seawater 1.03 3 103

Silver 10.5 3 103

Tin 7.30 3 103

Uranium 19.1 3 103

 

▸ 14.1 c o n t i n u e d
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Figure 14.4  (a) Diagram of 
a hydraulic press. (b) A vehicle 
 undergoing repair is supported  
by a hydraulic lift in a garage.
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Because the increase in 
pressure is the same on 
the two sides, a small
force F1 at the left 
produces a much greater 
force F2 at the right.

a

S

S

A2

b

Sa
m

 J
or

da
sh

/D
ig

ita
l V

is
io

n/
Ge

tt
y 

Im
ag

es
 

Now consider a liquid of density r at rest as shown in Figure 14.3. We assume r 
is uniform throughout the liquid, which means the liquid is incompressible. Let us 
select a parcel of the liquid contained within an imaginary block of cross-sectional 
area A extending from depth d to depth d 1 h. The liquid external to our parcel 
exerts forces at all points on the surface of the parcel, perpendicular to the surface. 
The pressure exerted by the liquid on the bottom face of the parcel is P, and the pres-
sure on the top face is P0. Therefore, the upward force exerted by the outside fluid on 
the bottom of the parcel has a magnitude PA, and the downward force exerted on the 
top has a magnitude P0A. The mass of liquid in the parcel is M 5 rV 5 rAh; therefore, 
the weight of the liquid in the parcel is Mg 5 rAhg. Because the parcel is at rest and 
remains at rest, it can be modeled as a particle in equilibrium, so that the net force 
acting on it must be zero. Choosing upward to be the positive y direction, we see that

 a F
S

5 PA ĵ 2 P0A ĵ 2 Mg ĵ 5 0 

or

 PA 2 P0A 2 rAhg 5 0 

 P 5 P0 1 rgh (14.4)

That is, the pressure P at a depth h below a point in the liquid at which the pressure 
is P0 is greater by an amount rgh. If the liquid is open to the atmosphere and P0 is 
the pressure at the surface of the liquid, then P0 is atmospheric pressure. In our 
calculations and working of end-of-chapter problems, we usually take atmospheric 
pressure to be

 P0 5 1.00 atm 5 1.013 3 105 Pa 

Equation 14.4 implies that the pressure is the same at all points having the same 
depth, independent of the shape of the container.
 Because the pressure in a fluid depends on depth and on the value of P0, any 
increase in pressure at the surface must be transmitted to every other point in the 
fluid. This concept was first recognized by French scientist Blaise Pascal (1623–
1662) and is called Pascal’s law: a change in the pressure applied to a fluid is trans-

mitted undiminished to every point of the fluid and to the walls of the container.

 An important application of Pascal’s law is the hydraulic press illustrated 
in Figure 14.4a. A force of magnitude F1 is applied to a small piston of surface 
area A1. The pressure is transmitted through an incompressible liquid to a larger 
piston of surface area A2. Because the pressure must be the same on both sides,  
P 5 F1/A1 5 F2/A2. Therefore, the force F2 is greater than the force F1 by a factor of  
A2/A1. By designing a hydraulic press with appropriate areas A1 and A2, a large out-

P 5 P0PP 1 rgh Variation of pressure 
with depth

Pascal’s law 

�Mg PA j

�P0A j

d

d � h 

ˆ

ˆĵ

The parcel of fluid is in 
equilibrium, so the net 
force on it is zero.

Figure 14.3  A parcel of fluid in a 
larger volume of fluid is singled out.
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put force can be applied by means of a small input force. Hydraulic brakes, car lifts, 
hydraulic jacks, and forklifts all make use of this principle (Fig. 14.4b).

Because liquid is neither added to nor removed from the system, the volume of liq-
uid pushed down on the left in Figure 14.4a as the piston moves downward through a 
displacement Dx1 equals the volume of liquid pushed up on the right as the right pis-
ton moves upward through a displacement Dx2. That is, A1 Dx1 5 A2 Dx2; therefore, 
A2/A1 5 Dx1/Dx2. We have already shown that A2/A1 5 F2/F1. Therefore, F2/F1 5 
Dx1/Dx2, so F1 Dx1 5 F2 Dx2. Each side of this equation is the work done by the force 
on its respective piston. Therefore, the work done by F

S
1 on the input piston equals 

the work done by F
S

2 on the output piston, as it must to conserve energy. (The process 
can be modeled as a special case of the nonisolated system model: the nonisolated 
system in steady state. There is energy transfer into and out of the system, but these 
energy transfers balance, so that there is no net change in the  energy of the system.)

Q uick Quiz 14.2  The pressure at the bottom of a filled glass of water (r 5  
1 000 kg/m3) is P. The water is poured out, and the glass is filled with ethyl alco-
hol (r 5 806 kg/m3). What is the pressure at the bottom of the glass? (a) smaller 
than P   (b) equal to P   (c) larger than P   (d) indeterminate

Q

Example 14.2   The Car Lift

In a car lift used in a service station, compressed air exerts a force on a small piston that has a circular cross section of 
radius 5.00 cm. This pressure is transmitted by a liquid to a piston that has a radius of 15.0 cm. 

(A) What force must the compressed air exert to lift a car weighing 13 300 N?

Conceptualize  Review the material just discussed about Pascal’s law to understand the operation of a car lift.

Categorize  This example is a substitution problem.

S O L U T I O N

Solve F1/A1 5 F2/A2 for F1:  F1 5 aA1

A2
bF2 5

p 15.00 3 1022 m 22
p 115.0 3 1022 m 22 11.33 3 104 N 2

5  1.48 3 103 N

Use Equation 14.1 to find the air pressure that produces 
this force:

S O L U T I O N

 P 5
F1

A1
5

1.48 3 103 N
p 15.00 3 1022 m 22

5  1.88 3 105 Pa

This pressure is approximately twice atmospheric pressure.

Example 14.3   A Pain in Your Ear

Estimate the force exerted on your eardrum due to the water when you are swimming at the bottom of a pool that is 
5.0 m deep.

Conceptualize  As you descend in the water, the pressure increases. You may have noticed this increased pressure in 
your ears while diving in a swimming pool, a lake, or the ocean. We can find the pressure difference exerted on the 

S O L U T I O N

 

(B) What air pressure produces this force?

continued



422 Chapter 14 Fluid Mechanics

eardrum from the depth given in the problem; then, after estimating the ear drum’s surface area, we can determine 
the net force the water exerts on it.

Categorize  This example is a substitution problem.
The air inside the middle ear is normally at atmospheric pressure P0. Therefore, to find the net force on the eardrum, 
we must consider the difference between the total pressure at the bottom of the pool and atmospheric pressure. Let’s 
estimate the surface area of the eardrum to be approximately 1 cm2 5 1 3 1024 m2.

Use Equation 14.4 to find this pressure 
difference:

Pbot 2 P0 5 rgh

5 (1.00 3 103 kg/m3)(9.80 m/s2)(5.0 m) 5 4.9 3 104 Pa

Use Equation 14.1 to find the magnitude of the 
net force on the ear:

F 5 (Pbot 2 P0)A 5 (4.9 3 104 Pa)(1 3 1024 m2) <  5 N

Because a force of this magnitude on the eardrum is extremely uncomfortable, swimmers often “pop their ears” while 
under water, an action that pushes air from the lungs into the middle ear. Using this technique equalizes the pressure 
on the two sides of the eardrum and relieves the discomfort.

Example 14.4   The Force on a Dam

Water is filled to a height H behind a dam of width w (Fig. 14.5). Determine the 
resultant force exerted by the water on the dam.

Conceptualize  Because pressure varies with depth, we cannot calculate the 
force simply by multiplying the area by the pressure. As the pressure in the water 
increases with depth, the force on the adjacent portion of the dam also increases.

Categorize  Because of the variation of pressure with depth, we must use integra-
tion to solve this example, so we categorize it as an analysis problem.

Analyze  Let’s imagine a vertical y axis, with y 5 0 at the bottom of the dam. We 
divide the face of the dam into narrow horizontal strips at a distance y above the 
bottom, such as the red strip in Figure 14.5. The pressure on each such strip is 
due only to the water; atmospheric pressure acts on both sides of the dam.

S O L U T I O N

O

dy

y

h

w

H

y

x

Figure 14.5  (Example 14.4) Water 
exerts a force on a dam.

Use Equation 14.4 to calculate the pressure due to the 
water at the depth h :

P 5 rgh 5 rg(H 2 y)

Use Equation 14.2 to find the force exerted on the 
shaded strip of area dA 5 w dy :

dF 5 P dA 5 rg(H 2 y)w dy

Integrate to find the total force on the dam: F 5 3P dA 5 3
H

0
rg 1H 2 y 2w dy 5 1

2rgwH 2

Finalize  Notice that the thickness of the dam shown in Figure 14.5 increases with depth. This design accounts for the 
greater force the water exerts on the dam at greater depths.

What if you were asked to find this force without using calculus? How could you determine its value?

Answer  We know from Equation 14.4 that pressure varies linearly with depth. Therefore, the average pressure due to 
the water over the face of the dam is the average of the pressure at the top and the pressure at the bottom:

Pavg 5
Ptop 1 Pbottom

2
5

0 1 rgH

2
5 1

2rgH

WHAT IF ?

 

▸ 14.3 c o n t i n u e d
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14.3 Pressure Measurements
During the weather report on a television news program, the barometric pressure is 
often provided. This reading is the current local pressure of the atmosphere, which 
varies over a small range from the standard value provided earlier. How is this pres-
sure measured?

One instrument used to measure atmospheric pressure is the common barom-
eter, invented by Evangelista Torricelli (1608–1647). A long tube closed at one end 
is filled with mercury and then inverted into a dish of mercury (Fig. 14.6a). The 
closed end of the tube is nearly a vacuum, so the pressure at the top of the mer-
cury column can be taken as zero. In Figure 14.6a, the pressure at point A, due 
to the column of mercury, must equal the pressure at point B, due to the atmo-
sphere. If that were not the case, there would be a net force that would move mer-
cury from one point to the other until equilibrium is established. Therefore, P0 5 
rHggh, where rHg is the density of the mercury and h is the height of the mercury 
column. As atmospheric pressure varies, the height of the mercury column varies, 
so the height can be calibrated to measure atmospheric pressure. Let us determine 
the height of a mercury column for one atmosphere of pressure, P0 5 1 atm 5  
1.013 3 105 Pa:

 P0 5 rHggh S h 5
P0

rHgg
5

1.013 3 105 Pa113.6 3 103 kg/m3 2 19.80 m/s2 2 5 0.760 m

Based on such a calculation, one atmosphere of pressure is defined to be the pres-
sure equivalent of a column of mercury that is exactly 0.760 0 m in height at 08C.
 A device for measuring the pressure of a gas contained in a vessel is the open-
tube manometer illustrated in Figure 14.6b. One end of a U-shaped tube containing 
a liquid is open to the atmosphere, and the other end is connected to a container of 
gas at pressure P. In an equilibrium situation, the pressures at points A and B must 
be the same (otherwise, the curved portion of the liquid would experience a net 
force and would accelerate), and the pressure at A is the unknown pressure of the 
gas. Therefore, equating the unknown pressure P to the pressure at point B, we see 
that P 5 P0 1 rgh. Again, we can calibrate the height h to the pressure P.
 The difference in the pressures in each part of Figure 14.6 (that is, P 2 P0) is 
equal to rgh. The pressure P is called the absolute pressure, and the difference 
P 2 P0 is called the gauge pressure. For example, the pressure you measure in your 
bicycle tire is gauge pressure.

Q uick Quiz 14.3  Several common barometers are built, with a variety of fluids. 
For which of the following fluids will the column of fluid in the barometer be 
the highest? (a) mercury   (b) water   (c) ethyl alcohol   (d) benzene

14.4 Buoyant Forces and Archimedes’s Principle
Have you ever tried to push a beach ball down under water (Fig. 14.7a, p. 424)? It 
is extremely difficult to do because of the large upward force exerted by the water 
on the ball. The upward force exerted by a fluid on any immersed object is called 

14.3

Q

14.4

The total force on the dam is equal to the product of the average pressure and the area of the face of the dam:

F 5 PavgA 5 112rgH 2 1Hw 2 5 1
2rgwH 2

which is the same result we obtained using calculus.

a

P � 0

P

P0

P0

A B

h

h

A B

b

Figure 14.6  Two devices for 
measuring pressure: (a) a mercury 
barometer and (b) an open-tube 
manometer.

 

▸ 14.4 c o n t i n u e d
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a buoyant force. We can determine the magnitude of a buoyant force by applying 
some logic. Imagine a beach ball–sized parcel of water beneath the water surface 
as in Figure 14.7b. Because this parcel is in equilibrium, there must be an upward 
force that balances the downward gravitational force on the parcel. This upward 
force is the buoyant force, and its magnitude is equal to the weight of the water in 
the parcel. The buoyant force is the resultant force on the parcel due to all forces 
applied by the fluid surrounding the parcel.

Now imagine replacing the beach ball–sized parcel of water with a beach ball 
of the same size. The net force applied by the fluid surrounding the beach ball is 
the same, regardless of whether it is applied to a beach ball or to a parcel of water. 
Consequently, the magnitude of the buoyant force on an object always equals the 

weight of the fluid displaced by the object. This statement is known as Archime-

des’s principle.

With the beach ball under water, the buoyant force, equal to the weight of a 
beach ball–sized parcel of water, is much larger than the weight of the beach ball. 
Therefore, there is a large net upward force, which explains why it is so hard to hold 
the beach ball under the water. Note that Archimedes’s principle does not refer to 
the makeup of the object experiencing the buoyant force. The object’s composition 
is not a factor in the buoyant force because the buoyant force is exerted by the sur-
rounding fluid.

To better understand the origin of the buoyant force, consider a cube of solid 
material immersed in a liquid as in Figure 14.8. According to Equation 14.4, the 
pressure Pbot at the bottom of the cube is greater than the pressure Ptop at the top 
by an amount  rfluidgh, where h is the height of the cube and rfluid is the density of 
the fluid. The pressure at the bottom of the cube causes an upward force equal to 
PbotA, where A is the area of the bottom face. The pressure at the top of the cube 
causes a downward force equal to PtopA. The resultant of these two forces is the 
buoyant force B

S
 with magnitude

 B 5 (Pbot 2 Ptop)A 5 (rfluidgh)A 

 B 5 rfluidgVdisp (14.5)

where Vdisp 5 Ah is the volume of the fluid displaced by the cube. Because the prod-
uct rfluidVdisp is equal to the mass of fluid displaced by the object,

 B 5 Mg 

where Mg is the weight of the fluid displaced by the cube. This result is consistent 
with our initial statement about Archimedes’s principle above, based on the discus-
sion of the beach ball.
 Under normal conditions, the weight of a fish in the opening photograph for 
this chapter is slightly greater than the buoyant force on the fish. Hence, the fish 
would sink if it did not have some mechanism for adjusting the buoyant force. The 

B 5 rfluidgVdispVV

a b

The buoyant force B 
on a beach ball that 
replaces this parcel 
of water is exactly the 
same as the buoyant 
force on the parcel.

B
S

Fg
S

S

Figure 14.7  (a) A swimmer pushes a beach ball under water. (b) The forces on a beach ball–sized 
parcel of water.

Archimedes
Greek Mathematician, Physicist, and 
Engineer (c. 287–212 BC)
Archimedes was perhaps the greatest 
scientist of antiquity. He was the first 
to compute accurately the ratio of a 
circle’s circumference to its diameter, 
and he also showed how to calcu-
late the volume and surface area of 
spheres, cylinders, and other geometric 
shapes. He is well known for discover-
ing the nature of the buoyant force and 
was also a gifted inventor. One of his 
practical inventions, still in use today, 
is Archimedes’s screw, an inclined, 
rotating, coiled tube used originally to 
lift water from the holds of ships. He 
also invented the catapult and devised 
systems of levers, pulleys, and weights 
for raising heavy loads. Such inventions 
were successfully used to defend his 
native city, Syracuse, during a two-year 
siege by Romans.
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The buoyant force on the 
cube is the resultant of the 
forces exerted on its top and 
bottom faces by the liquid.

Figure 14.8  The external forces 
acting on an immersed cube are 
the gravitational force F

S
g and the 

buoyant force B
S

.
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fish accomplishes that by internally regulating the size of its air-filled swim bladder 
to increase its volume and the magnitude of the buoyant force acting on it, accord-
ing to Equation 14.5. In this manner, fish are able to swim to various depths.

Before we proceed with a few examples, it is instructive to discuss two common 
situations: a totally submerged object and a floating (partly submerged) object.

Case 1: Totally Submerged Object When an object is totally submerged in a fluid 
of density rfluid, the volume Vdisp of the displaced fluid is equal to the volume Vobj of 
the object; so, from Equation 14.5, the magnitude of the upward buoyant force is 
B 5 rfluidgVobj. If the object has a mass M and density robj, its weight is equal to Fg 5 
Mg 5 robjgVobj, and the net force on the object is B 2 Fg 5 (rfluid 2 robj)gVobj. Hence, 
if the density of the object is less than the density of the fluid, the downward gravi-
tational force is less than the buoyant force and the unsupported object accelerates 
upward (Fig. 14.9a). If the density of the object is greater than the density of the 
fluid, the upward buoyant force is less than the downward gravitational force and 
the unsupported object sinks (Fig. 14.9b). If the density of the submerged object 
equals the density of the fluid, the net force on the object is zero and the object 
remains in equilibrium. Therefore, the direction of motion of an object submerged 
in a fluid is determined only by the densities of the object and the fluid.
 Case 2: Floating Object Now consider an object of volume Vobj and density robj ,  
rfluid in static equilibrium floating on the surface of a fluid, that is, an object that 
is only partially submerged (Fig. 14.10). In this case, the upward buoyant force is 
balanced by the downward gravitational force acting on the object. If Vdisp is the 
volume of the fluid displaced by the object (this volume is the same as the volume 
of that part of the object beneath the surface of the fluid), the buoyant force has a 
magnitude B 5 rfluidgVdisp. Because the weight of the object is Fg 5 Mg 5 robjgVobj
and because Fg 5 B, we see that rfluidgVdisp 5 robjgVobj, or

 
Vdisp

Vobj
5

robj

rfluid
 (14.6)

This equation shows that the fraction of the volume of a floating object that is 
below the fluid surface is equal to the ratio of the density of the object to that of 
the fluid.

Q uick Quiz 14.4  You are shipwrecked and floating in the middle of the ocean on 
a raft. Your cargo on the raft includes a treasure chest full of gold that you found 
before your ship sank, and the raft is just barely afloat. To keep you floating as 
high as possible in the water, should you (a) leave the treasure chest on top of 
the raft, (b) secure the treasure chest to the underside of the raft, or (c) hang 
the treasure chest in the water with a rope attached to the raft? (Assume throw-
ing the treasure chest overboard is not an option you wish to consider.)

Q

Figure 14.9 (a) A totally submerged object that is less dense than 
the fluid in which it is submerged experiences a net upward force 
and rises to the surface after it is released. (b) A totally submerged 
object that is denser than the fluid experiences a net downward 
force and sinks.

a
S 

Fg
S

B
S

a
S 

Fg
S

B
S

a b

robj � rfluid robj � rfluid

Figure 14.10 An object floating on the 
surface of a fluid experiences two forces, 
the gravitational force F

S
g and the buoyant 

force B
S

.

Fg
S

B
S

Because the object f loats 
in equilibrium, B � Fg .

Pitfall Prevention 14.2
Buoyant Force Is Exerted by the 
Fluid Remember that the buoyant 

force is exerted by the fluid. It is 
not determined by properties of 
the object except for the amount 
of fluid displaced by the object. 
Therefore, if several objects of 
different densities but the same 
volume are immersed in a fluid, 
they will all experience the same 
buoyant force. Whether they sink 
or float is determined by the 
relationship between the buoyant 
force and the gravitational force.
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Example 14.5   Eureka! 

Archimedes supposedly was asked to determine whether a crown 
made for the king consisted of pure gold. According to legend, he 
solved this problem by weighing the crown first in air and then 
in water as shown in Figure 14.11. Suppose the scale read 7.84 N 
when the crown was in air and 6.84 N when it was in water. What 
should Archimedes have told the king?

Conceptualize  Figure 14.11 helps us imagine what is happening 
in this example. Because of the buoyant force, the scale reading is 
smaller in Figure 14.11b than in Figure 14.11a.

Categorize  This problem is an example of Case 1 discussed ear-
lier because the crown is completely submerged. The scale read-
ing is a measure of one of the forces on the crown, and the crown 
is stationary. Therefore, we can categorize the crown as a particle 
in equilibrium.

Analyze  When the crown is suspended in air, the scale reads the 
true weight T1 5 Fg (neglecting the small buoyant force due to the 
surrounding air). When the crown is immersed in water, the buoy-
ant force B

S
 reduces the scale reading to an apparent weight of  

T2 5 Fg 2 B.

AM

S O L U T I O N

B
S

Fg
S

T2
S

T1
S

Fg
S

a b

Figure 14.11  (Example 14.5) (a) When the crown 
is suspended in air, the scale reads its true weight 
because T1 5 Fg (the buoyancy of air is negligible). 
(b) When the crown is immersed in water, the buoyant 
force B

S
 changes the scale reading to a lower value  

T 2 5 Fg 2 B.

Apply the particle in equilibrium model to the crown in 
water:

o F 5 B 1 T2 2 Fg 5 0

Solve for B : B 5 Fg 2 T2

Because this buoyant force is equal in magnitude to the weight of the displaced water, B 5 rw gVdisp, where Vdisp is the 
volume of the displaced water and rw is its density. Also, the volume of the crown Vc is equal to the volume of the dis-
placed water because the crown is completely submerged, so B 5 rw gVc.

Find the density of the crown from Equation 1.1:  rc 5
mc

Vc
5

mcg

Vc g
5

mc g1B/rw 2 5
mc g rw

B
5

mc g rw

Fg 2 T2

Substitute numerical values: rc 5
17.84 N 2 11 000 kg/m3 2

7.84 N 2 6.84 N
5 7.84 3 103 kg/m3

Finalize  From Table 14.1, we see that the density of gold is 19.3 3 103 kg/m3. Therefore, Archimedes should have 
reported that the king had been cheated. Either the crown was hollow, or it was not made of pure gold.

 Suppose the crown has the same weight but is indeed pure gold and not hollow. What would the scale 
reading be when the crown is immersed in water?
WHAT IF ?

Answer  Find the buoyant force on the crown:  B 5 rw gVw 5 rw gVc 5 rw g amc

rc
b 5 rwamc g

rc
b

Substitute numerical values: B 5 11.00 3 103 kg/m3 2 7.84 N
19.3 3 103 kg/m3 5 0.406 N

Find the tension in the string hanging from the scale: T2 5 Fg 2 B 5 7.84 N 2 0.406 N 5 7.43 N
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Example 14.6   A Titanic Surprise

An iceberg floating in seawater as shown in Figure 14.12a 
is extremely dangerous because most of the ice is below 
the surface. This hidden ice can damage a ship that is 
still a considerable distance from the visible ice. What 
fraction of the iceberg lies below the water level?

Conceptualize  You are likely familiar with the phrase, 
“That’s only the tip of the iceberg.” The origin of this 
popular saying is that most of the volume of a floating 
iceberg is beneath the surface of the water (Fig. 14.12b).

Categorize  This example corresponds to Case 2 because only part of the iceberg is underneath the water. It is also a 
simple substitution problem involving Equation 14.6.

S O L U T I O N
a b

.
 M

ar
k 
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rr

as
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is

Figure 14.12  (Example 14.6) (a) Much of the volume of this 
iceberg is beneath the water. (b) A ship can be damaged even 
when it is not near the visible ice.

Evaluate Equation 14.6 using the densities of ice and 
seawater (Table 14.1):

f 5
Vdisp

Vice
5

rice

rseawater
5

917 kg/m3

1 030 kg/m3 5   0.890 or 89.0%

Therefore, the visible fraction of ice above the water’s surface is about 11%. It is the unseen 89% below the water that 
represents the danger to a passing ship.

14.5 Fluid Dynamics
Thus far, our study of fluids has been restricted to fluids at rest. We now turn our 
attention to fluids in motion. When fluid is in motion, its flow can be characterized 
as being one of two main types. The flow is said to be steady, or laminar, if each 
particle of the fluid follows a smooth path such that the paths of different particles 
never cross each other as shown in Figure 14.13. In steady flow, every fluid particle 
arriving at a given point in space has the same velocity.

Above a certain critical speed, fluid flow becomes turbulent. Turbulent flow is 
irregular flow characterized by small whirlpool-like regions as shown in Figure 14.14.

The term viscosity is commonly used in the description of fluid flow to charac-
terize the degree of internal friction in the fluid. This internal friction, or viscous 
force, is associated with the resistance that two adjacent layers of fluid have to mov-
ing relative to each other. Viscosity causes part of the fluid’s kinetic energy to be 
transformed to internal energy. This mechanism is similar to the one by which the 
kinetic energy of an object sliding over a rough, horizontal surface decreases as 
discussed in Sections 8.3 and 8.4.

Because the motion of real fluids is very complex and not fully understood, we 
make some simplifying assumptions in our approach. In our simplification model 
of ideal fluid flow, we make the following four assumptions:

1. The fluid is nonviscous. In a nonviscous fluid, internal friction is neglected. 
An object moving through the fluid experiences no viscous force.

2. The flow is steady. In steady (laminar) flow, all particles passing through a 
point have the same velocity.

3. The fluid is incompressible. The density of an incompressible fluid is 
constant.

4. The flow is irrotational. In irrotational flow, the fluid has no angular 
momentum about any point. If a small paddle wheel placed anywhere in the 
fluid does not rotate about the wheel’s center of mass, the flow is irrotational.

14.5

Figure 14.13  Laminar flow 
around an automobile in a test 
wind tunnel.
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Figure 14.14  Hot gases from a 
cigarette made visible by smoke 
particles. The smoke first moves 
in laminar flow at the bottom and 
then in turbulent flow above.
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The path taken by a fluid particle under steady flow is called a streamline. The 
velocity of the particle is always tangent to the streamline as shown in Figure 14.15. 
A set of streamlines like the ones shown in Figure 14.15 form a tube of flow. Fluid 
particles cannot flow into or out of the sides of this tube; if they could, the stream-
lines would cross one another.

Consider ideal fluid flow through a pipe of nonuniform size as illustrated in Fig-
ure 14.16. Let’s focus our attention on a segment of fluid in the pipe. Figure 14.16a 
shows the segment at time t 5 0 consisting of the gray portion between point 1 and 
point 2 and the short blue portion to the left of point 1. At this time, the fluid in the 
short blue portion is flowing through a cross section of area A1 at speed v1. During 
the time interval Dt, the small length Dx1 of fluid in the blue portion moves past 
point 1. During the same time interval, fluid at the right end of the segment moves 
past point 2 in the pipe. Figure 14.16b shows the situation at the end of the time 
interval Dt. The blue portion at the right end represents the fluid that has moved 
past point 2 through an area A2 at a speed v2.
 The mass of fluid contained in the blue portion in Figure 14.16a is given by m1 5 
rA1 Dx1 5 rA1v1 Dt, where r is the (unchanging) density of the ideal fluid. Similarly, 
the fluid in the blue portion in Figure 14.16b has a mass m2 5 rA2 Dx2 5 rA2v2 Dt. 
Because the fluid is incompressible and the flow is steady, however, the mass of fluid 
that passes point 1 in a time interval Dt must equal the mass that passes point 2 in 
the same time interval. That is, m1 5 m2 or rA1v1 Dt 5 rA2v2 Dt, which means that

 A1v1 5 A2v2 5 constant (14.7)

This expression is called the equation of continuity for fluids. It states that the 
product of the area and the fluid speed at all points along a pipe is constant for an 
incompressible fluid. Equation 14.7 shows that the speed is high where the tube 
is constricted (small A) and low where the tube is wide (large A). The product Av, 
which has the dimensions of volume per unit time, is called either the volume flux or 
the flow rate. The condition Av 5 constant is equivalent to the statement that the vol-
ume of fluid that enters one end of a tube in a given time interval equals the volume 
leaving the other end of the tube in the same time interval if no leaks are present.
 You demonstrate the equation of continuity each time you water your garden 
with your thumb over the end of a garden hose as in Figure 14.17. By partially block-

A1v1 5 A2v2 5 constantEquation of Continuity 
for Fluids

Figure 14.17  The speed of water spraying from 
the end of a garden hose increases as the size of 
the opening is decreased with the thumb.©
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At each point along its path, 
the particle’s velocity is 
tangent to the streamline.

Figure 14.15  A particle 
in laminar flow follows a 
streamline.

v2

v1

At t � 0, fluid in the blue
portion is moving past
point 1 at velocity v1.

After a time interval �t,
the fluid in the blue 
portion is moving past 
point 2 at velocity v2.

�x1

�x2

Point 2

Point 1

A1

A2

a

S

S

S

S

b

Figure 14.16  A fluid moving 
with steady flow through a pipe  
of varying cross-sectional area.  
(a) At t 5 0, the small blue-
colored portion of the fluid at the 
left is moving through area A1.  
(b) After a time interval Dt, the 
blue-colored portion shown 
here is that fluid that has moved 
through area A2.
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Example 14.7   Watering a Garden 

A gardener uses a water hose to fill a 30.0-L bucket. The gardener notes that it takes 1.00 min to fill the bucket. A nozzle 
with an opening of cross-sectional area 0.500 cm2 is then attached to the hose. The nozzle is held so that water is pro-
jected horizontally from a point 1.00 m above the ground. Over what horizontal distance can the water be projected?

Conceptualize  Imagine any past experience you have with projecting water from a horizontal hose or a pipe using 
either your thumb or a nozzle, which can be attached to the end of the hose. The faster the water is traveling as it leaves 
the hose, the farther it will land on the ground from the end of the hose.

Categorize  Once the water leaves the hose, it is in free fall. Therefore, we categorize a given element of the water as a 
projectile. The element is modeled as a particle under constant acceleration (due to gravity) in the vertical direction and a 
particle under constant velocity in the horizontal direction. The horizontal distance over which the element is projected 
depends on the speed with which it is projected. This example involves a change in area for the pipe, so we also catego-
rize it as one in which we use the continuity equation for fluids.

Analyze

AM

S O L U T I O N

Express the volume flow rate R in terms of area and 
speed of the water in the hose: 

R 5 A1v1

Solve for the speed of the water in the hose: v1 5 
R
A1

We have labeled this speed v1 because we identify point 1 within the hose. We identify point 2 in the air just outside the 
nozzle. We must find the speed v2 5 vxi with which the water exits the nozzle. The subscript i anticipates that it will be 
the initial velocity component of the water projected from the hose, and the subscript x indicates that the initial veloc-
ity vector of the projected water is horizontal.

Solve the continuity equation for fluids for v2: (1)   v2 5 vxi 5
A1

A2
 v1 5 

A1

A2
aR

A1
b 5

R
A2

We now shift our thinking away from fluids and to projectile motion. In the vertical direction, an element of the water 
starts from rest and falls through a vertical distance of 1.00 m.

Use Equation 2.7 to find the horizontal position of the 
element at this time, modeled as a particle under con-
stant velocity:

xf 5 xi 1 vxit 5 0 1 v2t 5 v2t

Substitute from Equations (1) and (2): xf 5
R
A 2Å

22yf

g

Substitute numerical values: xf 5
30.0 L/min
0.500 cm2 Å22 121.00 m 2

9.80 m/s2 a103 cm3

1 L
b a1 min

60 s
b 5 452 cm 5 4.52 m

Call the initial position of the water yi 5 0 and recognize 
that the water begins with a vertical velocity component 
of zero. Solve for the time at which the water reaches the 
ground:

(2)   yf 5 0 1 0 2 1
2gt 2   S   t 5 Å22yf

g

Write Equation 2.16 for the vertical position of an ele-
ment of water, modeled as a particle under constant 
acceleration:

yf 5 yi 1 vyi t 2 1
2gt 2

ing the opening with your thumb, you reduce the cross-sectional area through 
which the water passes. As a result, the speed of the water increases as it exits the 
hose, and the water can be sprayed over a long distance.

continued
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14.6 Bernoulli’s Equation
You have probably experienced driving on a highway and having a large truck pass 
you at high speed. In this situation, you may have had the frightening feeling that your 
car was being pulled in toward the truck as it passed. We will investigate the origin 
of this effect in this section.

As a fluid moves through a region where its speed or elevation above the 
Earth’s surface changes, the pressure in the fluid varies with these changes. The 
relationship between fluid speed, pressure, and elevation was first derived in 1738 
by Swiss physicist Daniel Bernoulli. Consider the flow of a segment of an ideal 
fluid through a nonuniform pipe in a time interval Dt as illustrated in Figure 
14.18. This figure is very similar to Figure 14.16, which we used to develop the 
continuity equation. We have added two features: the forces on the outer ends of 
the blue portions of fluid and the heights of these portions above the reference 
position y 5 0.

The force exerted on the segment by the fluid to the left of the blue portion in 
Figure 14.18a has a magnitude P1A1. The work done by this force on the segment 
in a time interval Dt is W1 5 F1 Dx1 5 P1A1 Dx1 5 P1V, where V is the volume of the 
blue portion of fluid passing point 1 in Figure 14.18a. In a similar manner, the 
work done on the segment by the fluid to the right of the segment in the same time 
interval Dt is W2 5 2P2A2 Dx2 5 2P2V, where V is the volume of the blue portion of 
fluid passing point 2 in Figure 14.18b. (The volumes of the blue portions of fluid in 
Figures 14.18a and 14.18b are equal because the fluid is incompressible.) This work 
is negative because the force on the segment of fluid is to the left and the displace-
ment of the point of application of the force is to the right. Therefore, the net work 
done on the segment by these forces in the time interval Dt is

 W 5 (P1 2 P2)V 

14.6

Finalize  The time interval for the element of water to fall to the ground is unchanged if the projection speed is 
changed because the projection is horizontal. Increasing the projection speed results in the water hitting the ground 
farther from the end of the hose, but requires the same time interval to strike the ground.

y1

y2

The pressure at
point 1 is P1. 

P1A1 i

The pressure at
point 2 is P2. v2

v1
�x1

�x2

Point 2

Point 1
a

S

S

�P2A2 i

ˆ

ˆ

b

Figure 14.18  A fluid in laminar 
flow through a pipe. (a) A segment 
of the fluid at time t 5 0. A small 
portion of the blue-colored fluid 
is at height y1 above a reference 
position. (b) After a time interval 
Dt, the entire segment has moved 
to the right. The blue-colored por-
tion of the fluid is that which has 
passed point 2 and is at height y2.

▸ 14.7 c o n t i n u e d

Daniel Bernoulli
Swiss physicist (1700–1782)
Bernoulli made important discoveries  
in fluid dynamics. Bernoulli’s most 
famous work, Hydrodynamica, was 
published in 1738; it is both a theoreti-
cal and a practical study of equilibrium, 
pressure, and speed in fluids. He showed 
that as the speed of a fluid increases, 
its pressure decreases. Referred to as 
“Bernoulli’s principle,” Bernoulli’s work 
is used to produce a partial vacuum in 
chemical laboratories by connecting a 
vessel to a tube through which water is 
running rapidly.
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Part of this work goes into changing the kinetic energy of the segment of fluid, and 
part goes into changing the gravitational potential energy of the segment–Earth 
system. Because we are assuming streamline flow, the kinetic energy Kgray of the 
gray portion of the segment is the same in both parts of Figure 14.18. Therefore, 
the change in the kinetic energy of the segment of fluid is

DK 5 112mv2
2 1 K gray 2 2 112mv1

2 1 K gray 2 5 1
2mv2

2 2 1
2mv1

2

where m is the mass of the blue portions of fluid in both parts of Figure 14.18. 
(Because the volumes of both portions are the same, they also have the same mass.)

Considering the gravitational potential energy of the segment–Earth system, 
once again there is no change during the time interval for the gravitational poten-
tial energy Ugray associated with the gray portion of the fluid. Consequently, the 
change in gravitational potential energy of the system is

DU 5 1mgy2 1 Ugray 2 2 1mgy1 1 Ugray 2 5 mgy2 2 mgy1 

From Equation 8.2, the total work done on the system by the fluid outside the 
segment is equal to the change in mechanical energy of the system: W 5 DK 1 DU. 
Substituting for each of these terms gives

1P1 2 P2 2V 5 1
2mv2

2 2 1
2mv1

2 1 mgy2 2 mgy1

If we divide each term by the portion volume V and recall that r 5 m/V, this expres-
sion reduces to

P1 2 P2 5 1
2rv2

2 2 1
2rv1

2 1 rgy2 2 rgy1

Rearranging terms gives

P1 1 1
2rv1

2 1 rgy1 5 P2 1 1
2rv2

2 1 rgy2 (14.8)

which is Bernoulli’s equation as applied to an ideal fluid. This equation is often 
expressed as

 P 1 1
2rv2 1 rgy 5 constant (14.9)

Bernoulli’s equation shows that the pressure of a fluid decreases as the speed of 
the fluid increases. In addition, the pressure decreases as the elevation increases. 
This latter point explains why water pressure from faucets on the upper floors of a 
tall building is weak unless measures are taken to provide higher pressure for these 
upper floors.
 When the fluid is at rest, v1 5 v2 5 0 and Equation 14.8 becomes

 P1 2 P2 5 rg 1y2 2 y1 2 5 rgh 

This result is in agreement with Equation 14.4.
 Although Equation 14.9 was derived for an incompressible fluid, the general 
behavior of pressure with speed is true even for gases: as the speed increases, the 
pressure decreases. This Bernoulli effect explains the experience with the truck on 
the highway at the opening of this section. As air passes between you and the truck, 
it must pass through a relatively narrow channel. According to the continuity equa-
tion, the speed of the air is higher. According to the Bernoulli effect, this higher-
speed air exerts less pressure on your car than the slower-moving air on the other 
side of your car. Therefore, there is a net force pushing you toward the truck!

Q uick Quiz 14.5  You observe two helium balloons floating next to each other at 
the ends of strings secured to a table. The facing surfaces of the balloons are 
separated by 1–2 cm. You blow through the small space between the balloons. 
What happens to the balloons? (a) They move toward each other. (b) They move 
away from each other. (c) They are unaffected.

P 1 1
2rv2 1 rgy 5 constant  Bernoulli’s equation

Q
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Example 14.8   The Venturi Tube

The horizontal constricted pipe illustrated in Figure 14.19, 
known as a Venturi tube, can be used to measure the flow speed 
of an incompressible fluid. Determine the flow speed at point 
2 of Figure 14.19a if the pressure difference P1 2 P2 is known.

Conceptualize  Bernoulli’s equation shows how the pressure of 
an ideal fluid decreases as its speed increases. Therefore, we 
should be able to calibrate a device to give us the fluid speed if 
we can measure pressure.

Categorize  Because the problem states that the fluid is incom-
pressible, we can categorize it as one in which we can use the 
equation of continuity for fluids and Bernoulli’s equation.

S O L U T I O N

Analyze  Apply Equation 14.8 to points 1 and 2, noting 
that y1 5 y2 because the pipe is horizontal:

(1)   P1 1 1
2rv1

2 5 P2 1 1
2rv2

2

Solve the equation of continuity for v1: v1 5
A2

A1
 v2

a

P1 P2

A2

A1

v1
S v2

S
�

�

b
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Figure 14.19  (Example 14.8) (a) Pressure P1 is greater 
than pressure P2 because v1 , v2. This device can be used 
to measure the speed of fluid flow. (b) A Venturi tube, 
located at the top of the photograph. The higher level of 
fluid in the middle column shows that the pressure at the 
top of the column, which is in the constricted region of 
the Venturi tube, is lower.

Finalize  From the design of the tube (areas A1 and A2) and measurements of the pressure difference P1 2 P2, we can 
calculate the speed of the fluid with this equation. To see the relationship between fluid speed and pressure differ-
ence, place two empty soda cans on their sides about 2 cm apart on a table. Gently blow a stream of air horizontally 
between the cans and watch them roll together slowly due to a modest pressure difference between the stagnant air on 
their outside edges and the moving air between them. Now blow more strongly and watch the increased pressure dif-
ference move the cans together more rapidly.

Substitute this expression into Equation (1): P1 1 1
2raA2

A1

b2

v2
2 5 P2 1 1

2rv2
2

Solve for v2: v2 5 A1Å 2 1P1 2 P2 2
r 1A1

2 2 A2
2 2

Example 14.9   Torricelli’s Law 

An enclosed tank containing a liquid of density r has a hole in its side at a distance 
y1 from the tank’s bottom (Fig. 14.20). The hole is open to the atmosphere, and its 
diameter is much smaller than the diameter of the tank. The air above the liquid is 
maintained at a pressure P. Determine the speed of the liquid as it leaves the hole 
when the liquid’s level is a distance h above the hole.

Conceptualize  Imagine that the tank is a fire extinguisher. When the hole is 
opened, liquid leaves the hole with a certain speed. If the pressure P at the top 
of the liquid is increased, the liquid leaves with a higher speed. If the pressure 
P falls too low, the liquid leaves with a low speed and the extinguisher must be 
replaced.

AM

S O L U T I O N

A2

A1

P0

h

P

y2

y1

v1
S

Point 2 is the surface 
of the liquid.

Point 1 is 
the exit 
point of 
the hole.

Figure 14.20  (Example 14.9) 
A liquid leaves a hole in a tank at 
speed v1.



14.7 Other Applications of Fluid Dynamics 433

Apply Bernoulli’s equation between points 1 and 2: P0 1 1
2 rv1

2 1 rgy1 5 P 1 rgy2

Solve for v1, noting that y2 2 y1 5 h: v1 5 Å2 1P 2 P0 2
r

1 2gh

Finalize  When P is much greater than P0 (so that the term 2gh can be neglected), the exit speed of the water is mainly 
a function of P. If the tank is open to the atmosphere, then P 5 P0 and v1 5 !2gh. In other words, for an open tank, 
the speed of the liquid leaving a hole a distance h below the surface is equal to that acquired by an object falling freely 
through a vertical distance h. This phenomenon is known as Torricelli’s law.

What if the position of the hole in Figure 14.20 could be adjusted vertically? If the tank is open to the 
atmosphere and sitting on a table, what position of the hole would cause the water to land on the table at the farthest 
distance from the tank?

WHAT IF ?

Categorize  Looking at Figure 14.20, we know the pressure at two points and the velocity at one of those points. We wish to 
find the velocity at the second point. Therefore, we can categorize this example as one in which we can apply Bernoulli’s 
equation.

Analyze  Because A2 .. A1, the liquid is approximately at rest at the top of the tank, where the pressure is P. At the 
hole, P1 is equal to atmospheric pressure P0.

Therefore, to maximize the horizontal distance, the hole should be halfway between the bottom of the tank and the 
upper surface of the water. Below this location, the water is projected at a higher speed but falls for a short time inter-
val, reducing the horizontal range. Above this point, the water is in the air for a longer time interval but is projected 
with a smaller horizontal speed.

Answer  Model a parcel of water exiting the hole as a 
projectile. From the particle under constant acceleration 
model, find the time at which the parcel strikes the table 
from a hole at an arbitrary position y1:

 yf 5 yi 1 vyit 2 1
2gt 2

 0 5 y1 1 0 2 1
2gt 2

t 5 Å2y1

g

From the particle under constant velocity model, find the 
horizontal position of the parcel at the time it strikes  
the table:

 xf 5 xi 1 vxit 5 0 1 "2g 1y2 2 y1 2  Å2y1

g

 5 2"1y2y1 2 y1
2 2

Maximize the horizontal position by taking the deriva-
tive of xf with respect to y1 (because y1, the height of the 
hole, is the variable that can be adjusted) and setting it 
equal to zero:

dxf

dy1
5 1

2 12 2 1y2y1 2 y1
2 221/2 1y2 2 2y1 2 5 0

Solve for y1: y1 5 1
2 y2

 

▸ 14.9 c o n t i n u e d

14.7 Other Applications of Fluid Dynamics
Consider the streamlines that flow around an airplane wing as shown in Figure 
14.21 on page 434. Let’s assume the airstream approaches the wing horizontally 
from the right with a velocity vS1. The tilt of the wing causes the airstream to be 
deflected downward with a velocity vS2. Because the airstream is deflected by the 
wing, the wing must exert a force on the airstream. According to Newton’s third 
law, the airstream exerts a force F

S
 on the wing that is equal in magnitude and 

14.7
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opposite in direction. This force has a vertical component called lift (or aerody-
namic lift) and a horizontal component called drag. The lift depends on several 
factors, such as the speed of the airplane, the area of the wing, the wing’s curva-
ture, and the angle between the wing and the horizontal. The curvature of the wing 
surfaces causes the pressure above the wing to be lower than that below the wing  
due to the Bernoulli effect. This pressure difference assists with the lift on the 
wing. As the angle between the wing and the horizontal increases, turbulent flow 
can set in above the wing to reduce the lift.
 In general, an object moving through a fluid experiences lift as the result of any 
effect that causes the fluid to change its direction as it flows past the object. Some 
factors that influence lift are the shape of the object, its orientation with respect to 
the fluid flow, any spinning motion it might have, and the texture of its surface. For 
example, a golf ball struck with a club is given a rapid backspin due to the slant of 
the club. The dimples on the ball increase the friction force between the ball and 
the air so that air adheres to the ball’s surface. Figure 14.22 shows air adhering to the 
ball and being deflected downward as a result. Because the ball pushes the air down, 
the air must push up on the ball. Without the dimples, the friction force is lower and 
the golf ball does not travel as far. It may seem counterintuitive to increase the range 
by increasing the friction force, but the lift gained by spinning the ball more than 
compensates for the loss of range due to the effect of friction on the translational 
motion of the ball. For the same reason, a baseball’s cover helps the spinning ball 
“grab” the air rushing by and helps deflect it when a “curve ball” is thrown.
 A number of devices operate by means of the pressure differentials that result 
from differences in a fluid’s speed. For example, a stream of air passing over one 
end of an open tube, the other end of which is immersed in a liquid, reduces the 
pressure above the tube as illustrated in Figure 14.23. This reduction in pressure 
causes the liquid to rise into the airstream. The liquid is then dispersed into a fine 
spray of droplets. You might recognize that this atomizer is used in perfume bottles 
and paint sprayers.

F
S

Drag

Lift

Figure 14.22  Because of the 
deflection of air, a spinning golf 
ball experiences a lifting force that 
allows it to travel much farther than 
it would if it were not spinning.

Drag

LiftF
S

The air approaching from 
the right is deflected 
downward by the wing.

Figure 14.21  Streamline flow 
around a moving airplane wing. 
By Newton’s third law, the air 
deflected by the wing results in 
an upward force on the wing from 
the air: lift. Because of air resis-
tance, there is also a force oppo-
site the velocity of the wing: drag.

Summary

Definitions

 The pressure P in a fluid is the force per unit area exerted by the fluid on a surface:

 P ;
F

A
   (14.1)

In the SI system, pressure has units of newtons per square meter (N/m2), and 1 N/m2 5 1 pascal (Pa).

Figure 14.23  A stream of air pass-
ing over a tube dipped into a liquid 
causes the liquid to rise in the tube.
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Concepts and Principles

 The pressure in a fluid at rest varies with depth h in the fluid 
according to the expression

 P 5 P0 1 rgh (14.4)

where P0 is the pressure at h 5 0 and r is the density of the fluid, 
assumed uniform.
 Pascal’s law states that when pressure is applied to an enclosed 
fluid, the pressure is transmitted undiminished to every point in 
the fluid and to every point on the walls of the container.

 When an object is partially or fully sub-
merged in a fluid, the fluid exerts on the 
object an upward force called the buoyant 

force. According to Archimedes’s prin-

ciple, the magnitude of the buoyant force is 
equal to the weight of the fluid displaced by 
the object:

 B 5 rfluid gV disp (14.5)

 The flow rate (volume flux) through a pipe that var-
ies in cross-sectional area is constant; that is equivalent 
to stating that the product of the cross-sectional area A 
and the speed v at any point is a constant. This result is 
expressed in the equation of continuity for fluids:

 A1v1 5 A2v2 5 constant (14.7)

 The sum of the pressure, kinetic energy per unit 
volume, and gravitational potential energy per unit vol-
ume has the same value at all points along a streamline 
for an ideal fluid. This result is summarized in Ber-

noulli’s equation:

 P 1 1
2rv2 1 rgy 5 constant (14.9)

of the following statements are valid? (Choose all cor-
rect statements.) (a) The buoyant force on the steel 
object is equal to its weight. (b) The buoyant force on 
the block is equal to its weight. (c) The tension in the 
string is equal to the weight of the steel object. (d) The 
tension in the string is less than the weight of the steel 
object. (e) The buoyant force on the block is equal to 
the volume of water it displaces.

Figure OQ14.3

 4. An apple is held completely submerged just below 
the surface of water in a container. The apple is then 
moved to a deeper point in the water. Compared with 
the force needed to hold the apple just below the sur-
face, what is the force needed to hold it at the deeper 
point? (a) larger (b)  the same (c) smaller (d) impos-
sible to determine

 5. A beach ball is made of thin plastic. It has been 
inflated with air, but the plastic is not stretched. By 
swimming with fins on, you manage to take the ball 
from the surface of a pool to the bottom. Once the ball 
is completely submerged, what happens to the buoyant 
force exerted on the beach ball as you take it deeper?  
(a) It increases. (b) It remains constant. (c) It decreases. 
(d) It is impossible to determine.

 1. Figure OQ14.1 shows aerial views from directly above 
two dams. Both dams are equally wide (the vertical 
dimension in the diagram) and equally high (into the 
page in the diagram). The dam on the left holds back 
a very large lake, and the dam on the right holds back a 
narrow river. Which dam has to be built more strongly? 
(a) the dam on the left (b) the dam on the right (c) both 
the same (d) cannot be predicted

Dam Dam

Figure OQ14.1

 2. A beach ball filled with air is pushed about 1 m below 
the surface of a swimming pool and released from rest. 
Which of the following statements are valid, assum-
ing the size of the ball remains the same? (Choose all 
correct statements.) (a) As the ball rises in the pool, 
the buoyant force on it increases. (b) When the ball 
is released, the buoyant force exceeds the gravitational 
force, and the ball accelerates upward. (c) The buoyant 
force on the ball decreases as the ball approaches the 
surface of the pool. (d) The buoyant force on the ball 
equals its weight and remains constant as the ball rises. 
(e) The buoyant force on the ball while it is submerged 
is approximately equal to the weight of a volume of 
water that could fill the ball.

 3. A wooden block floats in water, and a steel object is 
attached to the bottom of the block by a string as in 
Figure OQ14.3. If the block remains floating, which 

Objective Questions 1. denotes answer available in Student Solutions Manual/Study Guide
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the weight of the boat (d) equal to the weight of the dis-
placed water (e) equal to the buoyant force on the boat

 10. A small piece of steel is tied to a block of wood. When 
the wood is placed in a tub of water with the steel on top, 
half of the block is submerged. Now the block is inverted 
so that the steel is under water. (i) Does the amount 
of the block submerged (a) increase, (b) decrease, or  
(c) remain the same? (ii) What happens to the water 
level in the tub when the block is inverted? (a) It rises. 
(b) It falls. (c) It remains the same.

 11. A piece of unpainted porous wood barely floats in an 
open container partly filled with water. The container 
is then sealed and pressurized above atmospheric pres-
sure. What happens to the wood? (a) It rises in the 
water. (b) It sinks lower in the water. (c) It remains at 
the same level.

 12. A person in a boat floating in a small pond throws an 
anchor overboard. What happens to the level of the 
pond? (a) It rises. (b) It falls. (c) It remains the same.

 13. Rank the buoyant forces exerted on the following five 
objects of equal volume from the largest to the smallest. 
Assume the objects have been dropped into a swimming 
pool and allowed to come to mechanical equilibrium. 
If any buoyant forces are equal, state that in your rank-
ing. (a) a block of solid oak (b) an aluminum block (c) a  
beach ball made of thin plastic and inflated with air  
(d) an iron block (e) a thin-walled, sealed bottle of water

 14. A water supply maintains a constant rate of flow for water 
in a hose. You want to change the opening of the nozzle 
so that water leaving the nozzle will reach a height that 
is four times the current maximum height the water 
reaches with the nozzle vertical. To do so, should you  
(a) decrease the area of the opening by a factor of 16, 
(b) decrease the area by a factor of 8, (c) decrease the 
area by a factor of 4, (d) decrease the area by a factor of 
2, or (e) give up because it cannot be done?

 15. A glass of water contains floating ice cubes. When the ice 
melts, does the water level in the glass (a) go up, (b) go  
down, or (c) remain the same?

 16. An ideal fluid flows through a horizontal pipe whose 
diameter varies along its length. Measurements would 
indicate that the sum of the kinetic energy per unit 
volume and pressure at different sections of the pipe 
would (a)  decrease as the pipe diameter increases,  
(b) increase as the pipe diameter increases, (c) increase 
as the pipe diameter decreases, (d) decrease as the 
pipe diameter decreases, or (e) remain the same as the 
pipe diameter changes.

 6. A solid iron sphere and a solid lead sphere of the 
same size are each suspended by strings and are sub-
merged in a tank of water. (Note that the density of 
lead is greater than that of iron.) Which of the fol-
lowing statements are valid? (Choose all correct state-
ments.) (a) The buoyant force on each is the same.  
(b) The buoyant force on the lead sphere is greater 
than the buoyant force on the iron sphere because lead 
has the greater density. (c) The tension in the string 
supporting the lead sphere is greater than the tension 
in the string supporting the iron sphere. (d) The buoy-
ant force on the iron sphere is greater than the buoy-
ant force on the lead sphere because lead displaces 
more water. (e) None of those statements is true.

 7. Three vessels of different shapes are filled to the same 
level with water as in Figure OQ14.7. The area of the 
base is the same for all three vessels. Which of the fol-
lowing statements are valid? (Choose all correct state-
ments.) (a) The pressure at the top surface of vessel 
A is greatest because it has the largest surface area. 
(b) The pressure at the bottom of vessel A is greatest 
because it contains the most water. (c) The pressure at 
the bottom of each vessel is the same. (d) The force on 
the bottom of each vessel is not the same. (e) At a given 
depth below the surface of each vessel, the pressure on 
the side of vessel A is greatest because of its slope.

A B C

Figure OQ14.7

 8. One of the predicted problems due to global warm-
ing is that ice in the polar ice caps will melt and raise 
sea levels everywhere in the world. Is that more of a 
worry for ice (a) at the north pole, where most of the 
ice floats on water; (b) at the south pole, where most 
of the ice sits on land; (c) both at the north and south 
pole equally; or (d) at neither pole?

 9. A boat develops a leak and, after its passengers are res-
cued, eventually sinks to the bottom of a lake. When 
the boat is at the bottom, what is the force of the lake 
bottom on the boat? (a) greater than the weight of the 
boat (b) equal to the weight of the boat (c) less than 

Conceptual Questions 1. denotes answer available in Student Solutions Manual/Study Guide

 1. When an object is immersed in a liquid at rest, why is 
the net force on the object in the horizontal direction 
equal to zero?

 2. Two thin-walled drinking glasses having equal base 
areas but different shapes, with very different cross- 
sectional areas above the base, are filled to the same 

level with water. According to the expression P 5 P0 1  
rgh, the pressure is the same at the bottom of both 
glasses. In view of this equality, why does one weigh 
more than the other?

 3. Because atmospheric pressure is about 105 N/m2 and the 
area of a person’s chest is about 0.13 m2, the force of the 
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 14. Does a ship float higher in the water of an inland lake 
or in the ocean? Why?

 15. When ski jumpers are airborne (Fig. CQ14.15), they 
bend their bodies forward and keep their hands at 
their sides. Why?

Figure CQ14.15
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 16. Why do airplane pilots prefer to take off with the air-
plane facing into the wind?

 17. Prairie dogs ventilate their burrows by building a mound 
around one entrance, which is open to a stream of air 
when wind blows from any direction. A second entrance 
at ground level is open to almost stagnant air. How does 
this construction create an airflow through the burrow?

 18. In Figure CQ14.18, an airstream moves from right to 
left through a tube that is constricted at the middle. 
Three table-tennis balls are levitated in equilibrium 
above the vertical columns through which the air 
escapes. (a) Why is the ball at the right higher than the 
one in the middle? (b) Why is the ball at the left lower 
than the ball at the right even though the horizontal 
tube has the same dimensions at these two points?

Figure CQ14.18
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 19. A typical silo on a farm has many metal bands wrapped 
around its perimeter for support as shown in Figure 
CQ14.19. Why is the spacing between successive bands 
smaller for the lower portions of the silo on the left, 
and why are double bands used at lower portions of the 
silo on the right?

atmosphere on one’s chest is around 13 000 N. In view of 
this enormous force, why don’t our bodies collapse?

 4. A fish rests on the bottom of a bucket of water while 
the bucket is being weighed on a scale. When the fish 
begins to swim around, does the scale reading change? 
Explain your answer.

 5. You are a passenger on a spacecraft. For your survival 
and comfort, the interior contains air just like that at 
the surface of the Earth. The craft is coasting through 
a very empty region of space. That is, a nearly perfect 
vacuum exists just outside the wall. Suddenly, a mete-
oroid pokes a hole, about the size of a large coin, right 
through the wall next to your seat. (a) What happens? 
(b) Is there anything you can or should do about it?

 6. If the airstream from a hair dryer is directed over a 
table-tennis ball, the ball can be levitated. Explain.

 7. A water tower is a common sight in many communities. 
Figure CQ14.7 shows a collection of colorful water tow-
ers in Kuwait City, Kuwait. Notice that the large weight 
of the water results in the center of mass of the system 
being high above the ground. Why is it desirable for a 
water tower to have this highly unstable shape rather 
than being shaped as a tall cylinder?

Figure CQ14.7
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 8. If you release a ball while inside a freely falling eleva-
tor, the ball remains in front of you rather than falling 
to the floor because the ball, the elevator, and you all 
experience the same downward gravitational accelera-
tion. What happens if you repeat this experiment with 
a helium-filled balloon?

 9. (a) Is the buoyant force a conservative force? (b) Is a 
potential energy associated with the buoyant force?  
(c) Explain your answers to parts (a) and (b).

 10. An empty metal soap dish barely floats in water. A bar 
of Ivory soap floats in water. When the soap is stuck in 
the soap dish, the combination sinks. Explain why.

 11. How would you determine the density of an irregularly 
shaped rock?

 12. Place two cans of soft drinks, one regular and one diet, 
in a container of water. You will find that the diet drink 
floats while the regular one sinks. Use Archimedes’s 
principle to devise an explanation.

 13. The water supply for a city is often provided from res-
ervoirs built on high ground. Water flows from the 
reservoir, through pipes, and into your home when 
you turn the tap on your faucet. Why does water flow 
more rapidly out of a faucet on the first floor of a 
building than in an apartment on a higher floor? Figure CQ14.19
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Note: In all problems, assume the density of air is the 
20°C value from Table 14.1, 1.20 kg/m3, unless noted 
otherwise.

Section 14.1 Pressure

 1. A large man sits on a four-legged chair with his feet off 
the floor. The combined mass of the man and chair is 
95.0 kg. If the chair legs are circular and have a radius 
of 0.500 cm at the bottom, what pressure does each leg 
exert on the floor?

 2. The nucleus of an atom can be modeled as several pro-
tons and neutrons closely packed together. Each par-
ticle has a mass of 1.67 3 10227 kg and radius on the 
order of 10215 m. (a) Use this model and the data pro-
vided to estimate the density of the nucleus of an atom. 
(b) Compare your result with the density of a material 
such as iron. What do your result and comparison sug-
gest concerning the structure of matter?

 3. A 50.0-kg woman wearing high-heeled shoes is invited 
into a home in which the kitchen has vinyl floor cover-
ing. The heel on each shoe is circular and has a radius 
of 0.500  cm. (a) If the woman balances on one heel, 
what pressure does she exert on the floor? (b) Should 
the home owner be concerned? Explain your answer.

 4. Estimate the total mass of the Earth’s atmosphere. 
(The radius of the Earth is 6.37 3 106 m, and atmo-
spheric pressure at the surface is 1.013 3 105 Pa.)

 5. Calculate the mass of a solid gold rectangular bar that 
has dimensions of 4.50 cm 3 11.0 cm 3 26.0 cm.

Section 14.2 Variation of Pressure with Depth

 6. (a) A very powerful vacuum cleaner has a hose 2.86 cm 
in diameter. With the end of the hose placed perpen-
dicularly on the flat face of a brick, what is the weight 
of the heaviest brick that the cleaner can lift? (b) What 

If? An octopus uses one sucker of diameter 2.86 cm on 
each of the two shells of a clam in an attempt to pull 
the shells apart. Find the greatest force the octopus 
can exert on a clamshell in salt water 32.3 m deep.

 7. The spring of the pressure gauge shown in Figure 
P14.7 has a force constant of 1 250 N/m, and the piston 
has a diameter of 1.20 cm. As the gauge is lowered into 
water in a lake, what change in depth causes the piston 
to move in by 0.750 cm?
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 8. The small piston of a hydraulic lift (Fig. P14.8) has a 
cross-sectional area of 3.00 cm2, and its large piston 
has a cross-sectional area of 200 cm2. What downward 
force of magnitude F1 must be applied to the small 
piston for the lift to raise a load whose weight is Fg 5  
15.0 kN?

F1
S

Fg � 15.0 kN

Figure P14.8

 9. What must be the contact area between a suction cup 
(completely evacuated) and a ceiling if the cup is to 
support the weight of an 80.0-kg student?

 10. A swimming pool has dimensions 30.0 m 3 10.0 m and a 
flat bottom. When the pool is filled to a depth of 2.00 m  
with fresh water, what is the force exerted by the water 
on (a) the bottom? (b) On each end? (c) On each side?

 11. (a) Calculate the absolute pressure at the bottom of 
a freshwater lake at a point whose depth is 27.5 m. 
Assume the density of the water is 1.00 3 103 kg/m3 
and that the air above is at a pressure of 101.3 kPa.  
(b) What force is exerted by the water on the window 
of an underwater vehicle at this depth if the window is 
circular and has a diameter of 35.0 cm?

 12. Why is the following situation impossible? Figure P14.12 
shows Superman attempting to drink cold water 
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 17. Review. Piston � in Figure P14.17 has a diameter of 
0.250 in. Piston � has a diameter of 1.50 in. Determine 
the magnitude F of the force necessary to support the 
500-lb load in the absence of friction.

500 lb

2.0 in.
10 in.

�

�

F
S

Figure P14.17

 18. Review. A solid sphere of brass (bulk modulus of  
14.0 3 1010 N/m2) with a diameter of 3.00 m is thrown 
into the ocean. By how much does the diameter of the 
sphere decrease as it sinks to a depth of 1.00 km?

Section 14.3 Pressure Measurements

 19. Normal atmospheric pressure is 1.013 3 105 Pa. The 
approach of a storm causes the height of a mercury 
barometer to drop by 20.0 mm from the normal height. 
What is the atmospheric pressure?

 20. The human brain and spinal cord are immersed in the 
cerebrospinal fluid. The fluid is normally continuous 
between the cranial and spinal cavities and exerts a 
pressure of 100 to 200 mm of H2O above the prevail-
ing atmospheric pressure. In medical work, pressures 
are often measured in units of millimeters of H2O 
because body fluids, including the cerebrospinal fluid, 
typically have the same density as water. The pressure 
of the cerebrospinal fluid can be measured by means 
of a spinal tap as illustrated in Figure P14.20. A hollow 
tube is inserted into the spinal column, and the height 
to which the fluid rises is observed. If the fluid rises 
to a height of 160 mm, we write its gauge pressure as 
160 mm H2O. (a) Express this pressure in pascals, in 
atmospheres, and in millimeters of mercury. (b) Some 
conditions that block or inhibit the flow of cerebrospi-
nal fluid can be investigated by means of Queckenstedt’s 
test. In this procedure, the veins in the patient’s neck 
are compressed to make the blood pressure rise in the 
brain, which in turn should be transmitted to the cere-
brospinal fluid. Explain how the level of fluid in the 
spinal tap can be used as a diagnostic tool for the con-
dition of the patient’s spine.
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through a straw of length , 5 12.0 m. The walls of the 
tubular straw are very strong and do not collapse. With 
his great strength, he achieves maximum possible suc-
tion and enjoys drinking the cold water.

�

Figure P14.12

 13. For the cellar of a new house, a hole is dug in the 
ground, with vertical sides going down 2.40 m. A con-
crete foundation wall is built all the way across the 
9.60-m width of the excavation. This foundation wall 
is 0.183 m away from the front of the cellar hole. Dur-
ing a rainstorm, drainage from the street fills up the 
space in front of the concrete wall, but not the cellar 
behind the wall. The water does not soak into the clay 
soil. Find the force the water causes on the founda-
tion wall. For comparison, the weight of the water is 
given by 2.40 m 3 9.60 m 3 0.183 m 3 1 000 kg/m3 3  
9.80 m/s2 5 41.3 kN.

 14. A container is filled to a depth of 20.0 cm with water. 
On top of the water floats a 30.0-cm-thick layer of oil 
with specific gravity 0.700. What is the absolute pres-
sure at the bottom of the container?

 15. Review. The tank in Figure P14.15 is filled with water 
of depth d 5 2.00 m. At the bottom of one sidewall is a 
rectangular hatch of height h 5 1.00 m and width w 5  
2.00 m that is hinged at the top of the hatch. (a) Deter-
mine the magnitude of the force the water exerts 
on the hatch. (b)  Find the magnitude of the torque 
exerted by the water about the hinges.

d

w

h

Figure P14.15  
Problems 15 and 16.

 16. Review. The tank in Figure P14.15 is filled with water of 
depth d. At the bottom of one sidewall is a rectangular 
hatch of height h and width w that is hinged at the top 
of the hatch. (a) Determine the magnitude of the force 
the water exerts on the hatch. (b) Find the magnitude 
of the torque exerted by the water about the hinges.

S

Figure P14.20
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scale and submerged in water, the scale reads 3.50 N 
(Fig. P14.26). Find the density of the object.

Scale

a b

Figure P14.26 Problems 26 and 27.

 27. A 10.0-kg block of metal measuring 12.0 cm by 10.0 cm 
by 10.0 cm is suspended from a scale and immersed in 
water as shown in Figure P14.26b. The 12.0-cm dimen-
sion is vertical, and the top of the block is 5.00 cm below 
the surface of the water. (a) What are the magnitudes of 
the forces acting on the top and on the bottom of the 
block due to the surrounding water? (b) What is the 
reading of the spring scale? (c) Show that the buoyant 
force equals the difference between the forces at the top 
and bottom of the block.

 28. A light balloon is filled with 400 m3 of helium at atmo-
spheric pressure. (a) At 0°C, the balloon can lift a pay-
load of what mass? (b) What If? In Table 14.1, observe 
that the density of hydrogen is nearly half the density 
of helium. What load can the balloon lift if filled with 
hydrogen?

 29. A cube of wood having an edge dimension of 20.0 cm 
and a density of 650 kg/m3 floats on water. (a) What 
is the distance from the horizontal top surface of the 
cube to the water level? (b) What mass of lead should 
be placed on the cube so that the top of the cube will 
be just level with the water surface?

 30. The United States possesses the ten largest warships 
in the world, aircraft carriers of the Nimitz class. Sup-
pose one of the ships bobs up to float 11.0 cm higher 
in the ocean water when 50 fighters take off from it in 
a time interval of 25 min, at a location where the free-
fall acceleration is 9.78 m/s2. The planes have an aver-
age laden mass of 29 000 kg. Find the horizontal area 
enclosed by the waterline of the ship.

 31. A plastic sphere floats in water with 50.0% of its vol-
ume submerged. This same sphere floats in glycerin 
with 40.0% of its volume submerged. Determine the 
densities of (a) the glycerin and (b) the sphere.

 32. A spherical vessel used for deep-sea exploration has a 
radius of 1.50 m and a mass of 1.20 3 104 kg. To dive, 
the vessel takes on mass in the form of seawater. Deter-
mine the mass the vessel must take on if it is to descend 
at a constant speed of 1.20 m/s, when the resistive force 
on it is 1 100 N in the upward direction. The density of 
seawater is equal to 1.03 3 103 kg/m3.

 33. A wooden block of volume 5.24 3 1024 m3 floats in 
water, and a small steel object of mass m is placed on 
top of the block. When m 5 0.310 kg, the system is in 
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 21. Blaise Pascal duplicated Torricelli’s barometer using a 
red Bordeaux wine, of density 984 kg/m3, as the work-
ing liquid (Fig. P14.21). (a) What was the height h of 
the wine column for normal atmospheric pressure?  
(b) Would you expect the vacuum above the column to 
be as good as for mercury?

P0

h

Figure P14.21

 22. Mercury is poured into a U-tube as shown in Figure 
P14.22a. The left arm of the tube has cross-sectional 
area A1 of 10.0  cm2, and the right arm has a cross- 
sectional area A2 of 5.00 cm2. One hundred grams of 
water are then poured into the right arm as shown in 
Figure P14.22b. (a) Determine the length of the water 
column in the right arm of the U-tube. (b) Given that 
the density of mercury is 13.6 g/cm3, what distance h 
does the mercury rise in the left arm?

h

Mercury

A1 A2 A1 A2
Water

a b

Figure P14.22

 23. A backyard swimming pool with a circular base of 
diameter 6.00 m is filled to depth 1.50 m. (a) Find the 
absolute pressure at the bottom of the pool. (b) Two 
persons with combined mass 150 kg enter the pool and 
float quietly there. No water overflows. Find the pres-
sure increase at the bottom of the pool after they enter 
the pool and float.

 24. A tank with a flat bottom of area A and vertical sides is 
filled to a depth h with water. The pressure is P0 at the 
top surface. (a) What is the absolute pressure at the bot-
tom of the tank? (b) Suppose an object of mass M and 
density less than the density of water is placed into the 
tank and floats. No water overflows. What is the result-
ing increase in pressure at the bottom of the tank?

Section 14.4 Buoyant Forces and Archimedes’s Principle

 25. A table-tennis ball has a diameter of 3.80 cm and aver-
age density of 0.084 0 g/cm3. What force is required to 
hold it completely submerged under water?

 26. The gravitational force exerted on a solid object is  
5.00 N. When the object is suspended from a spring 
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fiduciary marks are to be placed along the rod to indi-
cate densities of 0.98 g/cm3, 1.00 g/cm3, 1.02 g/cm3, 
1.04 g/cm3, . . . , 1.14 g/cm3. The row of marks is to start 
0.200 cm from the top end of the rod and end 1.80 cm 
from the top end. (a) What is the required length of the 
rod? (b) What must be its average density? (c) Should 
the marks be equally spaced? Explain your answer.

 38. On October 21, 2001, Ian Ashpole of the United King-
dom achieved a record altitude of 3.35 km (11 000 ft) 
powered by 600 toy balloons filled with helium. Each 
filled balloon had a radius of about 0.50 m and an esti-
mated mass of 0.30 kg. (a) Estimate the total buoyant 
force on the 600 balloons. (b) Estimate the net upward 
force on all 600  balloons. (c) Ashpole parachuted to 
the Earth after the balloons began to burst at the high 
altitude and the buoyant force decreased. Why did the 
balloons burst?

 39. How many cubic meters of helium are required to lift 
a light balloon with a 400-kg payload to a height of 
8 000 m? Take rHe 5 0.179 kg/m3. Assume the balloon 
maintains a constant volume and the density of air 
decreases with the altitude z according to the expres-
sion rair 5 r0e2z/8 000, where z is in meters and r0 5  
1.20 kg/m3 is the density of air at sea level.

Section 14.5 Fluid Dynamics
Section 14.6 Bernoulli’s Equation
 40. Water flowing through a garden hose of diameter 

2.74 cm fills a 25-L bucket in 1.50 min. (a) What is the 
speed of the water leaving the end of the hose? (b) A 
nozzle is now attached to the end of the hose. If the 
nozzle diameter is one-third the diameter of the hose, 
what is the speed of the water leaving the nozzle?

 41. A large storage tank, open at the top and filled with 
water, develops a small hole in its side at a point 16.0 m  
below the water level. The rate of flow from the leak 
is found to be 2.50 3 1023 m3/min. Determine (a) the 
speed at which the water leaves the hole and (b) the 
diameter of the hole.

 42. Water moves through a constricted pipe in steady, ideal 
flow. At the lower point shown in Figure P14.42, the 
pressure is P1 5 1.75 3 104 Pa and the pipe diameter 
is 6.00 cm. At another point y 5 0.250 m higher, the 
pressure is P2 5 1.20 3 104 Pa and the pipe diameter is  
3.00 cm. Find the speed of flow (a) in the lower section 
and (b) in the upper section. (c) Find the volume flow 
rate through the pipe.

P1

P2

y

Figure P14.42

 43. Figure P14.43 on page 442 shows a stream of water in 
steady flow from a kitchen faucet. At the faucet, the 
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equilibrium and the top of the wooden block is at the 
level of the water. (a) What is the density of the wood? 
(b) What happens to the block when the steel object is 
replaced by an object whose mass is less than 0.310 kg? 
(c) What happens to the block when the steel object 
is replaced by an object whose mass is greater than  
0.310 kg?

 34. The weight of a rectangular block of low-density mate-
rial is 15.0 N. With a thin string, the center of the hori-
zontal bottom face of the block is tied to the bottom of 
a beaker partly filled with water. When 25.0% of the 
block’s volume is submerged, the tension in the string is 
10.0 N. (a) Find the buoyant force on the block. (b) Oil  
of density 800 kg/m3 is now steadily added to the bea-
ker, forming a layer above the water and surround-
ing the block. The oil exerts forces on each of the 
four sidewalls of the block that the oil touches. What 
are the directions of these forces? (c) What happens 
to the string tension as the oil is added? Explain how 
the oil has this effect on the string tension. (d) The 
string breaks when its tension reaches 60.0 N. At this 
moment, 25.0% of the block’s volume is still below the 
water line. What additional fraction of the block’s vol-
ume is below the top surface of the oil?

 35. A large weather balloon whose mass is 226 kg is filled 
with helium gas until its volume is 325 m3. Assume the 
density of air is 1.20 kg/m3 and the density of helium is 
0.179 kg/m3. (a) Calculate the buoyant force acting on 
the balloon. (b) Find the net force on the balloon and 
determine whether the balloon will rise or fall after it 
is released. (c) What additional mass can the balloon 
support in equilibrium?

 36. A hydrometer is an instrument used to determine liquid 
density. A simple one is sketched in Figure P14.36. The 
bulb of a syringe is squeezed and released to let the 
atmosphere lift a sample of the liquid of interest into a 
tube containing a calibrated rod of known density. The 
rod, of length L and average density r0, floats partially 
immersed in the liquid of density r. A length h of the 
rod protrudes above the surface of the liquid. Show 
that the density of the liquid is given by

r 5
r0L

L 2 h

96

98

102

104

100

L

h96

98
100
102
104

Figure P14.36 Problems 36 and 37.

 37. Refer to Problem 36 and Figure P14.36. A hydrometer is 
to be constructed with a cylindrical floating rod. Nine 
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water must be pumped if it is to arrive at the village? 
(b) If 4 500 m3 of water is pumped per day, what is 
the speed of the water in the pipe? Note: Assume the 
free-fall acceleration and the density of air are con-
stant over this range of elevations. The pressures you 
calculate are too high for an ordinary pipe. The water 
is actually lifted in stages by several pumps through 
shorter pipes.

 48. In ideal flow, a liquid of density 850 kg/m3 moves from 
a horizontal tube of radius 1.00 cm into a second hori-
zontal tube of radius 0.500 cm at the same elevation as 
the first tube. The pressure differs by DP between the 
liquid in one tube and the liquid in the second tube. 
(a) Find the volume flow rate as a function of DP. Eval-
uate the volume flow rate for (b) DP 5 6.00 kPa and  
(c) DP 5 12.0 kPa.

 49. The Venturi tube discussed in Example 14.8 and shown 
in Figure P14.49 may be used as a fluid flowmeter. 
Suppose the device is used at a service station to mea-
sure the flow rate of gasoline (r 5 7.00 3 102 kg/m3) 
through a hose having an outlet radius of 1.20 cm. If 
the difference in pressure is measured to be P1 2 P2 5 
1.20 kPa and the radius of the inlet tube to the meter 
is 2.40 cm, find (a) the speed of the gasoline as it leaves 
the hose and (b) the fluid flow rate in cubic meters per 
second.

P1 P2

Figure P14.49

 50. Review. Old Faithful Geyser in Yellowstone National 
Park erupts at approximately one-hour intervals, 
and the height of the water column reaches 40.0 m 
(Fig. P14.50). (a)  Model the rising stream as a series 
of  separate  droplets. Analyze the free-fall motion of 
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diameter of the stream is 0.960 cm. The stream fills a 
125-cm3 container in 16.3 s. Find the diameter of the 
stream 13.0 cm below the opening of the faucet.

Figure P14.43
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 44. A village maintains a large tank with an open top, con-
taining water for emergencies. The water can drain 
from the tank through a hose of diameter 6.60 cm. The 
hose ends with a nozzle of diameter 2.20 cm. A rubber 
stopper is inserted into the nozzle. The water level in 
the tank is kept 7.50 m above the nozzle. (a) Calculate 
the friction force exerted on the stopper by the nozzle. 
(b) The stopper is removed. What mass of water flows 
from the nozzle in 2.00 h? (c) Calculate the gauge pres-
sure of the flowing water in the hose just behind the 
nozzle.

 45. A legendary Dutch boy saved Holland by plugging a 
hole of diameter 1.20 cm in a dike with his finger. If 
the hole was 2.00 m below the surface of the North Sea 
(density 1 030 kg/m3), (a) what was the force on his fin-
ger? (b) If he pulled his finger out of the hole, during 
what time interval would the released water fill 1 acre 
of land to a depth of 1 ft? Assume the hole remained 
constant in size.

 46. Water falls over a dam of height h with a mass flow rate 
of R, in units of kilograms per second. (a) Show that 
the power available from the water is

P 5 Rgh

  where g is the free-fall acceleration. (b) Each hydro-
electric unit at the Grand Coulee Dam takes in water at 
a rate of 8.50 3 105 kg/s from a height of 87.0 m. The 
power developed by the falling water is converted to 
electric power with an efficiency of 85.0%. How much 
electric power does each hydroelectric unit produce?

 47. Water is pumped up from the Colorado River to sup-
ply Grand Canyon Village, located on the rim of the 
canyon. The river is at an elevation of 564 m, and the 
village is at an elevation of 2 096 m. Imagine that  
the water is pumped through a single long pipe 15.0 cm  
in diameter, driven by a single pump at the bottom 
end. (a) What is the minimum pressure at which the Figure P14.50
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4.00 m 3 1.50 m. Assume the density of the air to be 
constant at 1.20 kg/m3. The air inside the building is at 
atmospheric pressure. What is the total force exerted 
by air on the windowpane? (b) What If? If a second 
skyscraper is built nearby, the airspeed can be espe-
cially high where wind passes through the narrow sepa-
ration between the buildings. Solve part (a) again with 
a wind speed of 22.4 m/s, twice as high.

 55. A hypodermic syringe contains a medicine with the 
density of water (Fig. P14.55). The barrel of the syringe 
has a cross-sectional area A 5 2.50 3 1025 m2, and the 
needle has a cross-sectional area a 5 1.00 3 1028 m2. 
In the absence of a force on the plunger, the pressure 
everywhere is 1.00 atm. A force F

S
 of magnitude 2.00 N  

acts on the plunger, making medicine squirt hori-
zontally from the needle. Determine the speed of the 
medicine as it leaves the needle’s tip.

A

a

F
S vS

Figure P14.55

Additional Problems

 56. Decades ago, it was thought that huge herbivorous 
dinosaurs such as Apatosaurus and Brachiosaurus habit-
ually walked on the bottom of lakes, extending their 
long necks up to the surface to breathe. Brachiosaurus 
had its nostrils on the top of its head. In 1977, Knut 
Schmidt-Nielsen pointed out that breathing would be 
too much work for such a creature. For a simple model, 
consider a sample consisting of 10.0 L of air at absolute 
pressure 2.00 atm, with density 2.40 kg/m3, located at 
the surface of a freshwater lake. Find the work required 
to transport it to a depth of 10.3 m, with its tempera-
ture, volume, and pressure remaining constant. This 
energy investment is greater than the energy that can 
be obtained by metabolism of food with the oxygen in 
that quantity of air.

 57. (a) Calculate the absolute pressure at an ocean depth of 
1 000 m. Assume the density of seawater is 1 030 kg/m3  
and the air above exerts a pressure of 101.3 kPa. (b) At  
this depth, what is the buoyant force on a spherical 
submarine having a diameter of 5.00 m?

 58. In about 1657, Otto von Guericke, inventor of the air 
pump, evacuated a sphere made of two brass hemi-
spheres (Fig. P14.58). Two teams of eight horses each 
could pull the hemispheres apart only on some trials 
and then “with greatest difficulty,” with the resulting  
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one of the droplets to determine the speed at which 
the water leaves the ground. (b) What If? Model the 
rising stream as an ideal fluid in streamline flow. 
Use Bernoulli’s equation to determine the speed of 
the water as it leaves ground level. (c) How does the 
answer from part (a) compare with the answer from 
part (b)? (d) What is the pressure (above atmospheric) 
in the heated underground chamber if its depth is  
175 m? Assume the chamber is large compared with 
the geyser’s vent.

Section 14.7 Other Applications of Fluid Dynamics

 51. An airplane is cruising at altitude 10 km. The pressure 
outside the craft is 0.287 atm; within the passenger 
compartment, the pressure is 1.00 atm and the temper-
ature is 208C. A small leak occurs in one of the window 
seals in the passenger compartment. Model the air as 
an ideal fluid to estimate the speed of the airstream 
flowing through the leak.

 52. An airplane has a mass of 1.60 3 104 kg, and each wing 
has an area of 40.0 m2. During level flight, the pressure 
on the lower wing surface is 7.00 3 104 Pa. (a) Suppose 
the lift on the airplane were due to a pressure differ-
ence alone. Determine the pressure on the upper wing 
surface. (b) More realistically, a significant part of the 
lift is due to deflection of air downward by the wing. 
Does the inclusion of this force mean that the pressure 
in part (a) is higher or lower? Explain.

 53. A siphon is used to drain water from a tank as illus-
trated in Figure P14.53. Assume steady flow without 
friction. (a) If h 5 1.00 m, find the speed of outflow at 
the end of the siphon. (b) What If? What is the limita-
tion on the height of the top of the siphon above the 
end of the siphon? Note: For the flow of the liquid to be 
continuous, its pressure must not drop below its vapor 
pressure. Assume the water is at 20.08C, at which the 
vapor pressure is 2.3 kPa.

h

y

�

v
S

Figure P14.53

 54. The Bernoulli effect can have important consequences 
for the design of buildings. For example, wind can 
blow around a skyscraper at remarkably high speed, 
creating low pressure. The higher atmospheric pres-
sure in the still air inside the buildings can cause win-
dows to pop out. As originally constructed, the John 
Hancock Building in Boston popped windowpanes 
that fell many stories to the sidewalk below. (a) Sup-
pose a horizontal wind blows with a speed of 11.2 m/s 
outside a large pane of plate glass with dimensions 
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balance with the use of counterweights of density r. 
Representing the density of air as rair and the balance 
reading as F 9g , show that the true weight Fg is

Fg 5 F rg 1 aV 2
F rg
rg
brairg

 63. Water is forced out of a fire extinguisher by air pres-
sure as shown in Figure P14.63. How much gauge air 
pressure in the tank is required for the water jet to have 
a speed of 30.0  m/s when the water level is 0.500 m  
below the nozzle?

0.500 m

vS

Figure P14.63

 64. Review. Assume a certain liquid, with density  
1 230  kg/m3, exerts no friction force on spherical 
objects. A ball of mass 2.10 kg and radius 9.00 cm is 
dropped from rest into a deep tank of this liquid from a 
height of 3.30 m above the surface. (a) Find the speed at 
which the ball enters the liquid. (b) Evaluate the magni-
tudes of the two forces that are exerted on the ball as it 
moves through the liquid. (c) Explain why the ball 
moves down only a limited distance into the liquid and 
calculate this distance. (d) With what speed will the ball 
pop up out of the liquid? (e) How does the time interval 
Dtdown, during which the ball moves from the surface 
down to its lowest point, compare with the time interval 
Dtup for the return trip between the same two points? 
(f) What If? Now modify the model to suppose the liq-
uid exerts a small friction force on the ball, opposite in 
direction to its motion. In this case, how do the time 
intervals Dtdown and Dtup compare? Explain your answer 
with a conceptual argument rather than a numerical 
calculation.

 65. Review. A light spring of constant k 5 90.0 N/m is 
attached vertically to a table (Fig. P14.65a). A 2.00-g 
balloon is filled with helium (density 5 0.179 kg/m3) 
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sound likened to a cannon firing. Find the force F 
required to pull the thin-walled evacuated hemispheres  
apart in terms of R, the radius of the hemispheres; P, 
the pressure inside the hemispheres; and atmospheric 
pressure P0.

 59. A spherical aluminum ball of mass 1.26 kg contains an 
empty spherical cavity that is concentric with the ball. 
The ball barely floats in water. Calculate (a) the outer 
radius of the ball and (b) the radius of the cavity.

 60. A helium-filled balloon (whose envelope has a mass of 
mb 5 0.250 kg) is tied to a uniform string of length , 5 
2.00 m and mass m 5 0.050 0 kg. The balloon is spheri-
cal with a radius of r 5 0.400 m. When released in air 
of temperature 208C and density rair 5 1.20 kg/m3, it 
lifts a length h of string and then remains stationary as 
shown in Figure P14.60. We wish to find the length of 
string lifted by the balloon. (a)  When the balloon 
remains stationary, what is the appropriate analysis 
model to describe it? (b) Write a force equation for 
the balloon from this model in terms of the buoyant 
force B, the weight Fb of the balloon, the weight FHe of 
the helium, and the weight Fs of the segment of string 
of length h. (c) Make an appropriate substitution for 
each of these forces and solve symbolically for the 
mass ms of the segment of string of length h in terms 
of mb, r, rair, and the density of helium rHe. (d) Find 
the numerical value of the mass ms . (e) Find the length 
h numerically.

He

h

Figure P14.60

 61. Review. Figure P14.61 shows a valve separating a res-
ervoir from a water tank. If this valve is opened, what 
is the maximum height above point B attained by the 
water stream coming out of the right side of the tank? 
Assume h 5 10.0 m, L 5 2.00 m, and u 5 30.0°, and 
assume the cross-sectional area at A is very large com-
pared with that at B.

A

h

Valve
L B

u

Figure P14.61

 62. The true weight of an object can be measured in a 
vacuum, where buoyant forces are absent. A measure-
ment in air, however, is disturbed by buoyant forces. An 
object of volume V is weighed in air on an equal-arm 
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Figure P14.65
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 70. Review. With reference to the dam studied in Example 
14.4 and shown in Figure 14.5, (a) show that the total 
torque exerted by the water behind the dam about a 
horizontal axis through O is 16 rgwH 3. (b) Show that the 
effective line of action of the total force exerted by the 
water is at a distance 13H  above O.

 71. A 1.00-kg beaker containing 2.00 kg of oil (density 5 
916.0 kg/m3) rests on a scale. A 2.00-kg block of iron 
suspended from a spring scale is completely submerged 
in the oil as shown in Figure P14.71. Determine the 
equilibrium readings of both scales.

Figure P14.71 Problems 71 and 72.

 72. A beaker of mass mb containing oil of mass mo and den-
sity ro rests on a scale. A block of iron of mass mFe sus-
pended from a spring scale is completely submerged in 
the oil as shown in Figure P14.71. Determine the equi-
librium readings of both scales.

 73. In 1983, the United States began coining the one-cent 
piece out of copper-clad zinc rather than pure cop-
per. The mass of the old copper penny is 3.083 g and 
that of the new cent is 2.517 g. The density of copper  
is 8.920 g/cm3 and that of zinc is 7.133 g/cm3. The new 
and old coins have the same volume. Calculate the  
percent of zinc (by volume) in the new cent.

 74. Review. A long, cylindrical rod of radius r is weighted 
on one end so that it floats upright in a fluid having a 
density r. It is pushed down a distance x from its equi-
librium position and released. Show that the rod will 
execute simple harmonic motion if the resistive effects 
of the fluid are negligible, and determine the period 
of the oscillations.

 75. Review. Figure P14.75 shows the essential parts of 
a hydraulic brake system. The area of the piston in 
the master cylinder is 1.8 cm2 and that of the piston 

S

S

S

to a volume of 5.00 m3 and is then connected with a 
light cord to the spring, causing the spring to stretch 
as shown in Figure P14.65b. Determine the extension 
distance L when the balloon is in equilibrium.

 66. To an order of magnitude, how many helium-filled toy 
balloons would be required to lift you? Because helium 
is an irreplaceable resource, develop a theoretical 
answer rather than an experimental answer. In your 
solution, state what physical quantities you take as data 
and the values you measure or estimate for them.

 67. A 42.0-kg boy uses a solid block of Styrofoam as a raft 
while fishing on a pond. The Styrofoam has an area 
of 1.00 m2 and is 0.050 0 m thick. While sitting on the 
surface of the raft, the boy finds that the raft just sup-
ports him so that the top of the raft is at the level of the 
pond. Determine the density of the Styrofoam.

 68. A common parameter that can be used to predict tur-
bulence in fluid flow is called the Reynolds number. The 
Reynolds number for fluid flow in a pipe is a dimen-
sionless quantity defined as

Re 5
rvd
m

  where r is the density of the fluid, v is its speed, d is the 
inner diameter of the pipe, and m is the viscosity of the 
fluid. Viscosity is a measure of the internal resistance 
of a liquid to flow and has units of Pa · s. The criteria 
for the type of flow are as follows:

  , 2 300, the flow is laminar.
  , Re , 4 000, the flow is in a transition 

region between laminar and turbulent.
  . 4 000, the flow is turbulent.

  (a) Let’s model blood of density 1.06 3 103 kg/m3 
and viscosity 3.00 3 10–3 Pa · s as a pure liquid, that 
is, ignore the fact that it contains red blood cells. Sup-
pose it is flowing in a large artery of radius 1.50 cm 
with a speed of 0.067 0 m/s. Show that the flow is lami-
nar. (b) Imagine that the artery ends in a single capil-
lary so that the radius of the artery reduces to a much 
smaller value. What is the radius of the capillary that 
would cause the flow to become turbulent? (c) Actual 
capillaries have radii of about 5–10 micrometers, much 
smaller than the value in part (b). Why doesn’t the flow 
in actual capillaries become turbulent?

 69. Evangelista Torricelli was the first person to realize 
that we live at the bottom of an ocean of air. He cor-
rectly surmised that the pressure of our atmosphere is 
attributable to the weight of the air. The density of air 
at 08C at the Earth’s surface is 1.29 kg/m3. The den-
sity decreases with increasing altitude (as the atmo-
sphere thins). On the other hand, if we assume the 
density is constant at 1.29 kg/m3 up to some altitude 
h and is zero above that altitude, then h would repre-
sent the depth of the ocean of air. (a) Use this model 
to determine the value of h that gives a pressure of 
1.00 atm at the surface of the Earth. (b) Would the 
peak of Mount Everest rise above the surface of such 
an atmosphere?
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travel from the nozzle to the ground. Neglect air resis-
tance and assume atmospheric pressure is 1.00 atm.  
(b) If the desired range of the stream is 8.00 m, with 
what speed v2 must the stream leave the nozzle? (c) At 
what speed v1 must the plunger be moved to achieve 
the desired range? (d) What is the pressure at the 
nozzle? (e) Find the pressure needed in the larger 
tube. (f) Calculate the force that must be exerted on 
the trigger to achieve the desired range. (The force 
that must be exerted is due to pressure over and above 
atmospheric pressure.)

F
S

v1
S

v2
SA2

A1

Figure P14.78

 79. An incompressible, nonviscous fluid is initially at rest 
in the vertical portion of the pipe shown in Figure 
P14.79a, where L 5 2.00 m. When the valve is opened, 
the fluid flows into the horizontal section of the pipe. 
What is the fluid’s speed when all the fluid is in the 
horizontal section as shown in Figure P14.79b? 
Assume the cross-sectional area of the entire pipe is 
constant.

Valve
closed

Valve
opened

L

L

vS

a b

Figure P14.79

 80. The water supply of a building is fed through a main 
pipe 6.00 cm in diameter. A 2.00-cm-diameter faucet 
tap, located 2.00 m above the main pipe, is observed to 
fill a 25.0-L container in 30.0 s. (a) What is the speed at 
which the water leaves the faucet? (b) What is the 
gauge pressure in the 6-cm main pipe? Assume the 
faucet is the only “leak” in the building.

 81. A U-tube open at both ends is partially filled with 
water (Fig. P14.81a). Oil having a density 750 kg/m3 is 
then poured into the right arm and forms a column  
L 5 5.00 cm high (Fig. P14.81b). (a) Determine the 
difference h in the heights of the two liquid surfaces. 
(b) The right arm is then shielded from any air motion 
while air is blown across the top of the left arm until 
the surfaces of the two liquids are at the same height 
(Fig. P14.81c). Determine the speed of the air being 

in the brake cylinder is 6.4 cm2. The coefficient of fric-
tion between shoe and wheel drum is 0.50. If the wheel 
has a radius of 34 cm, determine the frictional torque 
about the axle when a force of 44 N is exerted on the 
brake pedal.

 76. The spirit-in-glass thermometer, invented in Florence, 
Italy, around 1654, consists of a tube of liquid (the 
spirit) containing a number of submerged glass 
spheres with slightly different masses (Fig. P14.76). At 
sufficiently low temperatures, all the spheres float, but 
as the temperature rises, the spheres sink one after 
another. The device is a crude but interesting tool for 
measuring temperature. Suppose the tube is filled 
with ethyl alcohol, whose density is 0.789 45 g/cm3  
at 20.0°C and decreases to 0.780 97 g/cm3 at 30.0°C. 
(a) Assuming that one of the spheres has a radius  
of 1.000 cm and is in equilibrium halfway up the  
tube at 20.0°C, determine its mass. (b) When the 
temperature increases to 30.0°C, what mass must a 
second sphere of the same radius have to be in equi-
librium at the halfway point? (c) At 30.0°C, the first 
sphere has fallen to the bottom of the tube. What 
upward force does the bottom of the tube exert on 
this sphere?

Figure P14.76
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 77. Review. A uniform disk of mass 10.0 kg and radius 
0.250 m spins at 300 rev/min on a low-friction axle. It 
must be brought to a stop in 1.00 min by a brake pad 
that makes contact with the disk at an average distance 
0.220 m from the axis. The coefficient of friction 
between pad and disk is 0.500. A piston in a cylinder of 
diameter 5.00 cm presses the brake pad against the 
disk. Find the pressure required for the brake fluid  
in the cylinder.

 78. Review. In a water pistol, a piston drives water through 
a large tube of area A1 into a smaller tube of area A2 as 
shown in Figure P14.78. The radius of the large tube 
is 1.00 cm and that of the small tube is 1.00 mm. The 
smaller tube is 3.00 cm above the larger tube. (a) If 
the pistol is fired horizontally at a height of 1.50 m, 
determine the time interval required for the water to 

Q/C
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  (b) The boat has mass M. Show that the liftoff speed is 
given by

v < Å 2Mg1n2 2 1 2Ar

 84. A jet of water squirts out horizontally from a hole near 
the bottom of the tank shown in Figure P14.84. If the 
hole has a diameter of 3.50 mm, what is the height h of 
the water level in the tank?

h

0.600 m

1.00 m

Figure P14.84

Challenge Problems

 85. An ice cube whose edges measure 20.0 mm is float-
ing in a glass of ice-cold water, and one of the ice 
cube’s faces is parallel to the water’s surface. (a) How 
far below the water surface is the bottom face of the 
block? (b) Ice-cold ethyl alcohol is gently poured onto 
the water surface to form a layer 5.00 mm thick above 
the water. The alcohol does not mix with the water. 
When the ice cube again attains hydrostatic equilib-
rium, what is the distance from the top of the water 
to the bottom face of the block? (c) Additional cold 
ethyl alcohol is poured onto the water’s surface until 
the top surface of the alcohol coincides with the top 
surface of the ice cube (in hydrostatic equilibrium). 
How thick is the required layer of ethyl alcohol?

 86. Why is the following situation impossible? A barge is car-
rying a load of small pieces of iron along a river. 
The iron pile is in the shape of a cone for which the 
radius r of the base of the cone is equal to the central 
height h of the cone. The barge is square in shape, 
with vertical sides of length 2r, so that the pile of iron 
comes just up to the edges of the barge. The barge 
approaches a low bridge, and the captain realizes 
that the top of the pile of iron is not going to make 
it under the bridge. The captain orders the crew to 
shovel iron pieces from the pile into the water to 
reduce the height of the pile. As iron is shoveled from 
the pile, the pile always has the shape of a cone whose 
diameter is equal to the side length of the barge. 
After a certain volume of iron is removed from the 
barge, it makes it under the bridge without the top of 
the pile striking the bridge.

 87. Show that the variation of atmospheric pressure with 
altitude is given by P 5 P0e2ay, where a 5 r0g/P0, P0 

M

S

blown across the left arm. Take the density of air as 
constant at 1.20 kg/m3.

P0

Water

h
L

Oil

L

Shieldv
S

a b c

Figure P14.81

 82. A woman is draining her fish tank by siphoning the 
water into an outdoor drain as shown in Figure P14.82.  
The rectangular tank has footprint area A and depth 
h. The drain is located a distance d below the surface 
of the water in the tank, where d .. h. The cross- 
sectional area of the siphon tube is A9. Model the water 
as flowing without friction. Show that the time interval 
required to empty the tank is given by

Dt 5
Ah

A r"2gd

d

h

Figure P14.82

 83. The hull of an experimental boat is to be lifted above 
the water by a hydrofoil mounted below its keel as 
shown in Figure P14.83. The hydrofoil has a shape like 
that of an airplane wing. Its area projected onto a  
horizontal surface is A. When the boat is towed at suf-
ficiently high speed, water of density r moves in stream-
line flow so that its average speed at the top of the 
hydrofoil is n times larger than its speed vb below the 
hydrofoil. (a) Ignoring the buoyant force, show that 
the upward lift force exerted by the water on the hydro-
foil has a magnitude

F < 1
2 1n2 2 1 2rvb

2A

S

S

M

Figure P14.83
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expressed from Equation 14.4 as dP 5 2rg dy. Also 
assume the density of air is proportional to the pres-
sure, which, as we will see in Chapter 20, is equivalent 
to assuming the temperature of the air is the same at 
all altitudes.

is atmospheric pressure at some reference level y 5 0, 
and r0 is the atmospheric density at this level. Assume 
the decrease in atmospheric pressure over an infinites-
imal change in altitude (so that the density is approxi-
mately uniform over the infinitesimal change) can be 


