
Chapter Seven

Orbits in a central field

including Rutherford scattering

KEY FEATURES

For motion in general central force fields, the key results are the radial motion equation and
the path equation. For motion in the inverse square force field, the key formulae are the
E-formula, the L-formula and the period formula.

The theory of orbits has a special place in classical mechanics for it was the desire
to understand why the planets move as they do which provided the major stimulus in
the development of mechanics as a scientific discipline. Early in the seventeenth cen-
tury, Johannes Kepler ∗ published his ‘laws of planetary motion’, which he deduced by
analysing the accurate experimental observations made by the astronomer Tycho Brahe.†

∗ The German mathematician and astronomer Johannes Kepler (1571–1630) was a firm believer in the
Copernican (heliocentric) model of the solar system. In 1596 he became mathematical assistant to Tycho
Brahe, the foremost observational astronomer of the day, and began working on the intractable problem
of the orbit of Mars. This work continued after Tycho’s death in 1601 and, after much labour, Kepler
showed that Tycho’s observations of Mars corresponded very precisely to an elliptic orbit with the Sun at
a focus. This result, together with the ‘law of areas’ (the second law) was published in 1609. Kepler then
found similar orbits for other planets and his third law was published in 1619.

† Tycho Brahe (1546–1601) was a Danish nobleman. He had a lifelong interest in observational astronomy
and developed a succession of new and more accurate instruments. The King of Denmark gave him
money to create an observatory and also the island of Hven on which to build it. It was here that Tycho
made his accurate observations of the planets from which Kepler was able to deduce his laws of planetary
motion. Tycho’s other claim to fame is that he had a metal nose. When the original was cut off in a duel,
he had an artificial nose made from an alloy of silver and gold. Tycho is perhaps better remembered for
his nose job than he is for a lifetime of observations.
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FIGURE 7.1 Each planet P moves on an
elliptical path with the Sun S at one focus.
The area A is that referred to in Kepler’s
second law.
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Kepler’s laws of planetary motion

First law Each of the planets moves on an elliptical path with the Sun at one focus
of the ellipse.

Second law For each of the planets, the straight line connecting the planet to the
Sun sweeps out equal areas in equal times.

Third law The squares of the periods of the planets are proportional to the cubes of
the major axes of their orbits.

The problem of determining the law of force that causes the motions described by
Kepler (and proving that it does so) was the most important scientific problem of the sev-
enteenth century. In what must be the finest achievement in the whole history of science,
Newton’s publication of Principia in 1687 not only proved that the inverse square law of
gravitation implies Kepler’s laws, but also laid down the entire framework of the science
of mechanics. Orbit theory is just as important today, the principal fields of application
being astronomy, particle scattering and space travel.

In this chapter, we treat the problem of a particle moving in a central force field with a
fixed centre; this is called the one-body problem. The assumption that the centre of force
is fixed is an accurate approximation in the context of planetary orbits. The combined
mass of all the planets, moons and asteroids is less than 0.2% of the mass of the Sun. We
therefore expect the motion of the Sun to be comparatively small, as are inter-planetary
influences.∗ However, we do not confine our interest to motion under the attractive inverse
square field. At first, we consider motion in any central force field with a fixed centre. This
part of the theory will then apply not only to gravitating bodies, but also (for example) to
the scattering of neutrons. The important cases of inverse square attraction and repulsion
are then examined in greater detail.

∗ The more general two-body problem is treated in Chapter 10. The two-body theory must be used to
analyse problems in which the masses of the two interacting bodies are comparable, as they are in binary
stars.
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FIGURE 7.2 Each orbit of a particle P in a central force field with centre O
takes place in a plane through O . The position of P in the plane of motion is
specified by polar coordinates r , θ with centre at O .

7.1 THE ONE-BODY PROBLEM – NEWTON’S EQUATIONS

First we define what we mean by a central force field.

Definition 7.1 Central field A force field F(r) is said to be a central field with centre
O if it has the form

F(r) = F(r) r̂,

where r = |r| and r̂ = r/r . A central field is thus spherically symmetric about its centre.

A good example of a central force is the gravitational force exerted by a fixed point
mass. Suppose P has mass m and moves under the gravitational attraction of a point mass
M fixed at the origin. In this case, the force acting on P is given by the law of gravitation
to be

F(r) = −m MG

r2
r̂,

where G is the constant of gravitation. This is a central field with

F(r) = −m MG

r2
.

Each orbit lies in a plane through the centre of force

The first thing to observe is that, when a particle P moves in a central field with centre
O , each orbit of P takes place in a plane through O , as shown in Figure 7.2. This is the
plane that contains O and the initial position and velocity of P . One may give a vectorial
proof of this, but it is quite clear on symmetry grounds that P will never leave this plane.
Each motion is therefore two-dimensional and we take polar coordinates r , θ (centred on
O) to specify the position of P in the plane of motion. On using the formulae (2.14) for
the components of acceleration in polar coordinates, the Newton equations of motion for



158 Chapter 7 Orbits in a central field

P

O

r

vr

v
θ

p

α

α

v

FIGURE 7.3 The angular momentum mr2θ̇ = mp v, where
v = |v|.

P become

m
(

r̈ − r θ̇2
)

= F(r), (7.1)

m
(
r θ̈ + 2ṙ θ̇

) = 0. (7.2)

Angular momentum conservation

Equation (7.2) can be written in the form

1

r

d

dt

(
mr2θ̇

)
= 0,

which can be integrated with respect to t to give

mr2θ̇ = constant.

The quantity mr2θ̇ , which is a constant of the motion, is called the angular momentum∗
of P . The general theory of angular momentum (and its conservation) is described in
Chapter 11, but for now it is sufficient to regard ‘angular momentum’ simply as a name that
we give to the conserved quantity mr2θ̇ . This angular momentum has a simple kinematical
interpretation. From Figure 7.3 it follows that

mr2θ̇ = mr(r θ̇ ) = mrvθ = m(r cos α)
( vθ

cos α

)
= mp v,

where p is the perpendicular distance of O from the tangent to the path of P , and v =
|v|. This formula provides the usual way of calculating the constant value the angular
momentum from the initial conditions.

∗ More precisely, it is the angular momentum of the particle about the axis {O, k}, where the unit vector k
is perpendicular to the plane of motion (see Figure 7.2). The angular momentum of P about the point O
is the vector quantity mr×v, but the axial angular momentum used in the present chapter is the component
of this vector in the k-direction.
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Newton equations in specific form

It is usual and convenient to eliminate the mass m from the theory. If we write

F(r) = m f (r),

where f (r) is the outward force per unit mass, and let L (= r2θ̇ ) be the angular momen-
tum per unit mass then the Newton equations (7.1), (7.2) reduce to the specific form

r̈ − r θ̇2 = f (r), (7.3)

r2θ̇ = L , (7.4)

where L is a constant.∗ Note that these equations apply to orbits in any central field. The
second of these equations appears throughout this chapter and we will call it the angular
momentum equation.

Angular momentum equation

r2θ̇ = L
(7.5)

Kepler’s second law

Angular momentum conservation is equivalent to Kepler’s second law. The area A shown
in Figure 7.1 can be expressed (with an obvious choice of initial line) as

A = 1
2

∫ θ

0
r2 dθ.

Then, by the chain rule,

dA
dt

= dA
dθ

× dθ

dt
= 1

2r2θ̇ = 1
2 L ,

where L is the constant value of the angular momentum. Thus A increases at a constant
rate, which is what Kepler’s second law says. Thus Kepler’s second law holds for all
central force fields, not just the inverse square law.

7.2 GENERAL NATURE OF ORBITAL MOTION

In our first method of solution, we take as our starting point the principles of
conservation of angular momentum and energy.

∗ Without losing generality, we will take L to be positive, that is, we suppose θ is increasing with time.
(The special case in which L = 0 corresponds to rectilinear motion through O .)
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Energy conservation

Every central field F = m f (r )̂r is conservative with potential energy mV (r), where

f (r) = −dV

dr
. (7.6)

Energy conservation then implies that

T + V = E,

where T is the specific kinetic energy, V is the specific potential energy, and the constant
E is the specific total energy. On replacing T by its expression in polar coordinates, we
obtain

Energy equation

1
2

(
ṙ2 + (r θ̇ )2

) + V (r) = E
(7.7)

as the energy conservation equation. The conservation equations (7.5), (7.7) are equiva-
lent to the Newton equations (7.1), (7.2) and are a convenient starting point for investigat-
ing the general nature of orbital motion.

The radial motion equation

From the angular momentum conservation equation (7.5), we have

θ̇ = L/r2

and, on eliminating θ̇ from the energy conservation equation (7.7), we obtain

1
2 ṙ2 + V (r) + L2

2r2
= E, (7.8)

an ODE for the radial distance r(t). We call this the radial motion equation for the
particle P . Equation (7.8) (together with the initial conditions) is sufficient to determine
the variation of r with t , and the angular momentum equation (7.5) then determines the
variation of θ with t . Unfortunately, for most laws of force, this procedure cannot be
carried through analytically. However, it is still possible to make important deductions
about the general nature of the motion.

Equation (7.8) can be written in the form

1
2 ṙ2 + V ∗(r) = E, (7.9)

where

V ∗(r) = V (r) + L2

2r2
. (7.10)
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FIGURE 7.4 The effective potential V ∗ shown admits bounded and
unbounded orbits, depending on the initial conditions.

The function V ∗(r) is called the effective potential of the radial motion and its use
reduces the radial motion of P to a rectilinear problem. It must be emphasised
though that the whole motion is two-dimensional since θ is increasing in accordance
with (7.5).

Because r satisfies the radial motion equation (7.9), the variation of r with t can be
analysed by using the same methods as were used in Chapter 6 for rectilinear particle
motion. In particular, the general nature of the motion depends on the shape of the graph
of V ∗ (which depends on L) and the value of E . The values of the constants L and E
depend on the initial conditions.

Suppose for example that the law of force and the initial conditions are such that V ∗
has the form shown in Figure 7.4 and that E has the value shown. Then, since T ≥ 0, it
follows that the motion is restricted to those values r that satisfy the inequality

V ∗(r) ≤ E,

with equality holding when ṙ = 0. There are two possible motions, in each of which the
variation of r with t is governed by the radial motion equation (7.8).

(i) a bounded motion in which r oscillates in the range [a, b]. In this motion, r(t) is
a periodic function.∗

(ii) an unbounded motion in which r lies in the interval [c,∞). In this motion r is
not periodic but decreases until the minimum value r = c is achieved and then
increases without limit.

The bounded orbit. A typical bounded orbit is shown in Figure 7.5 (left). The orbit
alternately touches the inner and outer circles r = a and r = b, which corresponds to
the radial coordinate r oscillating in the interval [a, b]. Without losing generality, suppose
that P is at the point B1 when t = 0 and that O B1 is the line θ = 0. Consider the part of

∗ The fact that r(t) is periodic does not mean that the whole motion must be periodic.
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FIGURE 7.5 Typical bounded and unbounded orbits.

the orbit between A1 and A2. It follows from the governing equations (7.8), (7.5) that r is
an even function of t while θ is an odd function of t . This means that the segment B1 A2 of
the orbit is just the reflection of the segment A1 B1 in the line O B1. This argument can be
repeated to show that the segment A2 B2 is the reflection of the segment B1 A2 in the line
O A2, and so on. Thus the whole orbit can be constructed from a knowledge of a single
segment such as A1 B1.

It follows from what has been said that the angles A1Ô B1, B1Ô A2, A2 Ô B2 (and
so on) are all equal. Let α be the common value of these angles. Then the orbit will
eventually close itself if some integer multiple of α is equal to some whole number of
complete revolutions, that is, if α/π is a rational number. There is no reason to expect
this condition to hold and, in general, it does not. It follows that these bounded orbits are
not generally closed. The closed orbits associated with the attractive inverse square field
are therefore exceptional, rather than typical!

The unbounded orbit. In the unbounded case there are just two segments both of which
are semi-infinite (see Figure 7.5 (right)). The segment in which P recedes from O is the
reflection of the segment in which P approaches O in the line OC .

Apses and apsidal distances

The points at which an orbit touches its bounding circles are important and are given a
special name:

Definition 7.2 Apse, apsidal distance, apsidal angle A point of an orbit at which
the distance O P achieves its maximum or minimum value is called an apse of the orbit.
These maximum and minimum distances are called the apsidal distances and the angu-
lar displacement between successive apses (the angle α in Figure 7.5 (left)) is called the
apsidal angle.
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FIGURE 7.6 Left: The effective potential V ∗ for the attractive inverse square force. Right: The
path of the asteroid around the Sun. C is the point of closest approach.

In the special case of orbits around the Sun, the point of closest approach is called the
perihelion and the point of maximum distance the aphelion. The corresponding terms for
orbits around the Earth are perigee and apogee.

The apsidal distances, the maximum and minimum distances of P from O , are easily
found from the radial motion equation (7.8). At an apse, ṙ = 0 and so r must satisfy

V (r) + L2

2r2
= E . (7.11)

The positive roots of this equation are the apsidal distances.

Example 7.1 Asteroid deflected by the Sun

A particle P of mass m moves in the central force field −(mγ /r2) r̂ , where γ is a
positive constant. Show that bounded and unbounded orbits are possible depending
on the value of E .

An asteroid is approaching the Sun from a great distance. At this time it has
constant speed u and is moving in a straight line whose perpendicular distance from
the Sun is p. Find the equation satisfied by the apsidal distances of the subsequent
orbit. For the special case in which u2 = 4M�G/3p (where M� is the mass of the
Sun), find (i) the distance of closest approach of the asteroid to the Sun, and (ii) the
speed of the asteroid at the time of closest approach.

Solution

For this law of force, V = −γ /r and the effective potential V ∗ is

V ∗ = −γ

r
+ L2

2r2
.

This V ∗ has the form shown in Figure 7.6 (left), from which it is clear that the orbit
will be

(i) bounded if E < 0,

(ii) unbounded if E ≥ 0,

whatever the value of L .



164 Chapter 7 Orbits in a central field

In the asteroid example, the constant γ = M�G, where M� is the mass of the
Sun and G is the constant of gravitation. With the given initial conditions, L = p u
and E = u2/2, so that E > 0 and the orbit is unbounded.

The equation (7.11) for the apsidal distances becomes

−γ

r
+ p2u2

2r2
= 1

2 u2,

that is,

u2r2 + 2γ r − p2u2 = 0,

where γ = M�G.
For the special case in which u2 = 4M�G/3p, this equation simplifies to

2r2 + 3pr − 2p2 = 0.

The distance of closest approach of the asteroid is the positive root of this quadratic
equation, namely r = p/2.

The speed V of the asteroid at closest approach is easily deduced from angular
momentum conservation. Initially, L = pu and, at closest approach, L = (p/2)V . It
follows that V = 2u.

7.3 THE PATH EQUATION

In principle, the method of the last section allows us to determine the complete
motion of the orbiting body as a function of the time. However, the procedure is usually
too difficult to be carried through analytically. We can make the problem easier (and
make more progress) by seeking just the equation of the path taken by the body, and not
enquiring where the body is on this path at any particular time.

We start from the Newton equation (7.3) and try to eliminate the time by using the
angular momentum equation (7.5). In doing this it is helpful to introduce the new depen-
dent variable u, given by

u = 1/r. (7.12)

This transformation has a magically simplifying effect. We begin by transforming ṙ and
r̈ . By the chain rule,

ṙ = d

dt

(
1

u

)
= − 1

u2
× du

dθ
× dθ

dt
= −

(
r2θ̇

) du

dθ

which, on using the angular momentum equation (7.5), gives

ṙ = −L
du

dθ
. (7.13)
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A second differentiation with respect to t then gives

r̈ = −L
d

dt

(
du

dθ

)
= −L

d2u

dθ2
× dθ

dt
= −L2u2 d2u

dθ2
, (7.14)

on using the angular momentum equation again.
The term r θ̇2 = L2u3 so that the Newton equation (7.3) is transformed into

−L2u2 d2u

dθ2
− L2u3 = f (1/u),

that is,

The path equation

d2u

dθ2
+ u = − f (1/u)

L2u2

(7.15)

This is the path equation. Its solutions are the polar equations of the paths that the body
can take when it moves under the force field F = m f (r )̂r .

Despite the appearance of the left side of equation (7.15), the path equation is not
linear in general. This is because the right side is a function of u, the dependent variable.
Only for the inverse square and inverse cube laws does the path equation become linear.
It is a remarkable piece of good luck that the inverse square law (the most important case
by far) is one of only two cases that can be solved easily.

Initial conditions for the path equation

Suitable initial conditions for the path equation are provided by specifying the values of u
and du/dθ when θ = α, say. Since u = 1/r , the initial value of u is given directly by the
initial data. The value of du/dθ is not given directly but can be deduced from equation
(7.13) in the form

du

dθ
= − ṙ

L
, (7.16)

where ṙ and L are obtained from the initial data.

Example 7.2 Path equation for the inverse cube law

The engines of the starship Enterprise have failed and the ship is moving in a straight
line with speed V . The crew calculate that their present course will miss the planet
B – Zar by a distance p. However, B – Zar is known to exert the force

F = −mγ

r3
r̂
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FIGURE 7.7 The path of the Enterprise around the planet B – Zar (B).

on any mass m in its vicinity. A measurement of the constant γ reveals that

γ = 8p2V 2

9
.

Show that the crew of the Enterprise will get a free tour around B –Zar before contin-
uing along their original path. What is the distance of closest approach and what is
the speed of the Enterprise at that instant?

Solution

For the given law of force, f (r) = −γ /r3 so that f (1/u) = −γ u3. Also, from the
initial conditions, L = pV . The path equation is therefore

d2u

dθ2
+ u = γ u3

p2V 2u2
,

which simplifies to

d2u

dθ2
+ u

9
= 0,

on using the stated value of γ . The general solution of this equation is

u = A cos(θ/3) + B sin(θ/3).

The constants A and B can now be determined from the initial conditions. Take the
initial line θ = 0 as shown in Figure 7.7. Then:

(i) The initial condition r = ∞ when θ = 0 implies that u = 0 when θ = 0. It
follows that A = 0.

(ii) The initial condition on du/dθ is given by (7.16) to be

du

dθ
= − ṙ

L
= −

(−V

pV

)
= 1

p

when θ = 0. It follows that B = 3/p.
The required solution is therefore

u = 3

p
sin(θ/3),
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that is

r = p

3 sin(θ/3)
.

This is the polar equation of the path of the Enterprise, as shown in Figure 7.7. The
Enterprise recedes to infinity when sin(θ/3) = 0 again, that is when θ = 3π . Thus
the Enterprise makes one circuit of B –Zar before continuing on as before.

The distance of closest approach is p/3 and is achieved when θ = 3π/2. By
angular momentum conservation, the speed of the Enterprise at that instant is 3V .

7.4 NEARLY CIRCULAR ORBITS

Although the path equation cannot be solved exactly for most laws of force, it is
possible to obtain approximate solutions when the body is slightly perturbed from a known
orbit. In particular, this can always be done when the unperturbed orbit is a circle with
centre O .

Suppose that a particle P moves in a circular orbit of radius a under the attractive
force f (r) per unit mass. This is only possible if its speed v satisfies v2/a = f (a), in
which case its angular momentum L is given by L2 = a3 f (a). Suppose that P is now
slightly disturbed by a small radial impulse. The angular momentum is unchanged but P
now moves along some new path

u = 1

a
(1 + ξ(θ)),

where ξ is a small perturbation. In terms of ξ , the path equation becomes

d2ξ

dθ2
+ 1 + ξ = + (1 + ξ)−2

f (a)
f

(
a

1 + ξ

)
.

This exact equation for ξ is non-linear, but we will now approximate it by expanding the
right side in powers of ξ . On expanding the function f (r) in a Taylor series about r = a
we obtain

f

(
a

1 + ξ

)
= f

(
a − aξ

1 + ξ

)
= f (a) −

(
aξ

1 + ξ

)
f ′(a) + O

(
ξ

1 + ξ

)2

= f (a) − a f ′(a) ξ + O
(
ξ2

)
,

and a simple binomial expansion gives

(1 + ξ)−2 = 1 − 2ξ + O
(
ξ2

)
.

On combining these results together, the constant terms cancel and we obtain

d2ξ

dθ2
+

(
3 + a f ′(a)

f (a)

)
ξ = 0, (7.17)
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on neglecting terms of order O(ξ2). This is the approximate linearised equation satisfied
by the perturbation ξ(θ).

The general behaviour of the solutions of equation (7.17) depends on the sign of the
coefficient of ξ .

(i) If

3 + a f ′(a)

f (a)
< 0, (7.18)

then the solutions are linear combinations of real exponentials, one of which has
a positive exponent. In this case, the solution for ξ will not remain small, contrary
to assumption. The conclusion is that the original circular orbit is unstable.

(ii) Alternatively, if

�2 ≡ 3 + a f ′(a)

f (a)
> 0, (7.19)

then the solutions are linear combinations of real cosines and sines, which remain
bounded. The conclusion is that the original circular orbit is stable (at least to
small radial impulses).

Closure of the perturbed orbits

From now on we will assume that the stability condition (7.19) is satisfied. The general
solution of equation (7.17) then has the form

ξ = A cos �θ + B sin �θ.

We see that the perturbed orbit will close itself after one revolution if � is a positive
integer. When the law of force is the power law

f (r) = krν,

the perturbed orbit is stable for ν > −3 and will close itself after one revolution if

ν = m2 − 3,

where m is a positive integer. The case m = 1 corresponds to inverse square attraction
and m = 2 corresponds to simple harmonic attraction. The exponents ν = 6, 13, . . .

are also predicted to give closed orbits. It should be remembered though that these are
only the predictions of the approximate linearised theory.∗ It is possible (but not pretty)
to improve on the linear approximation by including quadratic terms in ξ as well as linear
ones. The result of this refined theory is that the powers ν = −2 and ν = 1 still give

∗ It makes no sense to say that an orbit approximately closes itself!
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closed orbits, but the powers ν = 6, 13, . . . do not. This shows that the power laws with
ν = 6, 13, . . . do not give perturbed orbits that close after one revolution, but the cases
ν = −2 and ν = 1 are still not finally decided. Mercifully, there is no need to carry the
approximation procedure any further because all the paths corresponding to both inverse
square and simple harmonic attraction can be calculated exactly. It is found that, for
these two laws of force, all bounded orbits close after one revolution.∗ There remains the
possibility that the perturbed orbits might close themselves after more than one revolution,
but a similar analysis shows that this does not happen. We have therefore shown that the
only power laws for which all bounded orbits are closed are the simple harmonic and
inverse square laws. This result is actually true for all central fields (not just power laws)
and is known as Bertrand’s theorem.

Precession of the perihelion of Mercury

The fact that the inverse square law leads to closed orbits, whilst very similar laws do not,
provides an extremely sensitive test of the law of gravitation. Suppose for instance that
the attractive force experienced by a planet were

f (r) = γ

r2+ε

(per unit mass), where γ > 0 and |ε| is small. Then the value of � for a nearly circular
orbit is

� = (1 − ε)1/2 = 1 − 1
2ε + O(ε2).

This perturbed orbit does not close but has apsidal angle α, where

α = π

�
= π

1 − 1
2ε + O(ε2)

= π(1 + 1
2ε) + O(ε2).

Hence successive perihelions of the planet will not occur at the same point, but the per-
ihelion will advance ‘annually’ by the small angle πε. The position of the perihelion
of a planet can be measured with great accuracy. For the planet Mercury it is found
(after all known perturbations have been subtracted out) that the perihelion advances by
43 (±0.5) seconds of arc per century, or 5 × 10−7 radians per revolution. This correponds
to ε = 1.6 × 10−7 and a power of −2.00000016 instead of −2. Miniscule though this
discrepancy from the inverse square law seems, it is considerably greater than the error in
the observations and for a considerable time was something of a puzzle.

This puzzle was resolved in a striking fashion by the theory of general relativity,
published by Einstein in 1915. Einstein showed that one consequence of his theory was
that planetary orbits should precess slightly and that, in the case of Mercury, the rate of
precession should be 43 seconds of arc per century!

∗ In the inverse square case, the bounded orbits are ellipses with a focus at O , and, in the simple harmonic
case, they are ellipses with the centre at O .
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7.5 THE ATTRACTIVE INVERSE SQUARE FIELD

Because of its many applications to astronomy, the attractive inverse square field
is the most important force field in the theory of orbits. The same field occurs in particle
scattering when the two particles carry unlike electric charges. Because of these important
applications, we will treat the inverse square field in more detail than other fields. In par-
ticular, we will obtain formulae that enable inverse square problems to be solved quickly
and easily without referring to the equations of motion at all.

The paths

Suppose that f (r) = −γ /r2 where γ > 0. Then f (1/u) = −γ u2 and the path equation
becomes

d2u

dθ2
+ u = γ

L2
,

where L is the angular momentum of the orbit. This has the form of the SHM equation
with a constant on the right. The general solution is

u = A cos θ + B sin θ + γ

L2
,

which can be written in the form

1

r
= γ

L2

(
1 + e cos(θ − α)

)
, (7.20)

where e, α are constants with e ≥ 0. This is the polar equation of a conic of eccentricity
e and with one focus at O; α is the angle between the major axis of the conic and the initial
line θ = 0. If e < 1, then the conic is an ellipse; if e = 1 then the conic is a parabola;
and when e > 1 the conic is the near branch of a hyperbola. The neccessary geometry
of the ellipse and hyperbola is summarised in Appendix A at the end of the chapter; the
special case of the parabolic orbit is of marginal interest and we will make little mention
of it.

Kepler’s first law

It follows from the above that the only bounded orbits in the attractive inverse square field
are ellipses with one focus at the centre of force. This is Kepler’s first law, which is
therefore a consequence of inverse square law attraction by the Sun. It would not be true
for other laws of force.

The L-formula and the E-formula

By comparing the path formula (7.20) with the standard polar forms given in Appendix
A, we see that the angular momentum L of the orbit is related to the conic parameters a,
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b by the formula

γ

L2
= a

b2
,

that is,

The L-formula

L2 = γ b2/a
(7.21)

We will call this result the L-formula. It applies to both elliptic and hyperbolic orbits.
It is the first of two important formulae that relate L , E , the dynamical constants of the
motion, to the conic parameters of the resulting orbit.

The second such formula involves the energy E . At the point of closest approach
r = c,

E = 1
2 V 2 − γ

c
,

where V is the speed of P when r = c. Since P is moving transversely at the point of
closest approach, it follows that cV = L , so that E may be written

E = L2

2c2
− γ

c
= γ b2

ac2
− γ

c

on using the L-formula.
From this point on, the different types of conic must be treated separately. When the

orbit is an ellipse, c = a(1 − e), where e is the eccentricity, and a, b and e are related by
the formula

e2 = 1 − b2

a2
.

Then E can be written

E = γ a2(1 − e2)

2a3(1 − e)2
− γ

a(1 − e)

= − γ

2a
.

Thus the total energy E in the orbit is directly connected to a, the semi-major axis of the
elliptical orbit. The parabolic and hyperbolic orbits are treated similarly and the full result,
which we will call the E-formula, is
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αα β

S

p A

FIGURE 7.8 The asteroid A moves on a hyperbolic orbit
around the Sun S as a focus and is deflected through the
angle β.

The E-formula

Ellipse: E < 0 E = − γ

2a

Parabola: E = 0

Hyperbola: E > 0 E = + γ

2a

(7.22)

Note that the type of orbit is determined solely by the sign of the total energy E . It
follows that that the escape condition (the condition that the body should eventually go
off to infinity) is simply that E ≥ 0. This useful result is true only for the inverse square
law.

Example 7.3 Asteroid deflected by the Sun

An asteroid approaches the Sun with speed V along a line whose perpendicular dis-
tance from the Sun is p. Find the angle through which the asteroid is deflected by the
Sun.

Solution

In this case we have the attractive inverse square field with γ = M�G, where M�
is the mass of the Sun. This problem can be solved from first principles by using the
path equation, but here we make short work of it by using the L- and E-formulae.

From the initial conditions, L = pV and E = 1
2 V 2. Since E > 0, the orbit is the

near branch of a hyperbola and the L- and E-formulae give

p2V 2 = M�Gb2

a
and 1

2 V 2 = + M�G

2a
.
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It follows that

a = M�G

V 2
, b = p.

The semi-angle α between the asymptotes of the hyperbola is then given (see
Appendix A) by

tan α = b

a
= pV 2

M�G
.

Let β be the angle through which the asteroid is deflected. Then (see Figure 7.8)
β = π − 2α and

tan(β/2) = tan(π/2 − α) = cot α = M�G

pV 2
.

Period of the elliptic orbit

Whatever the law of force, once the path of P has been found, the progress of P along
that path can be deduced from the angular momentum equation

r2θ̇ = L .

If we take θ = 0 when t = 0, then the time t taken for P to progress to the point of the
orbit with polar coordintes r , θ is given by

t = 1

L

∫ θ

0
r2 dθ, (7.23)

where r = r(θ) is the equation of the path. In particular then, the period τ of the elliptic
orbit is given by

τ = 1

L

∫ 2π

0
r2 dθ,

where the path r = r(θ) is given by

1

r
= a

b2 (1 + e cos θ) . (7.24)

Fortunately there is no need to evaluate the above integral since, for any path that closes
itself after one circuit,

1
2

∫ 2π

0
r2 dθ = A,

where A is the area enclosed by the path. For the elliptical path, A = πab so that

τ = 2πab

L
,
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and on using the L-formula, the period of the elliptic orbit is given by:

The period formula

τ = 2π

(
a3

γ

)1/2 (7.25)

Kepler’s third law

In the case of the planetary orbits, γ = M�G, where M� is the mass of the Sun. Equation
(7.25) can then be written

τ 2 =
(

4π2

M�G

)
a3. (7.26)

This is Kepler’s third law, which is therefore a consequence of inverse square law attrac-
tion by the Sun and would not be true for other laws of force.

Masses of celestial bodies

Once the constant of gravitation G is known, the formula (7.26) provides an accurate
way to find the mass of the Sun. The same method applies to any celestial body that has
a satellite. All that is needed is to measure the major axis 2a and the period τ of the
satellite’s orbit.∗

Question Finding the mass of Jupiter
The Moon moves in a nearly circular orbit of radius 384,000 km and period 27.32
days. Callisto, the fourth moon of the planet Jupiter, moves in a nearly circular orbit
of radius 1,883,000 km and period 16.69 days. Estimate the mass of Jupiter as a
multiple of the mass of the Earth.

Answer

MJ = 316ME .

Astronomical units

For astronomical problems, it is useful to write the period equation (7.26) in astronomical
units. In these units, the unit of mass is the mass of the Sun (M�), the unit of length (the
AU) is the semi-major axis of the Earth’s orbit, and the unit of time is the (Earth) year. On

∗ It should be noted that here we are neglecting the motion of the centre of force. We will see later that,
when this is taken into account, formula (7.26) actually gives the sum of the masses of the body and
its satellite. Usually, the satellite has a much smaller mass than the body and its contribution can be
disregarded.



7.5 The attractive inverse square field 175
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FIGURE 7.9 The eccentric angle ψ corresponding to the polar
angle θ .

substituting the data for the Earth and Sun into equation (7.26), we find that G = 4π2 in
astronomical units. Hence, in astronomical units the period formula becomes

τ 2 = a3

M
.

Question The major axis of the orbit of Pluto
The period of Pluto is 248 years. What is the semi-major axis of its orbit?

Answer

39.5 AU.

Time dependence of the motion – Kepler’s equation

The formula (7.23) can be used to find how long it takes for P to progress to a general point
of the orbit. However, although the integration with respect to θ can be done in closed
form, it is a very complicated expression. In order to obtain a manageable formula, we
make a cunning change of variable, replacing the polar angle θ by the eccentric angle ψ .
The relationship between these two angles is shown in Figure 7.9. Since C N = C F+F N ,
it follows that

a cos ψ = ae + r cos θ,

and, on using the polar equation for the ellipse (7.24) together with the formula b2 =
a2(1 − e2), the relation between ψ and θ can be written in the symmetrical form

(1 − e cos ψ)(1 + e cos θ) = b2

a2
. (7.27)

Implicit differentiation of equation (7.27) with respect to ψ then gives

dθ

dψ
= b

a (1 − e cos ψ)
, (7.28)
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after more manipulation.
We can now make the change of variable from θ to ψ . From (7.23) and (7.24)

t = b4

a2L

∫ θ

0

dθ

(1 + e cos θ)2

= b4

a2L

∫ ψ

0

1

(1 + e cos θ)2

(
dθ

dψ

)
dψ

= ab

L

∫ ψ

0
(1 − e cos ψ) dψ,

= ab

L
(ψ − e sin ψ) ,

on using (7.27), (7.28). Finally, on making use of the L-formula L2 = γ b2/a, we obtain

Kepler’s equation

t = τ

2π
(ψ − e sin ψ)

(7.29)

where τ (given by (7.25)) is the period of the orbit. This is Kepler’s equation which gives
the time as a function of position on the elliptical orbit.

If one needs to calculate the position of the orbiting body after a given time, then
equation (7.29) must be solved numerically for the eccentric angle ψ . The corresponding
value of θ is then given by equation (7.27) and the r value by equation (7.24) which, in
view of (7.27), can be written in the form

r = a (1 − e cos ψ) . (7.30)

The need to solve Kepler’s equation for the unknown ψ was a major stimulus in the
development of approximate numerical methods for finding roots of equations.

Example 7.4 Kepler’s equation

A body moving in an inverse square attractive field traverses an elliptical orbit with
eccentricity e and period τ . Find the time taken for the body to traverse the half of
the orbit that is nearer the centre of force.

Solution

The half of the orbit nearer the centre of force corresponds to the range −π/2 ≤ ψ ≤
π/2. The time taken is therefore

τ

π

(π

2
− e

)
= τ

(
1

2
− e

π

)
.

For example, Halley’s comet moves on an elliptic orbit whose eccentricity is almost
unity. It therefore spends only about 18% of its time on the half of its orbit that is
nearer the Sun.
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FIGURE 7.10 Two planets move on the circular
orbits A and B. A spacecraft is required to
depart from one planet and rendezvous with the
other planet at some point of its orbit. The
Hohmann orbit H achieves this with the least
expenditure of fuel.
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7.6 SPACE TRAVEL – HOHMANN TRANSFER ORBITS

An important problem in space travel, and one that nicely illustrates the preceding
theory, is that of transferring a spacecraft from one planet to another (from Earth to Jupiter
say). In order to simplify the analysis, we will assume that both of the planetary orbits are
circular. We will also suppose that the spacecraft has already effectively been removed
from Earth’s gravity, but is still in the vicinity of the Earth and is orbiting the Sun on the
same orbit as the Earth. The object is to use the rocket motors to transfer the spacecraft
to the vicinity of Jupiter, orbiting the Sun on the same orbit as Jupiter. Like everything
else on board a spacecraft, fuel has to be transported from Earth at huge cost, so the
transfer from Earth to Jupiter must be achieved using the least mass of fuel. In our analysis
we will neglect the time during which the rocket engines are firing so that the engines
are regarded as delivering an impulse to the spacecraft, resulting in a sudden change of
velocity. After the initial firing impulse, the spacecraft is assumed to move freely under
the Sun’s gravitation until it reaches the orbit of Jupiter, when a second firing impulse is
required to circularise the orbit. This is called a two-impulse transfer.

If the two firings produce velocity changes of vA and vB respectively, then the
quantity Q that must be minimised if the least fuel is to be used is

Q = |vA| + |vB |.

The orbit that connects the two planetary orbits and minimises Q is called the Hohmann
transfer orbit∗ and is shown in Figure 7.10. It has its perihelion at the lift-off point L and
its aphelion at the rendezvous point R. It is not at all obvious that this is the optimal orbit;
a proof is given in Appendix B at the end of the chapter. However, it is quite easy to find
its properties.

Since the perihelial and aphelial distances in the Hohmann orbit are A and B (the radii
of the orbits of Earth and Jupiter), it follows that

A = a(1 − e), B = a(1 + e),

∗ After Walter Hohmann, the German space research pioneer.
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so that the geometrical parameters of the orbit are given by

a = 1
2 (B + A) , e = B − A

B + A
.

The angular momentum L of the orbit is then given by the L-formula to be

L2 = γ b2

a
= γ

(
1 − e2

)
a = γ B A

B + A
,

where γ = M�G.
From L we can find the speed V L of the spacecraft just after the lift-off firing, and

the speed V R at the rendezvous point just before the second firing. These are

V L =
(

2γ B

A(B + A)

)1/2

, V R =
(

2γ A

B(B + A)

)1/2

.

The travel time T , which is half the period of the Hohmann orbit, is given by

T 2 = π2a3

γ
= π2 (B + A)3

8γ
.

Finally, in order to rendezvous with Jupiter, the lift-off must take place when Earth
and Jupiter have the correct relative positions, so that Jupiter arrives at the meeting point
at the right time. Since the speed of Jupiter is (γ /B)1/2 and the travel time is now known,
the angle ψ in Figure 7.10 must be

ψ = π

(
B + A

2B

)3/2

.

Numerical results for the Earth–Jupiter transfer

In astronomical units, G = 4π2, A = 1 AU and, for Jupiter, B = 5.2 AU. A speed of 1 AU
per year is 4.74 km per second. Simple calculations then give:

(i) The travel time is 2.73 years, or 997 days.
(ii) V L is 8.14 AU per year, which is 38.6 km per second. This is the speed the spacecraft

must have after the lift-off firing.
(iii) V R is 1.56 AU per year, which is 7.4 km per second. This is the speed with which the

spacecraft arrives at Jupiter before the second firing.
(iv) The angle ψ at lift-off must be 83◦.

The speeds V L and V R should be compared with the speeds of Earth and Jupiter in their
orbits. These are 29.8 km/sec and 13.1 km/sec respectively. Thus the first firing must boost the
speed of the spacecraft from 29.8 to 38.6 km/sec, and the second firing must boost the speed
from 7.4 to 13.1 km/sec. The sum of these speed increments, 14.5 km/sec, is greater than
the speed increment needed (12.4 km/sec) to escape from the Earth’s orbit to infinity. Thus
it takes more fuel to transfer a spacecraft from Earth’s orbit to Jupiter’s orbit than it does to
escape from the solar system altogether!
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7.7 THE REPULSIVE INVERSE SQUARE FIELD

The force field with f (r) = +γ /r2, (γ > 0), is the repulsive inverse square
field. It occurs in the interaction of charged particles carrying like charges and is required
for the analysis of Rutherford scattering. Below we summarise the important properties
of orbits in a repulsive inverse square field. These results are obtained in exactly the same
way as for the attractive case.

The paths

The path equation is

d2u

dθ2
+ u = − γ

L2
,

where L is the angular momentum of the orbit. Its general solution can be written in the
form

1

r
= γ

L2 [−1 + e cos(θ − α)] ,

where e, α are constants with e ≥ 0. By comparing this path with the standard polar
forms of conics given in Appendix A, we see that the path can only be the far branch of a
hyperbola with focus at the centre O .

The L- and E-formulae

The formulae relating L , E , the dynamical constants of the orbit, to the hyperbola param-
eters are

L2 = γ b2/a, (7.31)

E = + γ /2a. (7.32)

7.8 RUTHERFORD SCATTERING

The most celebrated application of orbits in a repulsive inverse square field is
Rutherford’s∗ famous experiment in which a beam of alpha particles was scattered by
gold nuclei in a sheet of gold leaf. We will analyse Rutherford’s experiment in detail,
beginning with the basic problem of a single alpha particle being deflected by a single
fixed gold nucleus.

Alpha particle deflected by a heavy nucleus

An alpha particle A of mass m and charge q approaches a gold nucleus B of charge Q
(see Figure 7.11). B is initially at rest and A is moving with speed V along a line whose

∗ Ernest Rutherford (1871–1937), a New Zealander, was one of the greatest physicists of the twentieth
century. His landmark work on the structure of the nucleus in 1911 (and with Geiger and Marsden in
1913) was conducted at the University of Manchester, England.
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A

FIGURE 7.11 The alpha particle A of mass m and charge
q is repelled by the fixed nucleus B of charge Q and
moves on a hyperbolic orbit with the nucleus at the far
focus. The alpha particle is deflected through the angle θ .

perpendicular distance from B is p. In the present treatment, we neglect the motion of the
gold nucleus. This is justified since the mass of the gold nucleus is about fifty times larger
than that of the alpha particle. A then moves in the electrostatic field due to B, which we
now suppose to be fixed at the origin O . The force exerted on A is then

F = +q Q

r2
r̂

in cgs units. This is the repulsive inverse square field with γ = q Q/m.
We wish to find θ , the angle through which the alpha particle is deflected. This is

obtained in exactly the same way as that of the asteroid in Example 7.1. From the initial
conditions, L = pV and E = 1

2 V 2. The L-formula (7.31) and the E-formula (7.32) then
give

p2V 2 = γ b2

a
, 1

2 V 2 = + γ

2a
.

It follows that

a = γ

V 2
, b = p.

The semi-angle α between the asymptotes of the hyperbola is then given (see Appendix
A) by

tan α = b

a
= pV 2

γ
.

Hence, θ , the angle through which the asteroid is deflected, is given by

tan(θ/2) = tan(π/2 − α) = cot α = γ

pV 2
.
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FIGURE 7.12 General scattering. A typical particle crosses the reference plane at the point p and
finally emerges in the direction of the unit vector n. Particles that cross the reference plane within the
region A emerge within the (generalised) cone shown.

On writing γ = q Q/m, we obtain

tan(θ/2) = q Q

mpV 2
. (7.33)

as the formula for the deflection angle of the alpha particle. The quantity p, the distance
by which the incident particle would miss the scatterer if there were no interaction, is
called the impact parameter of the particle.

The deflection formula (7.33) cannot be confirmed directly by experiment since this
would require the observation of a single alpha particle, a single nucleus, and a knowledge
of the impact parameter p. What is actually done is to irradiate a gold target by a uniform
beam of alpha particles of the same energy. Thus the target consists of many gold nuclei
together with their associated electrons. However, the electrons have masses that are very
small compared to that of an alpha particle and so their influence can be disregarded.
Also, the gold target is taken in the form of thin foil to minimise the chance of multiple
collisions. If multiple collisions are eliminated, then the gold nuclei act as independent
scatterers and the problem reduces to that of a single fixed gold nucleus irradiated by a
uniform beam of alpha particles. In this problem the alpha particles come in with different
values of the impact parameter p and are scattered through different angles in accordance
with formula (7.33). What can be measured is the angular distribution of the scattered
alpha particles.

Differential scattering cross-section

The angular distribution of scattered particles is expressed by a function σ(n), called the
differential scattering cross section, where the unit vector n specifies the final direction
of emergence of a particle from the scatterer O . One may imagine the values of n corre-
sponding to points on the surface of a sphere with centre O and unit radius, as shown in
Figure 7.12. Then values of n that lie in the shaded patch S correspond to particles whose
final direction of emergence lies inside the (generalised) cone shown.
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FIGURE 7.13 Axisymmetric scattering. Particles crossing the reference plane
within the shaded circular disk are scattered and emerge in directions within the
circular cone.

Take a reference plane far to the left of the scatterer and perpendicular to the incident
beam, as shown in Figure 7.12. Suppose that there is a uniform flux of incomimg parti-
cles crossing the reference plane such that N particles cross any unit area of the reference
plane in unit time. When these particles have been scattered, they will emerge in different
directions and some of the particles will emerge with directions lying within the (gener-
alised) cone shown in Figure 7.12. The differential scattering cross section is defined
to be that function σ(n) such that the flux of particles that emerge with directions lying
within the cone is given by the surface integral

N
∫
S

σ(n) d S. (7.34)

It is helpful to regard σ(n) as a scattering density, analogous to a probability density, that
must be integrated to give the flux of particles scattered within any given solid angle.

The particles that finally emerge within the cone must have crossed the reference plane
within some region A as shown in Figure 7.12. A typical particle crosses the reference
plane at the point p (relative to O ′) and eventually emerges in the direction n lying within
the cone. However because the incoming beam is uniform, the flux of these particles
across A is just N |A|, where |A| is the area of the region A. On equating the incoming
and outgoing fluxes, we obtain the relation∫

S
σ(n) d S = |A|. (7.35)

This is the general relation that any differential scattering cross section must satisfy; it
simply expresses the equality of incoming and outgoing fluxes of particles. However,
Rutherford scattering is axisymmetric and this provides a major simplification.

Axisymmetric scattering and Rutherford’s formula

Rutherford scattering is simpler than the general case outlined above in that the problem
is axisymmetric about the axis O ′O . Thus σ depends on θ (the angle between n and the
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axis O ′O), but is independent of φ (the azimuthal angle measured around the axis). In
this case σ(θ) can be determined by using the axisymmetric regions shown in Figure 7.13.
Particles that cross the reference plane within the circle centre O ′ and radius p1 emerge
within the circular cone θ1 ≤ θ ≤ π , where p1 and θ1 are related by the deflection formula
for a single particle, in our case formula (7.33). On applying equation (7.35) to the present
case, we obtain ∫

S
σ(θ) d S = πp2

1.

We evaluate the surface integral using θ , φ coordinates. The element of surface area on
the unit sphere is given by d S = sin θ dθdφ so that∫

S
σ(θ) d S =

∫ π

θ1

{∫ 2π

0
σ(θ) sin θ dφ

}
dθ

= 2π

∫ π

θ1

σ(θ) sin θ dθ.

Hence

2π

∫ π

θ1

σ(θ) sin θ dθ = πp2
1

= 2π

∫ p1

0
p dp

= −2π

∫ π

θ1

p
dp

dθ
dθ,

on changing the integration variable from p to θ . Here the impact parameter p is regarded
as a function of the scattering angle θ . Now the above equality holds for all choices of the
integration limit θ1 and this can only be true if the two integrands are equal. Hence:

Axisymmetric scattering cross section

σ(θ) = −
( p

sin θ

) dp

dθ

(7.36)

This is the formula for the differential scattering cross section σ in any problem of axisym-
metric scattering. All that is needed to evaluate it in any particular case is the expression
for the impact parameter p in terms of the scattering angle θ .

In the case of Rutherford scattering, the expression for p in terms of θ is provided
by solving equation (7.33) for p, which gives

p = q Q

mV 2
tan(θ/2).
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On substituting this function into the formula (7.36), we obtain

Rutherford’s scattering cross-section

σ(θ) = q2 Q2

16E2

(
1

sin4(θ/2)

) (7.37)

where E(= 1
2 mV 2) is the energy of the incident alpha particles. This is Rutherford’s

formula for the angular distribution of the scattered alpha particles.

Significance of Rutherford’s experiment

In the above description we have used the term ‘nucleus’ for convenience. What we
really mean is ‘the positively charged part of the atom that carries most of the mass’.
If this positive charge is distributed in a spherically symmetric manner, then the above
results still hold, irrespective of the radius of the charge, provided that the alpha particles
do not penetrate into the charge itself. What Rutherford found was that, when using
alpha particles from a radium source, the formula (7.37) held even for particles that were
scattered through angles close to π . These are the particles that get closest to the nucleus,
the distance of closest approach being q Q/E . This meant that the nuclear radius of gold
must be smaller than this distance, which was about 10−12 cm in Rutherford’s experiment.
The radius of an atom of gold is about 10−8 cm. This result completely contradicted the
Thompson model, in which the positive charge was distributed over the whole volume of
the atom, by showing that the nucleus (as it became known) must be a very small and very
dense core at the centre of the atom.

Note on two-body scattering problems

Throughout this section we have neglected the motion of the target nucleus. This will introduce
only small errors when the target nucleus is much heavier than the incident particles, as it was
in Rutherford’s experiment. However, if lighter nuclei are used as the target, then the motion of
the nucleus cannot be neglected and we have a two-body scattering problem. Such problems
are treated in Chapter 10.

Appendix A The geometry of conics

Ellipse
(i) In Cartesian coordinates, the standard ellipse with semi-major axis a and semi-minor axis b (b ≤ a)

has the equation

x2

a2
+ y2

b2
= 1.
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FIGURE 7.14 The standard ellipse x2/a2 + y2/b2 = 1.
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FIGURE 7.15 The standard hyperbola x2/a2 − y2/b2 = 1. The
near and far branches are relative to the focus F ′, which is the
origin of polar coordinates.

(ii) The eccentricity e of the ellipse is defined by

e2 = 1 − b2

a2

and lies in the range 0 ≤ e < 1. When e = 0, b = a and the ellipse is a circle.

(iii) The focal points F , F ′ of the ellipse lie on the major axis at (±ae, 0).

(iv) In polar coordinates with origin at the focus F and with initial line in the positive x-direction, the
equation of the ellipse is

1

r
= a

b2
(1 + e cos θ).



186 Chapter 7 Orbits in a central field

S

R

L

v B
r

v A
θv B

θ

v A
r

A

B

FIGURE 7.16 The circular orbits A and B are the orbits of the two planets. The
elliptical orbit shown is a possible path for the spacecraft, which travels along
the arc L R. The velocities shown are those after the first firing at L and before
the second firing at R.

Hyperbola
(i) In Cartesian coordinates, the standard hyperbola has the equation

x2

a2
− y2

b2
= 1 (a, b > 0)

so that the angle 2α between the asymptotes is given by

tan α = b

a
.

(ii) The eccentricity e of the hyperbola is defined by

e2 = 1 + b2

a2

and lies in the range e > 1.

(iii) The focal points F , F ′ of the hyperbola lie on the x-axis at (±ae, 0).

(iv) In polar coordinates with origin at the focus F ′ and with initial line in the positive x-direction, the
equations of the near and far branches of the hyperbola are

1

r
= a

b2
(1 + e cos θ),

1

r
= a

b2
(−1 + e cos θ),

respectively.

Appendix B The Hohmann orbit is optimal

The result that the Hohmann orbit is the connecting orbit that minimises Q is not at all
obvious and correct proofs are rare.∗ Hopefully, the proof given below is correct!

∗ It is sometimes stated that the optimality requirement is to minimise the energy of the connecting orbit,
which is not true. In any case, the Hohmann orbit is not the connecting orbit of minimum energy!
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Proof of optimality Consider the general two-impulse transfer orbit L R shown in Figure 7.16, where
the orbit is regarded as being generated by the velocity components vA

θ , vA
r of the spacecraft after the first

impulse. Then, by angular momentum and energy conservation,

AvA
θ = BvB

θ ,

(
vA

r

)2 +
(
vA
θ

)2 − 2γ

A
=

(
vB

r

)2 +
(
vB
θ

)2 − 2γ

B
,

where A, B are the radii of the circular orbits of Earth and Jupiter and γ = M�G. Thus

vB
θ = A

B
vA
θ ,

(
vB

r

)2 =
(

1 − A2

B2

) (
vA
θ

)2 +
(
vA

r

)2 − 2γ

(
1

A
− 1

B

)
.

Since the orbital speeds of Earth and Jupiter are (γ /A)1/2 and (γ /B)1/2, it follows that the velocity changes
vA, vB required at L and R have magnitudes given by

|vA|2 =
(

vA
θ −

( γ

A

)1/2
)2

+
(
vA

r

)2
,

|vB |2 =
(( γ

B

)1/2 − vB
θ

)2
+

(
vB

r

)2

=
(( γ

B

)1/2 − A

B
vA
θ

)2
+

(
1 − A2

B2

) (
vA
θ

)2 +
(
vA

r

)2 − 2γ

(
1

A
− 1

B

)

=
(

vA
θ − γ 1/2 A

B3/2

)2

+
(
vA

r

)2 + γ

(
3

B
− 2

A
− A2

B3

)
.

It is evident that, with vA
θ fixed, both |vA| and |vB | are increasing functions of vA

r . Thus Q may be

reduced by reducing vA
r provided that the resulting orbit still meets the circle r = B. Q can be thus reduced

until either

(i) vA
r is reduced to zero, or

(ii) the orbit shrinks until it touches the circle r = B and any further reduction in vA
r would mean that

the orbit would not meet r = B.

In the first case, L becomes the perihelion of the orbit and, in the second case, R becomes the aphelion of
the orbit. We will proceed assuming the first case, the second case being treated in a similar manner and
with the same result.

Suppose then that L is the perihelion of the connecting orbit. Then vA
r = 0 and, from now on, we

will simply write v instead of vA
θ . The velocity v must be such that the orbit reaches the circle r = B,

which now means that the major axis of the orbit must not be less than A + B. On using the E-formula, this
implies that v must satisfy

v2 ≥ 2γ B

A(A + B)
.

The formulae for |vA| and |vB | now simplify to

|vA|2 =
(

v −
( γ

A

)1/2
)2

,

|vB |2 =
(

v − γ 1/2 A

B3/2

)2

+ γ

(
3

B
− 2

A
− A2

B3

)
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from which it is evident that, for v in the permitted range, both of |vA| and |vB | are increasing functions
v. Hence the minimum value of Q is achieved when v takes its smallest permitted value, namely

v =
(

2γ B

A(A + B)

)1/2
.

With this value of v, the orbit touches the circle r = B and so has its aphelion at R. Hence the optimum
orbit has its perihelion at L and its aphelion at R. This is precisely the Hohmann orbit.

Problems on Chapter 7

Answers and comments are at the end of the book.

Harder problems carry a star (∗).

Radial motion equation, apses

7 . 1 A particle P of mass m moves under the repulsive inverse cube field F = (mγ /r3) r̂ .
Initially P is at a great distance from O and is moving with speed V towards O along a
straight line whose perpendicular distance from O is p. Find the equation satisfied by the
apsidal distances. What is the distance of closest approach of P to O?

7 . 2 A particle P of mass m moves under the attractive inverse square field F = −(mγ /r2) r̂ .
Initially P is at a point C , a distance c from O , when it is projected with speed (γ /c)1/2 in a
direction making an acute angle α with the line OC . Find the apsidal distances in the resulting
orbit.

Given that the orbit is an ellipse with O at a focus, find the semi-major and semi-minor
axes of this ellipse.

7 . 3 A particle of mass m moves under the attractive inverse square field F = −(mγ /r2) r̂.
Show that the equation satisfied by the apsidal distances is

2Er2 + 2γ r − L2 = 0,

where E and L are the specific total energy and angular momentum of the particle. When
E < 0, the orbit is known to be an ellipse with O as a focus. By considering the sum and
product of the roots of the above equation, establish the elliptic orbit formulae

L2 = γ b2/a, E = −γ /2a.

7 . 4 A particle P of mass m moves under the simple harmonic field F = −(m�2r) r̂, where
� is a positive constant. Obtain the radial motion equation and show that all orbits of P are
bounded.

Initially P is at a point C , a distance c from O , when it is projected with speed �c in
a direction making an acute angle α with OC . Find the equation satisfied by the apsidal
distances. Given that the orbit of P is an ellipse with centre O , find the semi-major and semi-
minor axes of this ellipse.
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Path equation

7 . 5 A particle P moves under the attractive inverse square field F = −(mγ /r2) r̂. Initially
P is at the point C , a distance c from O , and is projected with speed (3γ /c)1/2 perpendicular
to OC . Find the polar equation of the path make a sketch of it. Deduce the angle between OC
and the final direction of departure of P .

7 . 6 A comet moves under the gravitational attraction of the Sun. Initially the comet is at a
great distance from the Sun and is moving towards it with speed V along a straight line whose
perpendicular distance from the Sun is p. By using the path equation, find the angle through
which the comet is deflected and the distance of closest approach.

7 . 7 A particle P of mass m moves under the attractive inverse cube field F = −(mγ 2/r3) r̂,
where γ is a positive constant. Initially P is at a great distance from O and is projected
towards O with speed V along a line whose perpendicular distance from O is p. Obtain the
path equation for P .

For the case in which

V = 15γ√
209 p

,

find the polar equation of the path of P and make a sketch of it. Deduce the distance of closest
approach to O , and the final direction of departure.

7 . 8∗ A particle P of mass m moves under the central field F = −(mγ 2/r5) r̂, where γ is
a positive constant. Initially P is at a great distance from O and is projected towards O with
speed

√
2γ /p2 along a line whose perpendicular distance from O is p. Show that the polar

equation of the path of P is given by

r = p√
2

coth

(
θ√
2

)
.

Make a sketch of the path.

7 . 9∗ A particle of mass m moves under the central field

F = −mγ 2
(

4

r3
+ a2

r5

)
r̂,

where γ and a are positive constants. Initially the particle is at a distance a from the centre of
force and is projected at right angles to the radius vector with speed 3γ /

√
2a. Find the polar

equation of the resulting path and make a sketch of it.
Find the time taken for the particle to reach the centre of force.

Nearly circular orbits

7 . 10 A particle of mass m moves under the central field

F = −m

(
γ e−εr/a

r2

)
r̂,
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where γ , a and ε are positive constants. Find the apsidal angle for a nearly circular orbit of
radius a. When ε is small, show that the perihelion of the orbit advances by approximately πε

on each revolution.

7 . 11 Solar oblateness A planet of mass m moves in the equatorial plane of a star that is a
uniform oblate spheroid. The planet experiences a force field of the form

F = −mγ

r2

(
1 + ε a2

r2

)
r̂,

approximately, where γ , a and ε are positive constants and ε is small. If the planet moves
in a nearly circular orbit of radius a, find an approximation to the ‘annual’ advance of the
perihelion. [It has been suggested that oblateness of the Sun might contribute significantly to
the precession of the planets, thus undermining the success of general relativity. This point has
yet to be resolved conclusively.]

7 . 12 Suppose the solar system is embedded in a dust cloud of uniform density ρ. Find an
approximation to the ‘annual’ advance of the perihelion of a planet moving in a nearly circular
orbit of radius a. (For convenience, let ρ = εM/a3, where M is the solar mass and ε is
small.)

7 . 13 Orbits in general relativity In the theory of general relativity, the path equation for a
planet moving in the gravitational field of the Sun is, in the standard notation,

d2u

dθ2
+ u = MG

L2
+

(
3MG

c2

)
u2,

where c is the speed of light. Find an approximation to the ‘annual’ advance of the perihelion
of a planet moving in a nearly circular orbit of radius a.

Scattering

7 . 14 A uniform flux of particles is incident upon a fixed hard sphere of radius a. The particles
that strike the sphere are reflected elastically. Find the differential scattering cross section.

7 . 15 A uniform flux of particles, each of mass m and speed V , is incident upon a fixed scat-
terer that exerts the repulsive radial force F = (mγ 2/r3) r̂. Find the impact parameter p as
a function of the scattering angle θ , and deduce the differential scattering cross section. Find
the total back-scattering cross-section.

Assorted inverse square problems

Some useful data:

The radius R of the Earth is 6380 km. To obtain the value of MG, where M is the mass of the
Earth, use the formula MG = R2g, where g = 9.80 m s−2.

1 AU per year is 4.74 km per second. In astronomical units, G = 4π2.
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7 . 16 In Yuri Gagarin’s first manned space flight in 1961, the perigee and apogee were 181
km and 327 km above the Earth. Find the period of his orbit and his maximum speed in the
orbit.

7 . 17 An Earth satellite has a speed of 8.60 km per second at its perigee 200 km above the
Earth’s surface. Find the apogee distance above the Earth, its speed at the apogee, and the
period of its orbit.

7 . 18 A spacecraft is orbiting the Earth in a circular orbit of radius c when the motors are
fired so as to multiply the speed of the spacecraft by a factor k (k > 1), its direction of
motion being unaffected. [You may neglect the time taken for this operation.] Find the range
of k for which the spacecraft will escape from the Earth, and the eccentricity of the escape
orbit.

7 . 19 A spacecraft travelling with speed V approaches a planet of mass M along a straight
line whose perpendicular distance from the centre of the planet is p. When the spacecraft
is at a distance c from the planet, it fires its engines so as to multiply its current speed by a
factor k (0 < k < 1), its direction of motion being unaffected. [You may neglect the time
taken for this operation.] Find the condition that the spacecraft should go into orbit around the
planet.

7 . 20 A body moving in an inverse square attractive field traverses an elliptical orbit with major
axis 2a. Show that the time average of the potential energy V = −γ /r is −γ /a. [Transform
the time integral to an integral with repect to the eccentric angle ψ .]

Deduce the time average of the kinetic energy in the same orbit.

7 . 21 A body moving in an inverse square attractive field traverses an elliptical orbit with
eccentricity e and major axis 2a. Show that the time average of the distance r of the body
from the centre of force is a(1 + 1

2 e2). [Transform the time integral to an integral with respect
to the eccentric angle ψ .]

7 . 22 A spacecraft is ‘parked’ in a circular orbit 200 km above the Earth’s surface. The space-
craft is to be sent to the Moon’s orbit by Hohmann transfer. Find the velocity changes vE

and vM that are required at the Earth and Moon respectively. How long does the jour-
ney take? [The radius of the Moon’s orbit is 384,000 km. Neglect the gravitation of the
Moon.]

7 . 23∗ A spacecraft is ‘parked’ in an elliptic orbit around the Earth. What is the most fuel
efficient method of escaping from the Earth by using a single impulse?

7 . 24 A satellite already in the Earth’s heliocentric orbit can fire its engines only once. What
is the most fuel efficient method of sending the satellite on a ‘flyby’ visit to another planet?
The satellite can visit either Mars or Venus. Which trip would use less fuel? Which trip
would take the shorter time? [The orbits of Mars and Venus have radii 1.524 AU and 0.723
AU respectively.]
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7 . 25 A satellite is ‘parked’ in a circular orbit 250 km above the Earth’s surface. What is the
most fuel efficient method of transferring the satellite to an (elliptical) synchronous orbit by
using a single impulse? [A synchronous orbit has a period of 23 hr 56 m.] Find the value of
v and apogee distance.

Effect of resistance

7 . 26 A satellite of mass m moves under the attractive inverse square field −(mγ /r2) r̂ and is
also subject to the linear resistance force −mKv, where K is a positive constant. Show that
the governing equations of motion can be reduced to the form

r̈ + Kṙ + γ

r2
− L2

0 e−2K t

r3
= 0, r2θ̇ = L0 e−K t ,

where L0 is a constant which will be assumed to be positive.
Suppose now that the effect of resistance is slight and that the satellite is executing a ‘cir-

cular’ orbit of slowly changing radius. By neglecting the terms in ṙ and r̈ , find an approximate
solution for the time variation of r and θ in such an orbit. Deduce that small resistance causes
the circular orbit to contract slowly, but that the satellite speeds up!

7 . 27 Repeat the last problem for the case in which the particle moves under the simple har-
monic attractive field −(m�2r) r̂ with the same law of resistance. Show that, in this case,
the body slows down as the orbit contracts. [This problem can be solved exactly in Cartesian
coordinates, but do not do it this way.]

Computer assisted problems

7 . 28 See the advance of the perihelion of Mercury It is possible to ‘see’ the advance of
the perihelion of Mercury predicted by general relativity by direct numerical solution. Take
Einstein’s path equation (see Problem 7.13) in the dimensionless form

d2υ

dθ2
+ υ = 1

1 − e2
+ ηυ2,

where υ = au. Here a and e are the semi-major axis and eccentricity of the non-relativistic
elliptic orbit and η = 3MG/ac2 is a small dimensionless parameter. For the orbit of Mercury,
η = 2.3 × 10−7 approximately.

Solve this equation numerically with the initial conditions r = a(1 + e) and ṙ = 0 when
θ = 0; this makes θ = 0 an aphelion of the orbit. To make the precession easy to see, use
a fairly eccentric ellipse and take η to be about 0.005, which speeds up the precession by a
factor of more than 104!

7 . 29 Orbit with linear resistance Confirm the approximate solution for small resistance
obtained in Problem 7.26 by numerical solution of the governing simultaneous ODEs. First
write the governing equations in dimensionless form. Suppose that, in the absence of
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resistance, a circular orbit with r = a and θ̇ = � is possible; then γ = a3� and L0 = a2�.
On taking dimensionless variables ρ, τ defined by ρ = r/a and τ = �t , and taking L0 = a2�,
the governing equations become

d2ρ

dτ 2
+ ε

dρ

dτ
+ 1

ρ2
− e−2ετ

ρ3
= 0, ρ2 dθ

dτ
= e−2ετ ,

where ε = K/� is the dimensionless resistance parameter. Solve these equations with the
initial conditions ρ = 1, dρ/dτ = 0 and θ = 0 when τ = 0. Choose some small value for ε

and plot a polar graph of the path.


