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Many of us experienced waves as children when we dropped a pebble into a pond. At 
the point the pebble hits the water’s surface, circular waves are created. These waves move 

outward from the creation point in expanding circles until they reach the shore. If you were 

to examine carefully the motion of a small object floating on the disturbed water, you would 

see that the object moves vertically and horizontally about its original position but does not 

undergo any net displacement away from or toward the point at which the pebble hit the 

water. The small elements of water in contact with the object, as well as all the other water 

elements on the pond’s surface, behave in the same way. That is, the water wave moves 

from the point of origin to the shore, but the water is not carried with it.

 The world is full of waves, the two main types being mechanical waves and electromag-
netic waves. In the case of mechanical waves, some physical medium is being disturbed; in 

our pebble example, elements of water are disturbed. Electromagnetic waves do not require a 

medium to propagate; some examples of electromagnetic waves are visible light, radio waves, 

television signals, and x-rays. Here, in this part of the book, we study only mechanical waves.

 Consider again the small object floating on the water. We have caused the object to 

move at one point in the water by dropping a pebble at another location. The object has 

gained kinetic energy from our action, so energy must have transferred from the point at 
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which the pebble is dropped to the position of the object. This feature is central to wave 

motion: energy is transferred over a distance, but matter is not.

16.1 Propagation of a Disturbance
The introduction to this chapter alluded to the essence of wave motion: the trans-
fer of energy through space without the accompanying transfer of matter. In the list 
of energy transfer mechanisms in Chapter 8, two mechanisms—mechanical waves 
and electromagnetic radiation—depend on waves. By contrast, in another mecha-
nism, matter transfer, the energy transfer is accompanied by a movement of matter 
through space with no wave character in the process.

All mechanical waves require (1) some source of disturbance, (2) a medium con-
taining elements that can be disturbed, and (3) some physical mechanism through 
which elements of the medium can influence each other. One way to demonstrate 
wave motion is to flick one end of a long string that is under tension and has its 
opposite end fixed as shown in Figure 16.1. In this manner, a single bump (called 
a pulse) is formed and travels along the string with a definite speed. Figure 16.1 
represents four consecutive “snapshots” of the creation and propagation of the trav-
eling pulse. The hand is the source of the disturbance. The string is the medium 
through which the pulse travels—individual elements of the string are disturbed 
from their equilibrium position. Furthermore, the elements of the string are con-
nected together so they influence each other. The pulse has a definite height and a 
definite speed of propagation along the medium. The shape of the pulse changes 
very little as it travels along the string.1

We shall first focus on a pulse traveling through a medium. Once we have explored 
the behavior of a pulse, we will then turn our attention to a wave, which is a periodic 
disturbance traveling through a medium. We create a pulse on our string by flicking 
the end of the string once as in Figure 16.1. If we were to move the end of the string 
up and down repeatedly, we would create a traveling wave, which has characteristics 
a pulse does not have. We shall explore these characteristics in Section 16.2.

As the pulse in Figure 16.1 travels, each disturbed element of the string moves in 
a direction perpendicular to the direction of propagation. Figure 16.2 illustrates this 
point for one particular element, labeled P. Notice that no part of the string ever 
moves in the direction of the propagation. A traveling wave or pulse that causes 
the elements of the disturbed medium to move perpendicular to the direction of 
propagation is called a transverse wave.

Compare this wave with another type of pulse, one moving down a long, stretched 
spring as shown in Figure 16.3. The left end of the spring is pushed briefly to the 
right and then pulled briefly to the left. This movement creates a sudden compres-
sion of a region of the coils. The compressed region travels along the spring (to 
the right in Fig. 16.3). Notice that the direction of the displacement of the coils is 
parallel to the direction of propagation of the compressed region. A traveling wave 
or pulse that causes the elements of the medium to move parallel to the direction 
of propagation is called a longitudinal wave.

16.1

As the pulse moves along the 
string, new elements of the 
string are displaced from their 
equilibrium positions.

Figure 16.1  A hand moves the 
end of a stretched string up and 
down once (red arrow), causing a 
pulse to travel along the string.

1In reality, the pulse changes shape and gradually spreads out during the motion. This effect, called dispersion, is com-
mon to many mechanical waves as well as to electromagnetic waves. We do not consider dispersion in this chapter.

The direction of the displacement 
of any element at a point P on the 
string is perpendicular to the 
direction of propagation (red 
arrow).

P

P

P

Figure 16.2  The displacement 
of a particular string element for 
a transverse pulse traveling on a 
stretched string.

As the pulse passes by, the 
displacement of the coils is parallel to 
the direction of the propagation.

The hand moves forward 
and back once to create 
a longitudinal pulse.

Figure 16.3  A longitudinal 
pulse along a stretched spring.
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 Sound waves, which we shall discuss in Chapter 17, are another example of lon-
gitudinal waves. The disturbance in a sound wave is a series of high-pressure and 
low-pressure regions that travel through air.
 Some waves in nature exhibit a combination of transverse and longitudinal 
displacements. Surface-water waves are a good example. When a water wave trav-
els on the surface of deep water, elements of water at the surface move in nearly 
circular paths as shown in Figure 16.4. The disturbance has both transverse and 
longitudinal components. The transverse displacements seen in Figure 16.4 rep-
resent the variations in vertical position of the water elements. The longitudinal 
displacements represent elements of water moving back and forth in a horizontal 
direction.
 The three-dimensional waves that travel out from a point under the Earth’s sur-
face at which an earthquake occurs are of both types, transverse and longitudinal. 
The longitudinal waves are the faster of the two, traveling at speeds in the range of 
7 to 8 km/s near the surface. They are called P waves, with “P” standing for primary, 
because they travel faster than the transverse waves and arrive first at a seismo-
graph (a device used to detect waves due to earthquakes). The slower transverse 
waves, called S waves, with “S” standing for secondary, travel through the Earth at 
4 to 5 km/s near the surface. By recording the time interval between the arrivals 
of these two types of waves at a seismograph, the distance from the seismograph to 
the point of origin of the waves can be determined. This distance is the radius of an 
imaginary sphere centered on the seismograph. The origin of the waves is located 
somewhere on that sphere. The imaginary spheres from three or more monitoring 
stations located far apart from one another intersect at one region of the Earth, 
and this region is where the earthquake occurred.
 Consider a pulse traveling to the right on a long string as shown in Figure 16.5. 
Figure 16.5a represents the shape and position of the pulse at time t 5 0. At this 
time, the shape of the pulse, whatever it may be, can be represented by some math-
ematical function that we will write as y(x, 0) 5 f(x). This function describes the 
transverse position y of the element of the string located at each value of x at time 
t 5 0. Because the speed of the pulse is v, the pulse has traveled to the right a 
distance vt at the time t (Fig. 16.5b). We assume the shape of the pulse does not 
change with time. Therefore, at time t, the shape of the pulse is the same as it was 
at time t 5 0 as in Figure 16.5a. Consequently, an element of the string at x at this 
time has the same y position as an element located at x 2 vt had at time t 5 0:

 y(x, t) 5 y(x 2 vt, 0)

 In general, then, we can represent the transverse position y for all positions and 
times, measured in a stationary frame with the origin at O, as

 y(x, t) 5 f(x 2 vt) (16.1)

Similarly, if the pulse travels to the left, the transverse positions of elements of the 
string are described by

 y(x, t) 5 f(x 1 vt) (16.2)

 The function y, sometimes called the wave function, depends on the two vari-
ables x and t. For this reason, it is often written y(x, t), which is read “y as a function 
of x and t.”
 It is important to understand the meaning of y. Consider an element of the 
string at point P in Figure 16.5, identified by a particular value of its x coordinate. 
As the pulse passes through P, the y coordinate of this element increases, reaches 
a maximum, and then decreases to zero. The wave function y(x, t) represents the 
y coordinate—the transverse position—of any element located at position x at any 
time t. Furthermore, if t is fixed (as, for example, in the case of taking a snapshot of 
the pulse), the wave function y(x), sometimes called the waveform, defines a curve 
representing the geometric shape of the pulse at that time.

Figure 16.4 The motion of 
water elements on the surface 
of deep water in which a wave 
is propagating is a combination 
of transverse and longitudinal 
displacements. 

The elements at the surface move 
in nearly circular paths. Each 
element is displaced both 
horizontally and vertically from its 
equilibrium position.
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At t � 0,  the shape of the 
pulse is given by y � f(x).

At some later time t, the shape 
of the pulse remains unchanged 
and the vertical position of an 
element of the medium at any 
point P is given by y � f(x � vt).

b

a

Figure 16.5  A one-dimensional 
pulse traveling to the right on a 
string with a speed v.
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Example 16.1   A Pulse Moving to the Right

A pulse moving to the right along the x axis is represented by the wave 
function

y 1x, t 2 5
21x 2 3.0t 2 2 1 1

where x and y are measured in centimeters and t is measured in sec-
onds. Find expressions for the wave function at t 5 0, t 5 1.0 s, and  
t 5 2.0 s.

Conceptualize  Figure 16.6a shows the pulse represented by this wave 
function at t 5 0. Imagine this pulse moving to the right at a speed 
of 3.0 cm/s and maintaining its shape as suggested by Figures 16.6b 
and 16.6c.

Categorize  We categorize this example as a relatively simple analysis 
problem in which we interpret the mathematical representation of a 
pulse.

Analyze  The wave function is of the form y 5  
f(x 2 v t). Inspection of the expression for  
y(x, t) and comparison to Equation 16.1 reveal 
that the wave speed is v 5 3.0 cm/s. Further-
more, by letting x 2 3.0t 5 0, we find that the 
maximum value of y is given by A 5 2.0 cm.

S O L U T I O N

Finalize  These snapshots show that the pulse moves to the right without changing its shape and that it has a constant 
speed of 3.0 cm/s.

Q uick Quiz 16.1  (i) In a long line of people waiting to buy tickets, the first person 
leaves and a pulse of motion occurs as people step forward to fill the gap.  
As each person steps forward, the gap moves through the line. Is the propaga-
tion of this gap (a) transverse or (b) longitudinal? (ii) Consider “the wave” at a 
baseball game: people stand up and raise their arms as the wave arrives at  
their location, and the resultant pulse moves around the stadium. Is this wave 
(a) transverse or (b) longitudinal?

Q
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Figure 16.6   
(Example 16.1) Graphs 
of the function y(x, t) 5 
2/[(x 23.0t)2 1 1] at  
(a) t 5 0, (b) t 5 1.0 s, 
and (c) t 5 2.0 s.

Write the wave function expression at t 5 0: y(x, 0) 5 
2

x 2 1 1

Write the wave function expression at t 5 1.0 s: y(x, 1.0) 5 
21x 2 3.0 22 1 1

Write the wave function expression at t 5 2.0 s: y(x, 2.0) 5 
21x 2 6.0 22 1 1

For each of these expressions, we can substitute various values of x and plot the wave function. This procedure yields 
the wave functions shown in the three parts of Figure 16.6.

What if the wave function were

y 1x, t 2 5
41x 1 3.0t 22 1 1

How would that change the situation?

Answer  One new feature in this expression is the plus sign in the denominator rather than the minus sign. The  
new expression represents a pulse with a similar shape as that in Figure 16.6, but moving to the left as time progresses.

WHAT IF ?
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16.2 Analysis Model: Traveling Wave 
In this section, we introduce an important wave function whose shape is shown in 
Figure 16.7. The wave represented by this curve is called a sinusoidal wave because 
the curve is the same as that of the function sin u plotted against u. A sinusoidal 
wave could be established on the rope in Figure 16.1 by shaking the end of the rope 
up and down in simple harmonic motion.

The sinusoidal wave is the simplest example of a periodic continuous wave and 
can be used to build more complex waves (see Section 18.8). The brown curve in 
Figure 16.7 represents a snapshot of a traveling sinusoidal wave at t 5 0, and the 
blue curve represents a snapshot of the wave at some later time t. Imagine two types 
of motion that can occur. First, the entire waveform in Figure 16.7 moves to the 
right so that the brown curve moves toward the right and eventually reaches the 
position of the blue curve. This movement is the motion of the wave. If we focus on 
one element of the medium, such as the element at x 5 0, we see that each element 
moves up and down along the y axis in simple harmonic motion. This movement is 
the motion of the elements of the medium. It is important to differentiate between the 
motion of the wave and the motion of the elements of the medium.

In the early chapters of this book, we developed several analysis models based on 
three simplification models: the particle, the system, and the rigid object. With our 
introduction to waves, we can develop a new simplification model, the wave, that 
will allow us to explore more analysis models for solving problems. An ideal particle 
has zero size. We can build physical objects with nonzero size as combinations of 
particles. Therefore, the particle can be considered a basic building block. An ideal 
wave has a single frequency and is infinitely long; that is, the wave exists throughout 
the Universe. (A wave of finite length must necessarily have a mixture of frequen-
cies.) When this concept is explored in Section 18.8, we will find that ideal waves 
can be combined to build complex waves, just as we combined particles.

In what follows, we will develop the principal features and mathematical represen-
tations of the analysis model of a traveling wave. This model is used in situations in 
which a wave moves through space without interacting with other waves or particles.

Figure 16.8a shows a snapshot of a traveling wave moving through a medium. 
Figure 16.8b shows a graph of the position of one element of the medium as a func-
tion of time. A point in Figure 16.8a at which the displacement of the element from 
its normal position is highest is called the crest of the wave. The lowest point is 
called the trough. The distance from one crest to the next is called the wavelength 
l (Greek letter lambda). More generally, the wavelength is the minimum distance 
between any two identical points on adjacent waves as shown in Figure 16.8a.

If you count the number of seconds between the arrivals of two adjacent crests 
at a given point in space, you measure the period T of the waves. In general, the 
period is the time interval required for two identical points of adjacent waves to 
pass by a point as shown in Figure 16.8b. The period of the wave is the same as the 
period of the simple harmonic oscillation of one element of the medium.

The same information is more often given by the inverse of the period, which is 
called the frequency f. In general, the frequency of a periodic wave is the number 
of crests (or troughs, or any other point on the wave) that pass a given point in a 
unit time interval. The frequency of a sinusoidal wave is related to the period by the 
expression

f 5
1
T

 (16.3)

16.2

f 5
1
T

t � 0 t

y

x

vt
v
S

Figure 16.7 A one-dimensional 
sinusoidal wave traveling to the 
right with a speed v. The brown 
curve represents a snapshot of the 
wave at t 5 0, and the blue curve 
represents a snapshot at some 
later time t.

 

▸ 16.1 c o n t i n u e d

Another new feature here is the numerator of 4 rather than 2. Therefore, the new expression represents a pulse with 
twice the height of that in Figure 16.6.
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The wavelength l of a wave is 
the distance between adjacent 
crests or adjacent troughs.

The period T of a wave is the 
time interval required for the 
element to complete one cycle 
of its oscillation and for the 
wave to travel one wavelength.

a

b

Figure 16.8 (a) A snapshot of a 
sinusoidal wave. (b) The position 
of one element of the medium as a 
function of time.
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The frequency of the wave is the same as the frequency of the simple harmonic 
oscillation of one element of the medium. The most common unit for frequency, 
as we learned in Chapter 15, is s21, or hertz (Hz). The corresponding unit for T is 
seconds.
 The maximum position of an element of the medium relative to its equilibrium 
position is called the amplitude A of the wave as indicated in Figure 16.8.
 Waves travel with a specific speed, and this speed depends on the properties 
of the medium being disturbed. For instance, sound waves travel through room- 
temperature air with a speed of about 343 m/s (781 mi/h), whereas they travel 
through most solids with a speed greater than 343 m/s.
 Consider the sinusoidal wave in Figure 16.8a, which shows the position of the 
wave at t 5 0. Because the wave is sinusoidal, we expect the wave function at this 
instant to be expressed as y(x, 0) 5 A sin ax, where A is the amplitude and a is a 
constant to be determined. At x 5 0, we see that y(0, 0) 5 A sin a(0) 5 0, consistent 
with Figure 16.8a. The next value of x for which y is zero is x 5 l/2. Therefore,

y al

2
, 0b 5 A sin aa 

l

2
b 5 0

For this equation to be true, we must have al/2 5 p, or a 5 2p/l. Therefore, the 
function describing the positions of the elements of the medium through which 
the sinusoidal wave is traveling can be written

 y 1x, 0 2 5 A sin a2p

l
 xb (16.4)

where the constant A represents the wave amplitude and the constant l is the wave-
length. Notice that the vertical position of an element of the medium is the same 
whenever x is increased by an integral multiple of l. Based on our discussion of 
Equation 16.1, if the wave moves to the right with a speed v, the wave function at 
some later time t is

 y 1x, t 2 5 A sin c2p

l
1x 2 vt 2 d  (16.5)

If the wave were traveling to the left, the quantity x 2 vt would be replaced by x 1 vt 
as we learned when we developed Equations 16.1 and 16.2.
 By definition, the wave travels through a displacement Dx equal to one wave-
length l in a time interval Dt of one period T. Therefore, the wave speed, wave-
length, and period are related by the expression

 v 5
Dx
Dt

5
l

T
 (16.6)

Substituting this expression for v into Equation 16.5 gives

 y 5 A sin c2pa x
l

2
t
T
b d  (16.7)

This form of the wave function shows the periodic nature of y. Note that we will 
often use y rather than y(x, t) as a shorthand notation. At any given time t, y has the 
same value at the positions x, x 1 l, x 1 2l, and so on. Furthermore, at any given 
position x, the value of y is the same at times t, t 1 T, t 1 2T, and so on.
 We can express the wave function in a convenient form by defining two other 
quantities, the angular wave number k (usually called simply the wave number) 
and the angular frequency v:

 k ;
2p

l
 (16.8)

 v ;
2p

T
5 2pf  (16.9)

y 1x, t 2 5 A sin A c2p

l
1x 2 vt 2 d

k ;
2p

l
Angular wave number 

v ;
2p

T
5 2pfpAngular frequency 

Pitfall Prevention 16.1
What’s the Difference Between 
Figures 16.8a and 16.8b? Notice 
the visual similarity between Fig-
ures 16.8a and 16.8b. The shapes 
are the same, but (a) is a graph of 
vertical position versus horizontal 
position, whereas (b) is vertical 
position versus time. Figure 16.8a 
is a pictorial representation of the 
wave for a series of elements of the 
medium; it is what you would see at 
an instant of time. Figure 16.8b is 
a graphical representation of the 
position of one element of the medium 
as a function of time. That both 
figures have the identical shape 
represents Equation 16.1: a wave is 
the same function of both x and t.
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Using these definitions, Equation 16.7 can be written in the more compact form

y 5 A sin (kx 2 vt) (16.10)

 Using Equations 16.3, 16.8, and 16.9, the wave speed v originally given in Equa-
tion 16.6 can be expressed in the following alternative forms:

 v 5
v

k
 (16.11)

 v 5 lf (16.12)

 The wave function given by Equation 16.10 assumes the vertical position y of an 
element of the medium is zero at x 5 0 and t 5 0. That need not be the case. If it is 
not, we generally express the wave function in the form

 y 5 A sin (kx 2 vt 1 f) (16.13)

where f is the phase constant, just as we learned in our study of periodic motion in 
Chapter 15. This constant can be determined from the initial conditions. The pri-
mary equations in the mathematical representation of the traveling wave analysis 
model are Equations 16.3, 16.10, and 16.12.

Q uick Quiz 16.2  A sinusoidal wave of frequency f is traveling along a stretched 
string. The string is brought to rest, and a second traveling wave of frequency  
2f is established on the string. (i) What is the wave speed of the second wave?  
(a) twice that of the first wave (b) half that of the first wave (c) the same as 
that of the first wave (d) impossible to determine (ii) From the same choices, 
describe the wavelength of the second wave. (iii) From the same choices, 
describe the amplitude of the second wave.

y 5 A sin (A kx 2 vt)t  Wave function for a  
sinusoidal wave

v 5 lfl Speed of a sinusoidal wave

 General expression for a 
sinusoidal wave

Q

Example 16.2   A Traveling Sinusoidal Wave 

A sinusoidal wave traveling in the positive x direction has an amplitude of 15.0 cm, a wavelength of 40.0 cm, and a 
frequency of 8.00 Hz. The vertical position of an element of the medium at t 5 0 and x 5 0 is also 15.0 cm as shown in 
Figure 16.9.

(A)  Find the wave number k, period T, angular frequency v, and speed v of the wave.

Conceptualize  Figure 16.9 shows the wave at t 5 0. 
Imagine this wave moving to the right and maintain-
ing its shape.

Categorize  From the description in the problem state-
ment, we see that we are analyzing a mechanical wave 
moving through a medium, so we categorize the prob-
lem with the traveling wave model.

Analyze

AM

S O L U T I O N

y (cm)

40.0 cm

15.0 cm
x (cm)Figure 16.9  (Example 16.2) A 

sinusoidal wave of wavelength  
l 5 40.0 cm and amplitude  
A 5 15.0 cm.

continued

Evaluate the wave number from Equation 16.8: k 5
2p

l
5

2p rad
40.0 cm

5   15.7 rad/m

Evaluate the period of the wave from Equation 16.3: T 5
1
f

5
1

8.00 s21 5   0.125 s

Evaluate the angular frequency of the wave from Equa-
tion 16.9:

v 5 2pf  5 2p(8.00 s21) 5   50.3 rad/s

Evaluate the wave speed from Equation 16.12: v 5 lf 5 (40.0 cm)(8.00 s21) 5   3.20 m/s
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Substitute A 5 15.0 cm, y 5 15.0 cm, x 5 0, and t 5 0 
into Equation 16.13:

15.0 5 115.0 2  sin f   S   sin f 5 1   S   f 5
p

2
 rad

Write the wave function: y 5 A sin akx 2 vt 1
p

2
b 5 A cos 1kx 2 vt 2

(B)  Determine the phase constant f and write a general expression for the wave function.

S O L U T I O N

Substitute the values for A, k, and v in SI units into this 
expression:

y 5   0.150 cos (15.7x 2 50.3t)

Sinusoidal Waves on Strings
In Figure 16.1, we demonstrated how to create a pulse by jerking a taut string up 
and down once. To create a series of such pulses—a wave—let’s replace the hand 
with an oscillating blade vibrating in simple harmonic motion. Figure 16.10 repre-
sents snapshots of the wave created in this way at intervals of T/4. Because the end 
of the blade oscillates in simple harmonic motion, each element of the string, such 
as that at P, also oscillates vertically with simple harmonic motion. Therefore, every 
element of the string can be treated as a simple harmonic oscillator vibrating with a 
frequency equal to the frequency of oscillation of the blade.2 Notice that while each 
element oscillates in the y direction, the wave travels to the right in the 1x direction 
with a speed v. Of course, that is the definition of a transverse wave.
 If we define t 5 0 as the time for which the configuration of the string is as 
shown in Figure 16.10a, the wave function can be written as

y 5 A sin (kx 2 vt)

We can use this expression to describe the motion of any element of the string. An ele-
ment at point P (or any other element of the string) moves only vertically, and so its x 
coordinate remains constant. Therefore, the transverse speed vy (not to be confused 
with the wave speed v) and the transverse acceleration ay of elements of the string are

 vy 5
dy

dt
d

x5constant
5
'y
't

5 2vA cos 1kx 2 vt 2  (16.14)

 ay 5
dvy

dt
d

x5constant
5
'vy

't
5 2v2 A sin 1kx 2 vt 2  (16.15)

These expressions incorporate partial derivatives because y depends on both x and 
t. In the operation 'y/'t, for example, we take a derivative with respect to t while 
holding x constant. The maximum magnitudes of the transverse speed and trans-
verse acceleration are simply the absolute values of the coefficients of the cosine 
and sine functions:

 vy , max 5 vA (16.16)

 ay , max 5 v2A (16.17)

The transverse speed and transverse acceleration of elements of the string do not 
reach their maximum values simultaneously. The transverse speed reaches its max-
imum value (vA) when y 5 0, whereas the magnitude of the transverse acceleration 

2In this arrangement, we are assuming that a string element always oscillates in a vertical line. The tension in the 
string would vary if an element were allowed to move sideways. Such motion would make the analysis very complex.
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Figure 16.10 One method for 
producing a sinusoidal wave on a 
string. The left end of the string 
is connected to a blade that is set 
into oscillation. Every element of 
the string, such as that at point P, 
oscillates with simple harmonic 
motion in the vertical direction.

 

▸ 16.2 c o n t i n u e d

Finalize Review the results carefully and make sure you understand them. How would the graph in Figure 16.9 change 
if the phase angle were zero? How would the graph change if the amplitude were 30.0 cm? How would the graph 
change if the wavelength were 10.0 cm?
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Pitfall Prevention 16.2
Two Kinds of Speed/Velocity  
Do not confuse v, the speed of 
the wave as it propagates along 
the string, with vy, the transverse 
velocity of a point on the string. 
The speed v is constant for a uni-
form medium, whereas vy varies 
sinusoidally.

reaches its maximum value (v2A) when y 5 6A. Finally, Equations 16.16 and 16.17 
are identical in mathematical form to the corresponding equations for simple har-
monic motion, Equations 15.17 and 15.18.

Q uick Quiz 16.3  The amplitude of a wave is doubled, with no other changes 
made to the wave. As a result of this doubling, which of the following state-
ments is correct? (a) The speed of the wave changes. (b) The frequency of the 
wave changes. (c) The maximum transverse speed of an element of the medium 
changes. (d) Statements (a) through (c) are all true. (e) None of statements (a) 
through (c) is true.

Q

Imagine a source vibrating such that 
it influences the medium that is in 
contact with the source. Such a source 
creates a disturbance that propagates 
through the medium. If the source 
vibrates in simple harmonic motion 
with period T, sinusoidal waves propa-
gate through the medium at a speed 
given by

v 5
l

T
5 lf  (16.6, 16.12)

where l is the wavelength of the wave and f is its frequency. A sinu-
soidal wave can be expressed as

 y 5 A sin 1kx 2 vt 2  (16.10)

Analysis Model   Traveling Wave

where A is the amplitude of the wave, k is its 
wave number, and v is its angular frequency.

Examples: 

down a string attached to the blade

emitting sound waves into the air (Chap-
ter 17)

waves into the air (Chapter 18)
-

tromagnetic wave that propagates into 
space at the speed of light (Chapter 34)

16.3 The Speed of Waves on Strings
One aspect of the behavior of linear mechanical waves is that the wave speed 
depends only on the properties of the medium through which the wave travels. 
Waves for which the amplitude A is small relative to the wavelength l can be repre-
sented as linear waves. (See Section 16.6.) In this section, we determine the speed 
of a transverse wave traveling on a stretched string.

Let us use a mechanical analysis to derive the expression for the speed of a pulse 
traveling on a stretched string under tension T. Consider a pulse moving to the 
right with a uniform speed v, measured relative to a stationary (with respect to the 
Earth) inertial reference frame as shown in Figure 16.11a. Newton’s laws are valid 
in any inertial reference frame. Therefore, let us view this pulse from a different 
inertial reference frame, one that moves along with the pulse at the same speed so 
that the pulse appears to be at rest in the frame as in Figure 16.11b. In this refer-
ence frame, the pulse remains fixed and each element of the string moves to the 
left through the pulse shape.

A short element of the string, of length Ds, forms an approximate arc of a cir-
cle of radius R as shown in the magnified view in Figure 16.11b. In our  moving 
frame of reference, the element of the string moves to the left with speed v. As 
it travels through the arc, we can model the element as a particle in uniform cir-
cular motion. This element has a centripetal acceleration of v2/R, which is sup-
plied by components of the force T

S
 whose magnitude is the tension in the string.  

The force T
S

 acts on each side of the element, tangent to the arc, as in Figure 16.11b. 
The horizontal components of T

S
 cancel, and each vertical component T sin u acts 

downward. Hence, the magnitude of the total radial force on the element is 2T sin u.  

16.3

y

 

 
x

A

l

v
S

Figure 16.11 (a) In the refer-
ence frame of the Earth, a pulse 
moves to the right on a string with 
speed v. (b) In a frame of refer-
ence moving to the right with the 
pulse, the small element of length 
Ds moves to the left with speed v.
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Because the element is small, u is small and we can use the small-angle approxima-
tion sin u < u. Therefore, the magnitude of the total radial force is

Fr 5 2T sin u < 2Tu

The element has mass m 5 m Ds, where m is the mass per unit length of the string. 
Because the element forms part of a circle and subtends an angle of 2u at the center, 
Ds 5 R(2u), and

m 5 mDs 5 2mR u

The element of the string is modeled as a particle under a net force. Therefore, 
applying Newton’s second law to this element in the radial direction gives

Fr 5
mv2

R
   S   2Tu 5

2mR uv2

R
   S   T 5 mv2

Solving for v gives

 v 5 ÅT
m

 (16.18)

Notice that this derivation is based on the assumption that the pulse height is small 
relative to the length of the pulse. Using this assumption, we were able to use the 
approximation sin u < u. Furthermore, the model assumes that the tension T is not 
 affected by the presence of the pulse, so T is the same at all points on the pulse. 
Finally, this proof does not assume any particular shape for the pulse. We therefore 
conclude that a pulse of any shape will travel on the string with speed v 5 "T/m, 
without any change in pulse shape.

Q uick Quiz 16.4  Suppose you create a pulse by moving the free end of a taut string 
up and down once with your hand beginning at t 5 0. The string is attached at its 
other end to a distant wall. The pulse reaches the wall at time t. Which of the fol-
lowing actions, taken by itself, decreases the time interval required for the pulse 
to reach the wall? More than one choice may be correct. (a) moving your hand 
more quickly, but still only up and down once by the same amount (b) moving 
your hand more slowly, but still only up and down once by the same amount  
(c) moving your hand a greater distance up and down in the same amount of 
time (d) moving your hand a lesser distance up and down in the same amount of 
time (e) using a heavier string of the same length and under the same tension  
(f) using a lighter string of the same length and under the same tension (g) using 
a string of the same linear mass density but under decreased tension (h) using a 
string of the same linear mass density but under increased tension

v 5 ÅT
mÅSpeed of a wave on 

a stretched string

Q

Example 16.3   The Speed of a Pulse on a Cord 

A uniform string has a mass of 0.300 kg and a length of 6.00 m (Fig. 16.12). The string passes over a pulley and sup-
ports a 2.00-kg object. Find the speed of a pulse traveling along this string.

Conceptualize  In Figure 16.12, the hanging block establishes 
a tension in the horizontal string. This tension determines the 
speed with which waves move on the string.

Categorize  To find the tension in the string, we model the hang-
ing block as a particle in equilibrium. Then we use the tension to 
evaluate the wave speed on the string using Equation 16.18.

AM

S O L U T I O N

2.00 kg

T

Figure 16.12  (Example 
16.3) The tension T in the 
cord is maintained by the 
suspended object. The 
speed of any wave traveling 
along the cord is given by 
v 5 !T/m.

Analyze  Apply the particle in equilibrium model to the block: o Fy 5 T 2 m blockg 5 0

Solve for the tension in the string: T 5 m blockg

Pitfall Prevention 16.3
Multiple T 's Do not confuse the 
T in Equation 16.18 for the ten-
sion with the symbol T used in 
this chapter for the period of a 
wave. The context of the equation 
should help you identify which 
quantity is meant. There simply 
aren’t enough letters in the alpha-
bet to assign a unique letter to 
each variable!
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Use Equation 16.18 to find the wave speed, using m 5 
mstring/, for the linear mass density of the string:

v 5 ÅT
m

5 Åm blockg ,
m string

Evaluate the wave speed: v 5 Å 12.00 kg 2 19.80 m/s2 2 16.00 m 2
0.300 kg

5   19.8 m/s

Finalize  The calculation of the tension neglects the small mass of the string. Strictly speaking, the string can never be 
exactly straight; therefore, the tension is not uniform.

 What if the block were swinging back and forth with respect to the vertical like a pendulum? How would 
that affect the wave speed on the string?

Answer  The swinging block is categorized as a particle under a net force. The magnitude of one of the forces on the 
block is the tension in the string, which determines the wave speed. As the block swings, the tension changes, so the 
wave speed changes.
 When the block is at the bottom of the swing, the string is vertical and the tension is larger than the weight of the 
block because the net force must be upward to provide the centripetal acceleration of the block. Therefore, the wave 
speed must be greater than 19.8 m/s.
 When the block is at its highest point at the end of a swing, it is momentarily at rest, so there is no centripetal 
acceleration at that instant. The block is a particle in equilibrium in the radial direction. The tension is balanced by 
a component of the gravitational force on the block. Therefore, the tension is smaller than the weight and the wave 
speed is less than 19.8 m/s. With what frequency does the speed of the wave vary? Is it the same frequency as the 
pendulum? 

WHAT IF ?

Example 16.4   Rescuing the Hiker 

An 80.0-kg hiker is trapped on a mountain ledge following a storm. A helicopter rescues the hiker by hovering above 
him and lowering a cable to him. The mass of the cable is 8.00 kg, and its length is 15.0 m. A sling of mass 70.0 kg is 
attached to the end of the cable. The hiker attaches himself to the sling, and the helicopter then accelerates upward. 
Terrified by hanging from the cable in midair, the hiker tries to signal the pilot by sending transverse pulses up the 
cable. A pulse takes 0.250 s to travel the length of the cable. What is the acceleration of the helicopter? Assume the 
tension in the cable is uniform.

Conceptualize  Imagine the effect of the acceleration of the helicopter on the cable. The greater the upward accelera-
tion, the larger the tension in the cable. In turn, the larger the tension, the higher the speed of pulses on the cable.

Categorize  This problem is a combination of one involving the speed of pulses on a string and one in which the hiker 
and sling are modeled as a particle under a net force.

AM

S O L U T I O N

continued

Analyze  Use the time interval for the pulse to travel 
from the hiker to the helicopter to find the speed of the 
pulses on the cable:

v 5
Dx
Dt

5
15.0 m
0.250 s

5 60.0 m/s

Solve Equation 16.18 for the tension in the cable: (1)   v 5 ÅT
m

   S   T 5 mv2

 

▸ 16.3 c o n t i n u e d

Model the hiker and sling as a particle under a net force, 
noting that the acceleration of this particle of mass m is 
the same as the acceleration of the helicopter:

o F 5 ma  S  T 2 mg 5 ma

Solve for the acceleration and substitute the tension 
from Equation (1):

a 5
T
m

2 g 5
mv 2

m
2 g 5

m cable v
2

,cablem
2g
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16.4 Reflection and Transmission
The traveling wave model describes waves traveling through a uniform medium 
without interacting with anything along the way. We now consider how a traveling 
wave is affected when it encounters a change in the medium. For example, consider 
a pulse traveling on a string that is rigidly attached to a support at one end as in 
Figure 16.13. When the pulse reaches the support, a severe change in the medium 
occurs: the string ends. As a result, the pulse undergoes reflection; that is, the 
pulse moves back along the string in the opposite direction.

Notice that the reflected pulse is inverted. This inversion can be explained as 
follows. When the pulse reaches the fixed end of the string, the string produces 
an upward force on the support. By Newton’s third law, the support must exert an 
equal-magnitude and oppositely directed (downward) reaction force on the string. 
This downward force causes the pulse to invert upon reflection.

Now consider another case. This time, the pulse arrives at the end of a string 
that is free to move vertically as in Figure 16.14. The tension at the free end is 
maintained because the string is tied to a ring of negligible mass that is free to slide 
vertically on a smooth post without friction. Again, the pulse is reflected, but this 
time it is not inverted. When it reaches the post, the pulse exerts a force on the free 
end of the string, causing the ring to accelerate upward. The ring rises as high as 
the incoming pulse, and then the downward component of the tension force pulls 
the ring back down. This movement of the ring produces a reflected pulse that is 
not inverted and that has the same amplitude as the incoming pulse.

Finally, consider a situation in which the boundary is intermediate between these 
two extremes. In this case, part of the energy in the incident pulse is reflected and 
part undergoes transmission; that is, some of the energy passes through the bound-
ary. For instance, suppose a light string is attached to a heavier string as in Figure 
16.15. When a pulse traveling on the light string reaches the boundary between the 
two strings, part of the pulse is reflected and inverted and part is transmitted to 
the heavier string. The reflected pulse is inverted for the same reasons described 
earlier in the case of the string rigidly attached to a support.

The reflected pulse has a smaller amplitude than the incident pulse. In Section 
16.5, we show that the energy carried by a wave is related to its amplitude. Accord-
ing to the principle of conservation of energy, when the pulse breaks up into a 
reflected pulse and a transmitted pulse at the boundary, the sum of the energies of 
these two pulses must equal the energy of the incident pulse. Because the reflected 
pulse contains only part of the energy of the incident pulse, its amplitude must be 
smaller.

When a pulse traveling on a heavy string strikes the boundary between the heavy 
string and a lighter one as in Figure 16.16, again part is reflected and part is trans-
mitted. In this case, the reflected pulse is not inverted.

In either case, the relative heights of the reflected and transmitted pulses 
depend on the relative densities of the two strings. If the strings are identical, there 
is no discontinuity at the boundary and no reflection takes place.

16.4

Reflected
pulse

Incident
pulse

b

c

a

Figure 16.13 The reflection 
of a traveling pulse at the fixed 
end of a stretched string. The 
reflected pulse is inverted, but its 
shape is otherwise unchanged.

Incident
pulse

Reflected
pulse

b

c

a

Figure 16.14 The reflection of 
a traveling pulse at the free end of 
a stretched string. The reflected 
pulse is not inverted.

Substitute numerical values: a 5
18.00 kg 2 160.0 m/s 22115.0 m 2 1150.0 kg 2 2 9.80 m/s2 5   3.00 m/s2

Finalize  A real cable has stiffness in addition to tension. Stiffness tends to return a wire to its original straight-line 
shape even when it is not under tension. For example, a piano wire straightens if released from a curved shape; 
package- wrapping string does not.
 Stiffness represents a restoring force in addition to tension and increases the wave speed. Consequently, for a real 
cable, the speed of 60.0 m/s that we determined is most likely associated with a smaller acceleration of the helicopter.

 

▸ 16.4 c o n t i n u e d
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According to Equation 16.18, the speed of a wave on a string increases as the 
mass per unit length of the string decreases. In other words, a wave travels more 
rapidly on a light string than on a heavy string if both are under the same tension. 
The following general rules apply to reflected waves: When a wave or pulse travels 
from medium A to medium B and vA . vB (that is, when B is denser than A), it is 
inverted upon reflection. When a wave or pulse travels from medium A to medium 
B and vA , vB (that is, when A is denser than B), it is not inverted upon reflection.

16.5 Rate of Energy Transfer by Sinusoidal Waves 
on Strings

Waves transport energy through a medium as they propagate. For example, sup-
pose an object is hanging on a stretched string and a pulse is sent down the string as 
in Figure 16.17a. When the pulse meets the suspended object, the object is momen-
tarily displaced upward as in Figure 16.17b. In the process, energy is transferred to 
the object and appears as an increase in the gravitational potential energy of the 
object–Earth system. This section examines the rate at which energy is transported 
along a string. We shall assume a one-dimensional sinusoidal wave in the calcula-
tion of the energy transferred.

Consider a sinusoidal wave traveling on a string (Fig. 16.18). The source of the 
energy is some external agent at the left end of the string. We can consider the 
string to be a nonisolated system. As the external agent performs work on the end 
of the string, moving it up and down, energy enters the system of the string and 
propagates along its length. Let’s focus our attention on an infinitesimal element 
of the string of length dx and mass dm. Each such element oscillates vertically with 
its position described by Equation 15.6. Therefore, we can model each element 
of the string as a particle in simple harmonic motion, with the oscillation in the 
y direction. All elements have the same angular frequency v and the same ampli-
tude A. The kinetic energy K associated with a moving particle is K 5 1

2mv 2. If we 
apply this equation to the infinitesimal element, the kinetic energy dK associated 
with the up and down motion of this element is

 dK 5 1
2 1dm 2vy

2 

where vy is the transverse speed of the element. If m is the mass per unit length of 
the string, the mass dm of the element of length dx is equal to m dx. Hence, we can 
express the kinetic energy of an element of the string as

 dK 5 1
2 1m dx 2vy

2 (16.19)

16.5

Incident
pulse

The reflected pulse is 
inverted and a non-inverted 
transmitted pulse moves on 
the heavier string.

b

a

Figure 16.15 (a) A pulse traveling to the right on a 
light string approaches the junction with a heavier string. 
(b) The situation after the pulse reaches the junction.

Figure 16.16 (a) A pulse traveling to the right on a 
heavy string approaches the junction with a lighter string. 
(b) The situation after the pulse reaches the junction.

Incident
pulse

The reflected pulse is not 
inverted and a transmitted pulse 
moves on the lighter string.

a

b

The pulse lifts the block, 
increasing the gravitational 
potential energy of the 
block–Earth system.

m

m

a

b

Figure 16.17  (a) A pulse travels 
to the right on a stretched string, 
carrying energy with it. (b) The 
energy of the pulse arrives at the 
hanging block.

dm

Each element of the string is a 
simple harmonic oscillator and 
therefore has kinetic energy and 
potential energy associated with it.

Figure 16.18  A sinusoidal 
wave traveling along the x axis 
on a stretched string. 
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Substituting for the general transverse speed of an element of the medium using 
Equation 16.14 gives

dK 5 1
2m 32vA cos 1kx 2 vt 2 42 dx 5 1

2mv2A2 cos2 1kx 2 vt 2  dx

If we take a snapshot of the wave at time t 5 0, the kinetic energy of a given ele-
ment is

dK 5 1
2mv2 A2 cos2 kx dx

Integrating this expression over all the string elements in a wavelength of the wave 
gives the total kinetic energy Kl in one wavelength:

 Kl 5 3dK 5 3
l

0
 
1
2 mv2A2 cos2 kx dx 5 1

2 mv2A2 3
l

0
 cos2 kx dx

 5 1
2mv2A2 c12x 1

1
4k

 sin 2kx d l

0
5 1

2 mv2A2 312l 4 5 1
4 mv2A2l

In addition to kinetic energy, there is potential energy associated with each ele-
ment of the string due to its displacement from the equilibrium position and the 
restoring forces from neighboring elements. A similar analysis to that above for the 
total potential energy Ul in one wavelength gives exactly the same result:

 Ul 5 1
4 mv2A2l 

The total energy in one wavelength of the wave is the sum of the potential and 
kinetic energies:

 El 5 Ul 1 Kl 5 1
2 mv2A2l (16.20)

As the wave moves along the string, this amount of energy passes by a given point 
on the string during a time interval of one period of the oscillation. Therefore, the 
power P, or rate of energy transfer TMW associated with the mechanical wave, is

P 5
TMW

Dt
5

El

T
5

1
2mv2A2l

T
5 1

2 mv2A2 al

T
b

P 5 1
2mv2A2v (16.21)

Equation 16.21 shows that the rate of energy transfer by a sinusoidal wave on a string is 
proportional to (a) the square of the frequency, (b) the square of the amplitude, and 
(c) the wave speed. In fact, the rate of energy transfer in any sinusoidal wave is pro-
portional to the square of the angular frequency and to the square of the amplitude.

Q uick Quiz 16.5  Which of the following, taken by itself, would be most effective 
in increasing the rate at which energy is transferred by a wave traveling along 
a string? (a) reducing the linear mass density of the string by one half (b) dou-
bling the wavelength of the wave (c) doubling the tension in the string (d) dou-
bling the amplitude of the wave

P 5 1
2mv2A2vPower of a wave 

Q

Example 16.5   Power Supplied to a Vibrating String

A taut string for which m 5 5.00 3 1022 kg/m is under a tension of 80.0 N. How much power must be supplied to the 
string to generate sinusoidal waves at a frequency of 60.0 Hz and an amplitude of 6.00 cm?

Conceptualize  Consider Figure 16.10 again and notice that the vibrating blade supplies energy to the string at a cer-
tain rate. This energy then propagates to the right along the string.

S O L U T I O N
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Categorize  We evaluate quantities from equations developed in the chapter, so we categorize this example as a substi-
tution problem.

Use Equation 16.21 to evaluate the power: P 5 1
2 mv2A2v

Use Equations 16.9 and 16.18 to substitute 
for v and v :

P 5 1
2m 12pf 22A2aÅT

m
b 5 2p2f 2A2"mT

Substitute numerical values: P 5 2p 2 160.0 Hz 22 10.060 0 m 22"10.050 0 kg/m 2 180.0 N 2 5   512 W

What if the string is to transfer energy at a rate of 1 000 W? What must be the required amplitude if all 
other parameters remain the same?

Answer  Let us set up a ratio of the new and old power, reflecting only a change in the amplitude:

Pnew

Pold
5

1
2 mv2A 2

new v
1
2 mv2A 2

old v
5

A 2
new

A 2
old

Solving for the new amplitude gives

A new 5 A oldÅPnew

Pold
5 16.00 cm 2Å1 000 W

512 W
5 8.39 cm

WHAT IF ?

16.6 The Linear Wave Equation
In Section 16.1, we introduced the concept of the wave function to represent waves 
traveling on a string. All wave functions y(x, t) represent solutions of an equation 
called the linear wave equation. This equation gives a complete description of the 
wave motion, and from it one can derive an expression for the wave speed. Further-
more, the linear wave equation is basic to many forms of wave motion. In this sec-
tion, we derive this equation as applied to waves on strings.

Suppose a traveling wave is propagating along a string that is under a tension T. 
Let’s consider one small string element of length Dx (Fig. 16.19). The ends of the 
element make small angles uA and uB with the x axis. Forces act on the string at its 
ends where it connects to neighboring elements. Therefore, the element is modeled 
as a particle under a net force. The net force acting on the element in the vertical 
direction is

 o Fy 5 T sin uB 2 T sin uA 5 T(sin uB 2 sin uA) 

Because the angles are small, we can use the approximation sin u < tan u to express 
the net force as

 o Fy < T(tan uB 2 tan uA) (16.22)

Imagine undergoing an infinitesimal displacement outward from the right end of 
the rope element in Figure 16.19 along the blue line representing the force T

S
. This 

displacement has infinitesimal x and y components and can be represented by the 
vector dx î 1 dy ĵ. The tangent of the angle with respect to the x axis for this dis-
placement is dy/dx. Because we evaluate this tangent at a particular instant of time, 
we must express it in partial form as 'y/'x. Substituting for the tangents in Equa-
tion 16.22 gives

 a Fy < T c a'y
'x
b

B
2 a'y

'x
b

A
d  (16.23)

16.6

B

A

x

A

B�
u

u

T
S

T
S

Figure 16.19  An element of a 
string under tension T.

▸ 16.5 c o n t i n u e d



498 Chapter 16 Wave Motion

Now, from the particle under a net force model, let’s apply Newton’s second law to 
the element, with the mass of the element given by m 5 m Dx :

a Fy 5 may 5 m Dx a'2y

't 2b (16.24)

Combining Equation 16.23 with Equation 16.24 gives

 m Dx a'2y

't 2b 5 T c a'y
'x
b

B
2 a'y

'x
b

A
d   

 
m

T
  
'2y

't 2 5
1'y/'x 2B 2 1'y/dx 2A

Dx
  (16.25)

The right side of Equation 16.25 can be expressed in a different form if we note 
that the partial derivative of any function is defined as

 
'f
'x
; lim

Dx S 0

f 1x 1 Dx 2 2 f 1x 2
Dx

 

Associating f(x 1 Dx) with ('y/'x)B and f(x) with ('y/'x)A, we see that, in the limit 
Dx S 0, Equation 16.25 becomes

 
m

T
 
'2y

't 2 5
'2y

'x 2 (16.26)

This expression is the linear wave equation as it applies to waves on a string.
 The linear wave equation (Eq. 16.26) is often written in the form

 
'2y

'x 2 5
1
v 2 
'2y

't 2  (16.27)

Equation 16.27 applies in general to various types of traveling waves. For waves on 
strings, y represents the vertical position of elements of the string. For sound waves 
propagating through a gas, y corresponds to longitudinal position of elements of 
the gas from equilibrium or variations in either the pressure or the density of the 
gas. In the case of electromagnetic waves, y corresponds to electric or magnetic 
field components.
 We have shown that the sinusoidal wave function (Eq. 16.10) is one solution of 
the linear wave equation (Eq. 16.27). Although we do not prove it here, the linear 
wave equation is satisfied by any wave function having the form y 5 f(x 6 vt). Fur-
thermore, we have seen that the linear wave equation is a direct consequence of  
the particle under a net force model applied to any element of a string carrying a 
traveling wave.

Linear wave equation  
for a string

'2y

'x 2 5
1
v 2

'2y

't 2Linear wave equation  
in general

Summary

 A one-dimensional sinusoidal wave is one for which 
the positions of the elements of the medium vary sinu-
soidally. A sinusoidal wave traveling to the right can be 
expressed with a wave function

 y 1x, t 2 5 A sin c2p

l
1x 2 vt 2 d  (16.5)

where A is the amplitude, l is the wavelength, and v is 
the wave speed.

 The angular wave number k and angular frequency 
v of a wave are defined as follows:

 k ;
2p

l
 (16.8)

 v ;
2p

T
5 2pf  (16.9)

where T is the period of the wave and f is its frequency.

Definitions
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pens to the speed if you fill the hose with water? Choose 
from the same possibilities.

 3. Rank the waves represented by the following functions 
from the largest to the smallest according to (i) their 
amplitudes, (ii) their wavelengths, (iii) their frequen-
cies, (iv) their periods, and (v) their speeds. If the val-
ues of a quantity are equal for two waves, show them 
as having equal rank. For all functions, x and y are in 
meters and t is in seconds. (a) y 5 4 sin (3x 2 15t) (b) y 5  
6 cos (3x 1 15t 2 2) (c) y 5 8 sin (2x 1 15t) (d) y 5  
8 cos (4x 1 20t) (e) y 5 7 sin (6x 2 24t)

 4. By what factor would you have to multiply the tension 
in a stretched string so as to double the wave speed? 

 1. If one end of a heavy rope is attached to one end of a 
lightweight rope, a wave can move from the heavy rope 
into the lighter one. (i) What happens to the speed of 
the wave? (a) It increases. (b) It decreases. (c) It is con-
stant. (d) It changes unpredictably. (ii) What happens 
to the frequency? Choose from the same possibilities. 
(iii) What happens to the wavelength? Choose from 
the same possibilities.

 2. If you stretch a rubber hose and pluck it, you can 
observe a pulse traveling up and down the hose. (i) What  
happens to the speed of the pulse if you stretch the hose 
more tightly? (a) It increases. (b) It decreases. (c) It is 
constant. (d) It changes unpredictably. (ii) What hap-

 A transverse wave is one in which the elements of 
the medium move in a direction perpendicular to the 
direction of propagation. 

 A longitudinal wave is one in which the elements of 
the medium move in a direction parallel to the direc-
tion of propagation.

 The speed of a wave traveling on 
a taut string of mass per unit length 
m and tension T is

 v 5 ÅT
m

  (16.18)

 A wave is totally or partially 
reflected when it reaches the end 
of the medium in which it propa-
gates or when it reaches a boundary 
where its speed changes discon-
tinuously. If a wave traveling on a 
string meets a fixed end, the wave is 
reflected and inverted. If the wave 
reaches a free end, it is reflected but 
not inverted.

 Any one-dimensional wave traveling with a speed v in the x direction 
can be represented by a wave function of the form

 y (x, t) 5 f(x 6 vt) (16.1, 16.2)

where the positive sign applies to a wave traveling in the negative x direc-
tion and the negative sign applies to a wave traveling in the positive x 
direction. The shape of the wave at any instant in time (a snapshot of the 
wave) is obtained by holding t constant.

 The power transmitted by a sinusoidal wave on a stretched string is

 P 5 1
2 mv2A2v  (16.21)

 Wave functions are solutions to a differential equation called the linear 

wave equation:

 
'2y

'x 2 5
1
v 2 
'2y

't 2 (16.27)

Concepts and Principles

Analysis Model for Problem Solving

 Traveling Wave.  The wave speed of a sinusoidal wave is

 v 5
l

T
5 lf  (16.6, 16.12)

A sinusoidal wave can be expressed as

 y 5 A sin 1kx 2 vt 2  (16.10)

y

 

 
x

A

l

v
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Objective Questions 1. denotes answer available in Student Solutions Manual/Study Guide
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by some source of disturbance. (b) They are sinusoi-
dal in nature. (c) They carry energy. (d) They require 
a medium through which to propagate. (e) The wave 
speed depends on the properties of the medium in 
which they travel.

 7. (a) Can a wave on a string move with a wave speed that 
is greater than the maximum transverse speed vy,max 
of an element of the string? (b) Can the wave speed 
be much greater than the maximum element speed?  
(c) Can the wave speed be equal to the maximum ele-
ment speed? (d) Can the wave speed be less than vy,max?

 8. A source vibrating at constant frequency generates a 
sinusoidal wave on a string under constant tension. If 
the power delivered to the string is doubled, by what fac-
tor does the amplitude change? (a) a factor of 4 (b) a 
factor of 2 (c) a factor of !2 (d) a factor of 0.707 (e) 
cannot be predicted

 9. The distance between two successive peaks of a sinu-
soidal wave traveling along a string is 2 m. If the fre-
quency of this wave is 4 Hz, what is the speed of the 
wave? (a) 4 m/s (b) 1 m/s (c) 8 m/s (d) 2 m/s (e) impos-
sible to answer from the information given

Assume the string does not stretch. (a) a factor of 8  
(b) a factor of 4 (c) a factor of 2 (d) a factor of 0.5  
(e) You could not change the speed by a predictable 
factor by changing the tension.

 5. When all the strings on a guitar (Fig. OQ16.5) are 
stretched to the same tension, will the speed of a 
wave along the most massive bass string be (a) faster, 
(b) slower, or (c) the same as the speed of a wave on the 
lighter strings? Alternatively, (d) is the speed on the 
bass string not necessarily any of these answers?

Figure OQ16.5
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 6. Which of the following statements is not necessarily 
true regarding mechanical waves? (a) They are formed 

Conceptual Questions 1. denotes answer available in Student Solutions Manual/Study Guide

 1. Why is a solid substance able to transport both longitu-
dinal waves and transverse waves, but a homogeneous 
fluid is able to transport only longitudinal waves?

 2. (a) How would you create a longitudinal wave in a 
stretched spring? (b) Would it be possible to create a 
transverse wave in a spring?

 3. When a pulse travels on a taut string, does it always 
invert upon reflection? Explain.

 4. In mechanics, massless strings are often assumed. Why 
is that not a good assumption when discussing waves 
on strings?

 5. If you steadily shake one end of a taut rope three times 
each second, what would be the period of the sinusoi-
dal wave set up in the rope?

 6. (a) If a long rope is hung from a ceiling and waves 
are sent up the rope from its lower end, why does the 
speed of the waves change as they ascend? (b) Does 
the speed of the ascending waves increase or decrease? 
Explain.

 7. Why is a pulse on a string considered to be transverse?

 8. Does the vertical speed of an element of a horizontal, 
taut string, through which a wave is traveling, depend 
on the wave speed? Explain.

 9. In an earthquake, both S 
(transverse) and P (longitu-
dinal) waves propagate from 
the focus of the earthquake. 
The focus is in the ground 
radially below the epicenter 
on the surface (Fig. CQ16.9). 
Assume the waves move in 
straight lines through uni-
form material. The S waves 
travel through the Earth more 
slowly than the P waves (at about 5 km/s versus 8 km/s). 
By detecting the time of arrival of the waves at a seismo-
graph, (a) how can one determine the distance to the 
focus of the earthquake? (b) How many detection sta-
tions are necessary to locate the focus unambiguously?

Epicenter

Seismograph

Path of
seismic
waves

Focus

Figure CQ16.9

Problems

 
The problems found in this  

 chapter may be assigned 

online in Enhanced WebAssign

1.  straightforward; 2. intermediate;  

3. challenging

1.   full solution available in the Student 
Solutions Manual/Study Guide

AMT   Analysis Model tutorial available in 

Enhanced WebAssign

 GP  Guided Problem
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Enhanced WebAssign
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 7. A sinusoidal wave is traveling along a rope. The oscil-
lator that generates the wave completes 40.0 vibrations 
in 30.0 s. A given crest of the wave travels 425 cm along 
the rope in 10.0 s. What is the wavelength of the wave?

 8. For a certain transverse wave, the distance between two 
successive crests is 1.20 m, and eight crests pass a given 
point along the direction of travel every 12.0 s. Calcu-
late the wave speed.

 9. The wave function for a traveling wave on a taut string 
is (in SI units)

y 1x, t 2 5 0.350 sin a10pt 2 3px 1
p

4
b

  (a) What are the speed and direction of travel of the 
wave? (b) What is the vertical position of an element of 
the string at t 5 0, x 5 0.100 m? What are (c) the wave-
length and (d) the frequency of the wave? (e) What is 
the maximum transverse speed of an element of the 
string?

 10. When a particular wire is vibrating with a frequency 
of 4.00  Hz, a transverse wave of wavelength 60.0 cm 
is produced. Determine the speed of waves along the 
wire.

 11. The string shown in Figure P16.11 is driven at a fre-
quency of 5.00 Hz. The amplitude of the motion is A 5 
12.0 cm, and the wave speed is v 5 20.0 m/s. Further-
more, the wave is such that y 5 0 at x 5 0 and t 5 0. 
Determine (a) the angular frequency and (b) the wave 
number for this wave. (c) Write an expression for the 
wave function. Calculate (d) the maximum transverse 
speed and (e) the maximum transverse acceleration of 
an element of the string.

vS

A

Figure P16.11
 12. Consider the sinusoidal wave of Example 16.2 with the 

wave function

y 5 0.150 cos (15.7x 2 50.3t)

  where x and y are in meters and t is in seconds. At a 
certain instant, let point A be at the origin and point 
B be the closest point to A along the x axis where the 
wave is 60.0° out of phase with A. What is the coordi-
nate of B?

 13. A sinusoidal wave of wavelength 2.00 m and amplitude 
0.100 m travels on a string with a speed of 1.00 m/s to 
the right. At t 5 0, the left end of the string is at the 
origin. For this wave, find (a) the frequency, (b) the 
angular frequency, (c) the angular wave number, and 
(d) the wave function in SI units. Determine the equa-
tion of motion in SI units for (e) the left end of the 
string and (f) the point on the string at x 5 1.50 m 
to the right of the left end. (g) What is the maximum 
speed of any element of the string?

 14. (a) Plot y versus t at x 5 0 for a sinusoidal wave of the 
form y 5 0.150 cos (15.7x 2 50.3t), where x and y are in 
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Section 16.1  Propagation of a Disturbance

 1. A seismographic station receives S and P waves from 
an earthquake, separated in time by 17.3 s. Assume the 
waves have traveled over the same path at speeds of 
4.50 km/s and 7.80 km/s. Find the distance from the 
seismograph to the focus of the quake.

 2. Ocean waves with a crest-to-crest distance of 10.0 m 
can be described by the wave function

y(x, t) 5 0.800 sin [0.628(x 2 vt)]

  where x and y are in meters, t is in seconds, and v 5 
1.20 m/s. (a) Sketch y(x, t) at t 5 0. (b) Sketch y(x, t) at 
t 5 2.00 s. (c) Compare the graph in part (b) with that 
for part (a) and explain similarities and differences. 
(d) How has the wave moved between graph (a) and 
graph (b)?

 3. At t 5 0, a transverse pulse in a wire is described by the 
function

y 5
6.00

x 2 1 3.00

  where x and y are in meters. If the pulse is traveling in 
the positive x direction with a speed of 4.50 m/s, write 
the function y(x, t) that describes this pulse.

 4. Two points A and B on 
the surface of the Earth 
are at the same longitude 
and 60.08 apart in latitude 
as shown in Figure P16.4. 
Suppose an earthquake at 
point A creates a P wave 
that reaches point B by 
traveling straight through 
the body of the Earth at a 
constant speed of 7.80 km/s. The earthquake also radi-
ates a Rayleigh wave that travels at 4.50 km/s. In addition 
to P and S waves, Rayleigh waves are a third type of seis-
mic wave that travels along the surface of the Earth rather 
than through the bulk of the Earth. (a) Which of these 
two seismic waves arrives at B first? (b) What is the time 
difference between the arrivals of these two waves at B?

Section 16.2  Analysis Model: Traveling Wave

 5. A wave is described by y 5 0.020 0 sin (kx 2 vt), where 
k 5 2.11 rad/m, v 5 3.62 rad/s, x and y are in meters, 
and t is in seconds. Determine (a) the amplitude,  
(b) the wavelength, (c) the frequency, and (d) the speed 
of the wave.

 6. A certain uniform string is held under constant ten-
sion. (a) Draw a side-view snapshot of a sinusoidal wave 
on a string as shown in diagrams in the text. (b) Imme-
diately below diagram (a), draw the same wave at a 
moment later by one-quarter of the period of the wave. 
(c) Then, draw a wave with an amplitude 1.5 times 
larger than the wave in diagram (a). (d) Next, draw a 
wave differing from the one in your diagram (a) just by 
having a wavelength 1.5 times larger. (e) Finally, draw a 
wave differing from that in diagram (a) just by having 
a frequency 1.5 times larger.
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pulses can propagate along this wire without exceeding 
this stress? (The density of steel is 7.86 3 103 kg/m3.)

 22. A piano string having a mass per unit length equal to  
5.00 3 1023 kg/m is under a tension of 1 350 N. Find 
the speed with which a wave travels on this string.

 23. Transverse waves travel with a speed of 20.0 m/s on a 
string under a tension of 6.00 N. What tension is required 
for a wave speed of 30.0 m/s on the same string?

 24. A student taking a quiz finds on a reference sheet the 
two equations

f 5
1
T

    and    v 5 ÅT
m

  She has forgotten what T represents in each equation. 
(a)  Use dimensional analysis to determine the units 
required for T in each equation. (b) Explain how you 
can identify the physical quantity each T represents 
from the units.

 25. An Ethernet cable is 4.00 m long. The cable has a mass 
of 0.200 kg. A transverse pulse is produced by plucking 
one end of the taut cable. The pulse makes four trips 
down and back along the cable in 0.800 s. What is the 
tension in the cable?

 26. A transverse traveling wave on a taut wire has an ampli-
tude of 0.200 mm and a frequency of 500 Hz. It trav-
els with a speed of 196 m/s. (a) Write an equation in  
SI units of the form y 5 A sin (kx 2 vt) for this wave. 
(b) The mass per unit length of this wire is 4.10 g/m. 
Find the tension in the wire.

 27. A steel wire of length 30.0 m and a copper wire of 
length 20.0 m, both with 1.00-mm diameters, are con-
nected end to end and stretched to a tension of 150 N. 
During what time interval will a transverse wave travel 
the entire length of the two wires?

 28. Why is the following situation impossible? An astronaut on 
the Moon is studying wave motion using the apparatus 
discussed in Example 16.3 and shown in Figure 16.12. 
He measures the time interval for pulses to travel along 
the horizontal wire. Assume the horizontal wire has a 
mass of 4.00 g and a length of 1.60 m and assume a 
3.00-kg object is suspended from its extension around 
the pulley. The astronaut finds that a pulse requires 
26.1 ms to traverse the length of the wire.

 29. Tension is maintained in a 
string as in Figure P16.29. The 
observed wave speed is v 5 
24.0  m/s when the suspended 
mass is m 5 3.00 kg. (a) What is 
the mass per unit length of the 
string? (b)  What is the wave 
speed when the suspended 
mass is m 5 2.00 kg?

 30. Review. A light string with a mass per unit length of 
8.00 g/m has its ends tied to two walls separated by a 
distance equal to three-fourths the length of the string 
(Fig. P16.30, p. 503). An object of mass m is suspended 
from the center of the string, putting a tension in the 
string. (a) Find an expression for the transverse wave 
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Figure P16.29  
Problems 29 and 47.

AMT

meters and t is in seconds. (b) Determine the period of 
vibration. (c) State how your result compares with the 
value found in Example 16.2.

 15. A transverse wave on a string is described by the wave 
function

y 5 0.120 sin ap

8
 x 1 4ptb

  where x and y are in meters and t is in seconds. Deter-
mine (a) the transverse speed and (b) the transverse 
acceleration at t 5 0.200 s for an element of the string 
located at x  5 1.60 m. What are (c) the wavelength,  
(d) the period, and (e) the speed of propagation of 
this wave?

 16. A wave on a string is described by the wave function  
y 5 0.100 sin (0.50x 2 20t), where x and y are in 
meters and t is in seconds. (a) Show that an element 
of the string at x 5 2.00 m executes harmonic motion.  
(b) Determine the frequency of oscillation of this par-
ticular element.

 17. A sinusoidal wave is described by the wave function y 5 
0.25 sin (0.30x 2 40t) where x and y are in meters and 
t is in seconds. Determine for this wave (a) the ampli-
tude, (b) the angular frequency, (c) the angular wave 
number, (d) the wavelength, (e) the wave speed, and 
(f) the direction of motion.

 18. A sinusoidal wave traveling in the negative x direction 
(to the left) has an amplitude of 20.0 cm, a wavelength 
of 35.0 cm, and a frequency of 12.0 Hz. The transverse 
position of an element of the medium at t 5 0, x 5 0 is 
y 5 23.00 cm, and the element has a positive velocity 
here. We wish to find an expression for the wave func-
tion describing this wave. (a) Sketch the wave at t 5 0.  
(b) Find the angular wave number k from the wave-
length. (c) Find the period T from the frequency. Find 
(d) the angular frequency v and (e) the wave speed v. 
(f) From the information about t 5 0, find the phase 
constant f. (g) Write an expression for the wave func-
tion y(x, t).

 19. (a) Write the expression for y as a function of x and t 
in SI units for a sinusoidal wave traveling along a rope 
in the negative x direction with the following charac-
teristics: A 5 8.00 cm, l 5 80.0 cm, f 5 3.00 Hz, and  
y(0, t) 5 0 at t 5 0. (b) What If? Write the expression 
for y as a function of x and t for the wave in part (a) 
assuming y(x, 0) 5 0 at the point x 5 10.0 cm.

 20. A transverse sinusoidal wave on a string has a period  
T 5 25.0 ms and travels in the negative x direction with 
a speed of 30.0 m/s. At t 5 0, an element of the string 
at x 5 0 has a transverse position of 2.00 cm and is trav-
eling downward with a speed of 2.00 m/s. (a) What is 
the amplitude of the wave? (b) What is the initial phase 
angle? (c) What is the maximum transverse speed of 
an element of the string? (d) Write the wave function 
for the wave.

Section 16.3  The Speed of Waves on Strings

 21. Review. The elastic limit of a steel wire is 2.70 3 108 Pa. 
What is the maximum speed at which transverse wave 
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mass of 180 g. The string vibrates sinusoidally with a 
frequency of 50.0 Hz and a peak-to-valley displacement 
of 15.0 cm. (The “peak-to- valley” distance is the verti-
cal distance from the farthest positive position to the 
farthest negative position.) (a) Write the function that 
describes this wave traveling in the positive x direction. 
(b) Determine the power being supplied to the string.

 38. A horizontal string can transmit a maximum power 
P0 (without breaking) if a wave with amplitude A and 
angular frequency v is traveling along it. To increase 
this maximum power, a student folds the string and uses 
this “double string” as a medium. Assuming the tension 
in the two strands together is the same as the original 
tension in the single string and the angular frequency 
of the wave remains the same, determine the maximum 
power that can be transmitted along the “double string.”

 39. The wave function for a wave on a taut string is

y 1x , t 2 5 0.350 sin a10pt 2 3px 1
p

4
b

  where x and y are in meters and t is in seconds. If the 
linear mass density of the string is 75.0 g/m, (a) what 
is the average rate at which energy is transmitted along 
the string? (b) What is the energy contained in each 
cycle of the wave?

 40. A two-dimensional water wave spreads in circular rip-
ples. Show that the amplitude A at a distance r from 
the initial disturbance is proportional to 1/!r. Sug-
gestion: Consider the energy carried by one outward- 
moving ripple.

Section 16.6  The Linear Wave Equation

 41. Show that the wave function y 5 ln [b(x 2 vt)] is a solu-
tion to Equation 16.27, where b is a constant.

 42. (a) Evaluate A in the scalar equality 4 (7 1 3)  5 A.  
(b)  Evaluate A, B, and C in the vector equality 
700 î 1 3.00 k̂ 5 A î 1 B  ĵ 1 C  k̂. (c) Explain how you 
arrive at the answers to convince a student who thinks 
that you cannot solve a single equation for three differ-
ent unknowns. (d) What If? The functional equality or 
identity

A 1 B cos (Cx 1 Dt 1 E) 5 7.00 cos (3x 1 4t 1 2)

  is true for all values of the variables x and t, measured 
in meters and in seconds, respectively. Evaluate the 
constants A, B, C, D, and E. (e) Explain how you arrive 
at your answers to part (d).

 43. Show that the wave function y 5 e b(x2vt) is a solution of the 
linear wave equation (Eq. 16.27), where b is a constant.

 44. (a) Show that the function y(x, t) 5 x2 1 v2t2 is a solu-
tion to the wave equation. (b) Show that the function 
in part (a) can be written as f(x 1 vt) 1 g(x 2 vt) and 
determine the functional forms for f and g. (c) What 

If? Repeat parts (a) and (b) for the function y(x, t) 5 
sin (x) cos (vt).

Additional Problems

 45. Motion-picture film is projected at a frequency of 24.0 
frames per second. Each photograph on the film is the 
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speed in the string as 
a function of the mass 
of the hanging object. 
(b) What should be the 
mass of the object sus-
pended from the string 
if the wave speed is to be 
60.0 m/s?

 31. Transverse pulses travel 
with a speed of 200 m/s 
along a taut copper wire whose diameter is 1.50 mm. 
What is the tension in the wire? (The density of copper 
is 8.92 g/cm3.)

Section 16.5  Rate of Energy Transfer by Sinusoidal Waves 
on Strings

 32. In a region far from the epicenter of an earthquake, a 
seismic wave can be modeled as transporting energy in 
a single direction without absorption, just as a string 
wave does. Suppose the seismic wave moves from gran-
ite into mudfill with similar density but with a much 
smaller bulk modulus. Assume the speed of the wave 
gradually drops by a factor of 25.0, with negligible 
reflection of the wave. (a) Explain whether the ampli-
tude of the ground shaking will increase or decrease. 
(b) Does it change by a predictable factor? (This phe-
nomenon led to the collapse of part of the Nimitz Free-
way in Oakland, California, during the Loma Prieta 
earthquake of 1989.)

 33. Transverse waves are being generated on a rope under 
constant tension. By what factor is the required power 
increased or decreased if (a) the length of the rope 
is doubled and the angular frequency remains con-
stant, (b) the amplitude is doubled and the angular 
frequency is halved, (c) both the wavelength and the 
amplitude are doubled, and (d) both the length of the 
rope and the wavelength are halved?

 34. Sinusoidal waves 5.00 cm in amplitude are to be trans-
mitted along a string that has a linear mass density of  
4.00 3 1022 kg/m. The source can deliver a maximum 
power of 300 W, and the string is under a tension of 
100  N. What is the highest frequency f at which the 
source can operate?

 35. A sinusoidal wave on a string is described by the wave 
function

y 5 0.15 sin (0.80x 2 50t)

  where x and y are in meters and t is in seconds. The 
mass per unit length of this string is 12.0 g/m. Deter-
mine (a) the speed of the wave, (b) the wavelength,  
(c) the frequency, and (d) the power transmitted by 
the wave.

 36. A taut rope has a mass of 0.180 kg and a length of 
3.60 m. What power must be supplied to the rope so 
as to generate sinusoidal waves having an amplitude of  
0.100 m and a wavelength of 0.500 m and traveling 
with a speed of 30.0 m/s?

 37. A long string carries a wave; a 6.00-m segment of the 
string contains four complete wavelengths and has a 
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is held in this lowest position, find the speed of a trans-
verse wave in the cord.

 50. Review. A block of mass M hangs from a rubber cord. 
The block is supported so that the cord is not stretched. 
The unstretched length of the cord is L0, and its mass 
is m, much less than M. The “spring constant” for the 
cord is k. The block is released and stops momentarily 
at the lowest point. (a) Determine the tension in the 
string when the block is at this lowest point. (b) What 
is the length of the cord in this “stretched” position? 
(c) If the block is held in this lowest position, find the 
speed of a transverse wave in the cord.

 51. A transverse wave on a string is described by the wave 
function

y(x, t) 5 0.350 sin (1.25x 1 99.6t)

  where x and y are in meters and t is in seconds. Con-
sider the element of the string at x 5 0. (a) What is 
the time interval between the first two instants when 
this element has a position of y 5 0.175 m? (b) What 
distance does the wave travel during the time interval 
found in part (a)?

 52. A sinusoidal wave in a string is described by the wave 
function

y 5 0.150 sin (0.800x 2 50.0t)

  where x and y are in meters and t is in seconds. The 
mass per length of the string is 12.0 g/m. (a) Find the 
maximum transverse acceleration of an element of this 
string. (b)  Determine the maximum transverse force 
on a 1.00-cm segment of the string. (c) State how the 
force found in part (b) compares with the tension in 
the string.

 53. Review. A block of mass M, supported by a string, rests 
on a frictionless incline making an angle u with the 
horizontal (Fig. P16.53). The length of the string is L, 
and its mass is m ,, M. Derive an expression for the 
time interval required for a transverse wave to travel 
from one end of the string to the other.

m L

u

M

Figure P16.53

 54. An undersea earthquake or a landslide can produce 
an ocean wave of short duration carrying great energy, 
called a tsunami. When its wavelength is large com-
pared to the ocean depth d, the speed of a water wave is  
given approximately by v 5 !gd. Assume an earthquake  
occurs all along a tectonic plate boundary running 
north to south and produces a straight tsunami wave 
crest moving everywhere to the west. (a) What physical 
quantity can you consider to be constant in the motion 
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same height of 19.0 mm, just like each oscillation in a 
wave is the same length. Model the height of a frame as 
the wavelength of a wave. At what constant speed does 
the film pass into the projector?

 46. “The wave” is a particular type of pulse that can propa-
gate through a large crowd gathered at a sports arena 
(Fig. P16.46). The elements of the medium are the 
spectators, with zero position corresponding to their 
being seated and maximum position correspond-
ing to their standing and raising their arms. When a 
large fraction of the spectators participates in the wave 
motion, a somewhat stable pulse shape can develop. 
The wave speed depends on people’s reaction time, 
which is typically on the order of 0.1 s. Estimate the 
order of magnitude, in minutes, of the time interval 
required for such a pulse to make one circuit around a 
large sports stadium. State the quantities you measure 
or estimate and their values.

Figure P16.46
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 47. A sinusoidal wave in a rope is described by the wave 
function

y 5 0.20 sin (0.75px 1 18pt)

  where x and y are in meters and t is in seconds. The 
rope has a linear mass density of 0.250 kg/m. The ten-
sion in the rope is provided by an arrangement like the 
one illustrated in Figure P16.29. What is the mass of 
the suspended object?

 48. The ocean floor is underlain by a layer of basalt 
that constitutes the crust, or uppermost layer, of the 
Earth in that region. Below this crust is found denser 
periodotite rock that forms the Earth’s mantle. The 
boundary between these two layers is called the 
Mohorovicic discontinuity (“Moho” for short). If an 
explosive charge is set off at the surface of the basalt, 
it generates a seismic wave that is reflected back out 
at the Moho. If the speed of this wave in basalt is  
6.50 km/s and the two-way travel time is 1.85 s, what 
is the thickness of this oceanic crust?

 49. Review. A 2.00-kg block hangs from a rubber cord, 
being supported so that the cord is not stretched. The 
unstretched length of the cord is 0.500 m, and its mass 
is 5.00 g. The “spring constant” for the cord is 100 N/m.  
The block is released and stops momentarily at the low-
est point. (a) Determine the tension in the cord when 
the block is at this lowest point. (b) What is the length 
of the cord in this “stretched” position? (c) If the block 
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of any one wave crest? (b) Explain why the amplitude 
of the wave increases as the wave approaches shore.  
(c) If the wave has amplitude 1.80 m when its speed 
is 200 m/s, what will be its amplitude where the water 
is 9.00 m deep? (d) Explain why the amplitude at the 
shore should be expected to be still greater, but cannot 
be meaningfully predicted by your model.

 55. Review. A block of mass M 5 0.450 kg is attached to 
one end of a cord of mass 0.003 20 kg; the other end of 
the cord is attached to a fixed point. The block rotates 
with constant angular speed in a circle on a friction-
less, horizontal table as shown in Figure P16.55. 
Through what angle does the block rotate in the time 
interval during which a transverse wave travels along 
the string from the center of the circle to the block?

M

Figure P16.55 Problems 55, 56, and 57.

 56. Review. A block of mass M 5 0.450 kg is attached to 
one end of a cord of mass m 5 0.003 20 kg; the other 
end of the cord is attached to a fixed point. The block 
rotates with constant angular speed v 5 10.0 rad/s 
in a circle on a frictionless, horizontal table as shown 
in Figure P16.55. What time interval is required for a 
transverse wave to travel along the string from the cen-
ter of the circle to the block?

 57. Review. A block of mass M is attached to one end of a 
cord of mass m; the other end of the cord is attached to 
a fixed point. The block rotates with constant angular 
speed v in a circle on a frictionless, horizontal table as 
shown in Figure P16.55. What time interval is required 
for a transverse wave to travel along the string from the 
center of the circle to the block?

 58. A string with linear density 0.500 g/m is held under ten-
sion 20.0 N. As a transverse sinusoidal wave propagates 
on the string, elements of the string move with maxi-
mum speed vy,max. (a) Determine the power transmitted 
by the wave as a function of vy,max. (b) State in words the 
proportionality between power and vy,max. (c) Find the 
energy contained in a section of string 3.00 m long as a 
function of vy,max. (d) Express the answer to part (c) in 
terms of the mass m of this section. (e) Find the energy 
that the wave carries past a point in 6.00 s.

 59. A wire of density r is tapered so that its cross-sectional 
area varies with x according to

A 5 1.00 3 1025 x 1 1.00 3 1026

  where A is in meters squared and x is in meters. The 
tension in the wire is T. (a) Derive a relationship for 

AMT

S

Q/C

the speed of a wave as a function of position. (b) What 

If? Assume the wire is aluminum and is under a ten-
sion T 5 24.0 N. Determine the wave speed at the ori-
gin and at x 5 10.0 m.

 60. A rope of total mass m and length L is suspended ver-
tically. Analysis shows that for short transverse pulses, 
the waves above a short distance from the free end of 
the rope can be represented to a good approximation 
by the linear wave equation discussed in Section 16.6. 
Show that a transverse pulse travels the length of the 
rope in a time interval that is given approximately by 
Dt < 2!L /g . Suggestion: First find an expression for 
the wave speed at any point a distance x from the lower 
end by considering the rope’s tension as resulting from 
the weight of the segment below that point.

 61. A pulse traveling along a string of linear mass density m 
is described by the wave function

y 5 [A0e2bx] sin (kx 2 vt)

  where the factor in brackets is said to be the ampli-
tude. (a) What is the power P(x) carried by this wave 
at a point x? (b) What is the power P(0) carried by this 
wave at the origin? (c) Compute the ratio P(x)/P(0).

 62. Why is the following situation impossible? Tsunamis are 
ocean surface waves that have enormous wavelengths 
(100 to 200 km), and the propagation speed for these 
waves is v < !gd avg, where davg is the average depth of 
the water. An earthquake on the ocean floor in the 
Gulf of Alaska produces a tsunami that reaches Hilo, 
Hawaii, 4 450  km away, in a time interval of 5.88 h. 
(This method was used in 1856 to estimate the average 
depth of the Pacific Ocean long before soundings were 
made to give a direct determination.)

 63. Review. An aluminum wire is held between two clamps 
under zero tension at room temperature. Reducing 
the temperature, which results in a decrease in the 
wire’s equilibrium length, increases the tension in the 
wire. Taking the cross-sectional area of the wire to be 
5.00 3 1026 m2, the density to be 2.70 3 103 kg/m3,  
and Young’s modulus to be 7.00 3 1010 N/m2, what 
strain (DL/L) results in a transverse wave speed of  
100 m/s?

Challenge Problems

 64. Assume an object of mass M is suspended from the bot-
tom of the rope of mass m and length L in Problem 60. 
(a) Show that the time interval for a transverse pulse to 
travel the length of the rope is

Dt 5 2Å L
mg
1"M 1 m 2 "M 2

  (b) What If? Show that the expression in part (a) 
reduces to the result of Problem 60 when M 5 0.  
(c) Show that for m ,, M, the expression in part (a) 
reduces to

Dt 5 ÅmL
Mg

S

S

M

S
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 67. If a loop of chain is spun at high speed, it can roll 
along the ground like a circular hoop without collaps-
ing. Consider a chain of uniform linear mass density m 
whose center of mass travels to the right at a high speed 
v0 as shown in Figure P16.67. (a) Determine the tension 
in the chain in terms of m and v0. Assume the weight of 
an individual link is negligible compared to the tension. 
(b) If the loop rolls over a small bump, the resulting 
deformation of the chain causes two transverse pulses 
to propagate along the chain, one moving clockwise 
and one moving counterclockwise. What is the speed of 
the pulses traveling along the chain? (c) Through what 
angle does each pulse travel during the time interval 
over which the loop makes one revolution?

Bump

v0
S

Figure P16.67

S
 65. A rope of total mass m and length L is suspended verti-

cally. As shown in Problem 60, a pulse travels from the 
bottom to the top of the rope in an approximate time 
interval Dt 5 2!L/g  with a speed that varies with 
position x measured from the bottom of the rope as  
v 5 !gx . Assume the linear wave equation in Sec-
tion 16.6 describes waves at all locations on the rope.  
(a) Over what time interval does a pulse travel half-
way up the rope? Give your answer as a fraction of 
the quantity 2!L/g . (b)  A pulse starts traveling up 
the rope. How far has it traveled after a time interval !L/g ?

 66. A string on a musical instrument is held under ten-
sion T and extends from the point x 5 0 to the point  
x 5 L. The string is overwound with wire in such a 
way that its mass per unit length m(x) increases uni-
formly from m0 at x 5 0 to mL at x 5 L. (a) Find an 
expression for m(x) as a function of x over the range  
0 # x # L. (b) Find an expression for the time inter-
val required for a transverse pulse to travel the length 
of the string.

S

S
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Most of the waves we studied in Chapter 16 are constrained to move along a one-
dimensional medium. For example, the wave in Figure 16.7 is a purely mathematical construct 

moving along the x axis. The wave in Figure 16.10 is constrained to move along the length of 

the string. We have also seen waves moving through a two-dimensional medium, such as the 

ripples on the water surface in the introduction to Part 2 on page 449 and the waves moving 

over the surface of the ocean in Figure 16.4. In this chapter, we investigate mechanical waves 

that move through three-dimensional bulk media. For example, seismic waves leaving the 

focus of an earthquake travel through the three-dimensional interior of the Earth.

 We will focus our attention on sound waves, which travel through any material, but are 

most commonly experienced as the mechanical waves traveling through air that result in the 

human perception of hearing. As sound waves travel through air, elements of air are disturbed 

from their equilibrium positions. Accompanying these movements are changes in density 

and pressure of the air along the direction of wave motion. If the source of the sound waves 

vibrates sinusoidally, the density and pressure variations are also sinusoidal. The mathematical 

description of sinusoidal sound waves is very similar to that of sinusoidal waves on strings, as 

discussed in Chapter 16.

 Sound waves are divided into three categories that cover different frequency ranges. 

(1) Audible waves lie within the range of sensitivity of the human ear. They can be gener-

ated in a variety of ways, such as by musical instruments, human voices, or loudspeakers. 

(2) Infrasonic waves have frequencies below the audible range. Elephants can use infrasonic 

waves to communicate with one another, even when separated by many kilometers.  

(3) Ultrasonic waves have frequencies above the audible range. You may have used a “silent” 

whistle to retrieve your dog. Dogs easily hear the ultrasonic sound this whistle emits, 

although humans cannot detect it at all. Ultrasonic waves are also used in medical imaging.
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This chapter begins with a discussion of the pressure variations in a sound wave, the speed 

of sound waves, and wave intensity, which is a function of wave amplitude. We then provide 

an alternative description of the intensity of sound waves that compresses the wide range of 

intensities to which the ear is sensitive into a smaller range for convenience. The effects of 

the motion of sources and listeners on the frequency of a sound are also investigated. 

17.1 Pressure Variations in Sound Waves
In Chapter 16, we began our investigation of waves by imagining the creation of 
a single pulse that traveled down a string (Figure 16.1) or a spring (Figure 16.3). 
Let’s do something similar for sound. We describe pictorially the motion of a one- 
dimensional longitudinal sound pulse moving through a long tube containing a 
compressible gas as shown in Figure 17.1. A piston at the left end can be quickly 
moved to the right to compress the gas and create the pulse. Before the piston 
is moved, the gas is undisturbed and of uniform density as represented by the 
uniformly shaded region in Figure 17.1a. When the piston is pushed to the right 
(Fig. 17.1b), the gas just in front of it is compressed (as represented by the more 
heavily shaded region); the pressure and density in this region are now higher than 
they were before the piston moved. When the piston comes to rest (Fig. 17.1c), the 
compressed region of the gas continues to move to the right, corresponding to a 
longitudinal pulse traveling through the tube with speed v.

One can produce a one-dimensional periodic sound wave in the tube of gas in 
Figure 17.1 by causing the piston to move in simple harmonic motion. The results 
are shown in Figure 17.2. The darker parts of the colored areas in this figure rep-
resent regions in which the gas is compressed and the density and pressure are 
above their equilibrium values. A compressed region is formed whenever the pis-

17.1

v
S

a

b

c

Before the piston moves, 
the gas is undisturbed.

The gas is compressed by 
the motion of the piston.

When the piston stops, the 
compressed pulse continues 
through the gas.

Figure 17.1 Motion of a longitudi-
nal pulse through a compressible gas. 
The compression (darker region) is 
produced by the moving piston.

Figure 17.2 A longitudinal wave 
propagating through a gas-filled 
tube. The source of the wave is an 
oscillating piston at the left.

l
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ton is pushed into the tube. This compressed region, called a compression, moves 
through the tube, continuously compressing the region just in front of itself. When 
the piston is pulled back, the gas in front of it expands and the pressure and density 
in this region fall below their equilibrium values (represented by the lighter parts 
of the colored areas in Fig. 17.2). These low-pressure regions, called rarefactions,

also propagate along the tube, following the compressions. Both regions move at 
the speed of sound in the medium.

As the piston oscillates sinusoidally, regions of compression and rarefaction are 
continuously set up. The distance between two successive compressions (or two suc-
cessive rarefactions) equals the wavelength l of the sound wave. Because the sound 
wave is longitudinal, as the compressions and rarefactions travel through the tube, 
any small element of the gas moves with simple harmonic motion parallel to the 
direction of the wave. If s(x, t) is the position of a small element relative to its equi-
librium position,1 we can express this harmonic position function as

 s(x, t) 5 smax cos (kx 2 vt) (17.1)

where smax is the maximum position of the element relative to equilibrium. This 
parameter is often called the displacement amplitude of the wave. The parame-
ter k is the wave number, and v is the angular frequency of the wave. Notice that 
the displacement of the element is along x, in the direction of propagation of the 
sound wave.
 The variation in the gas pressure DP measured from the equilibrium value is 
also periodic with the same wave number and angular frequency as for the dis-
placement in Equation 17.1. Therefore, we can write

 DP 5 DPmax sin (kx 2 vt) (17.2)

where the pressure amplitude DPmax is the maximum change in pressure from the 
equilibrium value.
 Notice that we have expressed the displacement by means of a cosine function 
and the pressure by means of a sine function. We will justify this choice in the 
procedure that follows and relate the pressure amplitude Pmax to the displacement 
amplitude smax. Consider the piston–tube arrangement of Figure 17.1 once again. 
In Figure 17.3a, we focus our attention on a small cylindrical element of undis-
turbed gas of length Dx and area A. The volume of this element is Vi 5 A Dx.
 Figure 17.3b shows this element of gas after a sound wave has moved it to a new 
position. The cylinder’s two flat faces move through different distances s1 and s2.  
The change in volume DV of the element in the new position is equal to A Ds, 
where Ds 5 s1 2 s2.
 From the definition of bulk modulus (see Eq. 12.8), we express the pressure vari-
ation in the element of gas as a function of its change in volume:

DP 5 2B 
DV
Vi

Let’s substitute for the initial volume and the change in volume of the element:

DP 5 2B 
A Ds
A Dx

Let the length Dx of the cylinder approach zero so that the ratio Ds/Dx becomes a 
partial derivative:

 DP 5 2B 
's
'x

 (17.3)

DP 5 DPmaxPP  sin (kx 2 vt)t

Area A

Undisturbed gas

�x

s1

s2b

a

Figure 17.3  (a) An undisturbed 
element of gas of length Dx in a 
tube of cross-sectional area A.  
(b) When a sound wave propagates 
through the gas, the element is 
moved to a new position and has a 
different length. The parameters 
s1 and s2 describe the displace-
ments of the ends of the element 
from their equilibrium positions.

1We use s(x, t) here instead of y(x, t) because the displacement of elements of the medium is not perpendicular to 
the x direction.
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Substitute the position function given by Equation 17.1:

DP 5 2B 
'
'x
3smax cos 1kx 2 vt 2 4 5 Bsmaxk  sin 1kx 2 vt 2

From this result, we see that a displacement described by a cosine function leads to 
a pressure described by a sine function. We also see that the displacement and pres-
sure amplitudes are related by

DPmax 5 Bsmaxk (17.4)

This relationship depends on the bulk modulus of the gas, which is not as readily 
available as is the density of the gas. Once we determine the speed of sound in a gas 
in Section 17.2, we will be able to provide an expression that relates DPmax and smax
in terms of the density of the gas.

This discussion shows that a sound wave may be described equally well in terms 
of either pressure or displacement. A comparison of Equations 17.1 and 17.2 shows 
that the pressure wave is 908 out of phase with the displacement wave. Graphs of 
these functions are shown in Figure 17.4. The pressure variation is a maximum 
when the displacement from equilibrium is zero, and the displacement from equi-
librium is a maximum when the pressure variation is zero.

Q uick Quiz 17.1  If you blow across the top of an empty soft-drink bottle, a pulse 
of sound travels down through the air in the bottle. At the moment the pulse 
reaches the bottom of the bottle, what is the correct description of the displace-
ment of elements of air from their equilibrium positions and the pressure of the 
air at this point? (a) The displacement and pressure are both at a maximum.  
(b) The displacement and pressure are both at a minimum. (c) The displace-
ment is zero, and the pressure is a maximum. (d) The displacement is zero, and 
the pressure is a minimum.

17.2 Speed of Sound Waves
We now extend the discussion begun in Section 17.1 to evaluate the speed of sound 
in a gas. In Figure 17.5a, consider the cylindrical element of gas between the piston 
and the dashed line. This element of gas is in equilibrium under the influence of 
forces of equal magnitude, from the piston on the left and from the rest of the gas 
on the right. The magnitude of these forces is PA, where P is the pressure in the gas 
and A is the cross-sectional area of the tube.

Figure 17.5b shows the situation after a time interval Dt during which the piston 
moves to the right at a constant speed vx due to a force from the left on the piston 
that has increased in magnitude to (P 1 DP)A. By the end of the time interval Dt, 

Q

17.2

Undisturbed gas

Undisturbed gas

Compressed gas

v �t

vx �tb

a

(P � �P)A î

PA î
�PA î

vx î
�PA î

Figure 17.5  (a) An undisturbed 
element of gas of length v  Dt in a 
tube of cross-sectional area A. The 
element is in equilibrium between 
forces on either end. (b) When the 
piston moves inward at constant 
velocity vx due to an increased 
force on the left, the element also 
moves with the same velocity.

s

x

x

�P

�Pmax

smax

b

a

Figure 17.4 (a) Displacement 
amplitude and (b) pressure ampli-
tude versus position for a sinusoi-
dal longitudinal wave.
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every bit of gas in the element is moving with speed vx . That will not be true in 
general for a macroscopic element of gas, but it will become true if we shrink the 
length of the element to an infinitesimal value.
 The length of the undisturbed element of gas is chosen to be v Dt, where v is the 
speed of sound in the gas and Dt is the time interval between the configurations 
in Figures 17.5a and 17.5b. Therefore, at the end of the time interval Dt, the sound 
wave will just reach the right end of the cylindrical element of gas. The gas to the 
right of the element is undisturbed because the sound wave has not reached it yet.
 The element of gas is modeled as a nonisolated system in terms of momentum. 
The force from the piston has provided an impulse to the element, which in turn 
exhibits a change in momentum. Therefore, we evaluate both sides of the impulse–
momentum theorem:

 DpS 5 I
S

 (17.5)

On the right, the impulse is provided by the constant force due to the increased 
pressure on the piston:

I
S

5 a  F
S

 Dt 5 1A DP Dt 2  î
The pressure change DP can be related to the volume change and then to the 
speeds v and vx through the bulk modulus:

DP 5 2B 
DV
Vi

5 2B 
12vx A Dt 2

vA Dt
5 B 

vx

v

Therefore, the impulse becomes

 I
S

5 aAB 
vx

v
 Dtb  î  (17.6)

On the left-hand side of the impulse–momentum theorem, Equation 17.5, the 
change in momentum of the element of gas of mass m is as follows:

 DpS 5 m DvS 5 1rVi 2 1vx î 2 0 2 5 1rvvx A Dt 2  î  (17.7)

Substituting Equations 17.6 and 17.7 into Equation 17.5, we find

rvvx A Dt 5 AB 
vx

v
 Dt

which reduces to an expression for the speed of sound in a gas:

 v 5 ÅB
r

 (17.8)

 It is interesting to compare this expression with Equation 16.18 for the speed of 
transverse waves on a string, v 5 !T/m. In both cases, the wave speed depends on 
an elastic property of the medium (bulk modulus B or string tension T ) and on an 
inertial property of the medium (volume density r or linear density m). In fact, the 
speed of all mechanical waves follows an expression of the general form

v 5 Å elastic property

inertial property

For longitudinal sound waves in a solid rod of material, for example, the speed of 
sound depends on Young’s modulus Y and the density r. Table 17.1 (page 512) pro-
vides the speed of sound in several different materials.
 The speed of sound also depends on the temperature of the medium. For sound 
traveling through air, the relationship between wave speed and air temperature is

 v 5 331Å1 1
TC

273
 (17.9)
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where v is in meters/second, 331 m/s is the speed of sound in air at 08C, and TC is 
the air temperature in degrees Celsius. Using this equation, one finds that at 208C, 
the speed of sound in air is approximately 343 m/s.
 This information provides a convenient way to estimate the distance to a thun-
derstorm. First count the number of seconds between seeing the flash of lightning 
and hearing the thunder. Dividing this time interval by 3 gives the approximate 
distance to the lightning in kilometers because 343 m/s is approximately 1

3 km/s. 
Dividing the time interval in seconds by 5 gives the approximate distance to the 
lightning in miles because the speed of sound is approximately 15 mi/s.
 Having an expression (Eq. 17.8) for the speed of sound, we can now express the 
relationship between pressure amplitude and displacement amplitude for a sound 
wave (Eq. 17.4) as

 DPmax 5 Bsmaxk 5 1rv2 2smaxav

v b 5 rvvsmax (17.10)

This expression is a bit more useful than Equation 17.4 because the density of a gas 
is more readily available than is the bulk modulus.

17.3 Intensity of Periodic Sound Waves
In Chapter 16, we showed that a wave traveling on a taut string transports energy, 
consistent with the notion of energy transfer by mechanical waves in Equation 
8.2. Naturally, we would expect sound waves to also represent a transfer of energy.  
Consider the element of gas acted on by the piston in Figure 17.5. Imagine that the 
piston is moving back and forth in simple harmonic motion at angular frequency v. 
Imagine also that the length of the element becomes very small so that the entire 
element moves with the same velocity as the piston. Then we can model the ele-
ment as a particle on which the piston is doing work. The rate at which the piston is 
doing work on the element at any instant of time is given by Equation 8.19:

Power 5 F
S
? vSx

where we have used Power rather than P so that we don’t confuse power P with 
pressure P ! The force F

S
 on the element of gas is related to the pressure and the 

velocity vSx of the element is the derivative of the displacement function, so we find

Power 5 3DP 1x, t 2A 4  î ? '
't
3s 1x, t 2  î 4

5 3rvvAsmax sin 1kx 2 vt 2 4 e '
't
3smax cos 1kx 2 vt 2 4 f

17.3

Table 17.1 Speed of Sound in Various Media

Medium v (m/s) Medium v (m/s) Medium v (m/s)

Gases  Liquids at 258C  Solidsa

Hydrogen (08C) 1 286 Glycerol 1 904 Pyrex glass 5 640
Helium (08C) 972 Seawater 1 533 Iron 5 950
Air (208C) 343 Water 1 493 Aluminum 6 420
Air (08C) 331 Mercury 1 450 Brass 4 700
Oxygen (08C) 317 Kerosene 1 324 Copper 5 010
  Methyl alcohol 1 143 Gold 3 240
  Carbon tetrachloride 926 Lucite 2 680
    Lead 1 960
    Rubber 1 600
aValues given are for propagation of longitudinal waves in bulk media. Speeds for longitudinal waves in thin rods are 
smaller, and speeds of transverse waves in bulk are smaller yet.
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5 rvvAsmax sin 1kx 2 vt 2 4 3vsmax sin 1kx 2 vt 2 4
5 rvv2As 2

max sin
2 1kx 2 vt 2

We now find the time average power over one period of the oscillation. For any 
given value of x, which we can choose to be x 5 0, the average value of sin2 (kx 2 vt) 
over one period T is

1
T

 3
T

0
 sin2 10 2 vt 2  dt 5

1
T

 3
T

0
 sin2 vt dt 5

1
T
a t

2
1

sin 2vt
2v

b ` T
0

5 1
2

Therefore, 1Power 2 avg 5 1
2 rvv2As2

max

We define the intensity I of a wave, or the power per unit area, as the rate at 
which the energy transported by the wave transfers through a unit area A perpen-
dicular to the direction of travel of the wave:

I ;
1Power 2 avg

A
 (17.11)

In this case, the intensity is therefore

I 5 1
2 rv 1vsmax 22

Hence, the intensity of a periodic sound wave is proportional to the square of the 
displacement amplitude and to the square of the angular frequency. This expres-
sion can also be written in terms of the pressure amplitude DPmax; in this case, we 
use Equation 17.10 to obtain

 I 5
1DPmax 22

2rv
 (17.12)

 The string waves we studied in Chapter 16 are constrained to move along the 
one-dimensional string, as discussed in the introduction to this chapter. The sound 
waves we have studied with regard to Figures 17.1 through 17.3 and 17.5 are con-
strained to move in one dimension along the length of the tube. As we mentioned 
in the introduction, however, sound waves can move through three-dimensional 
bulk media, so let’s place a sound source in the open air and study the results. 
 Consider the special case of a point source emitting sound waves equally in all 
directions. If the air around the source is perfectly uniform, the sound power radi-
ated in all directions is the same, and the speed of sound in all directions is the 
same. The result in this situation is called a spherical wave. Figure 17.6 shows these 
spherical waves as a series of circular arcs concentric with the source. Each arc rep-
resents a surface over which the phase of the wave is constant. We call such a sur-
face of constant phase a wave front. The radial distance between adjacent wave 
fronts that have the same phase is the wavelength l of the wave. The radial lines 
pointing outward from the source, representing the direction of propagation of 
the waves, are called rays.

 The average power emitted by the source must be distributed uniformly over 
each spherical wave front of area 4pr 2. Hence, the wave intensity at a distance r 
from the source is

 I 5
1Power 2 avg

A
5
1Power 2 avg

4pr 2  (17.13)

The intensity decreases as the square of the distance from the source. This inverse-
square law is reminiscent of the behavior of gravity in Chapter 13.

I ;
1Power 2r avg

A
Intensity of a sound wave

Ray

Source

l

Wave front

The rays are radial lines pointing 
outward from the source, 
perpendicular to the wave fronts.

Figure 17.6  Spherical waves 
emitted by a point source. The 
circular arcs represent the spheri-
cal wave fronts that are concentric 
with the source.
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Example 17.2   Intensity Variations of a Point Source

A point source emits sound waves with an average power output of 80.0 W.

(A)  Find the intensity 3.00 m from the source.

Conceptualize  Imagine a small loudspeaker sending sound out at an average rate of 80.0 W uniformly in all direc-
tions. You are standing 3.00 m away from the speakers. As the sound propagates, the energy of the sound waves is 
spread out over an ever-expanding sphere, so the intensity of the sound falls off with distance.

Categorize  We evaluate the intensity from an equation generated in this section, so we categorize this example as a 
substitution problem.

S O L U T I O N

 

Example 17.1   Hearing Limits

The faintest sounds the human ear can detect at a frequency of 1 000 Hz correspond to an intensity of about 1.00 3 
10212 W/m2, which is called threshold of hearing. The loudest sounds the ear can tolerate at this frequency correspond to 
an intensity of about 1.00 W/m2, the threshold of pain. Determine the pressure amplitude and displacement amplitude 
associated with these two limits.

Conceptualize  Think about the quietest environment you have ever experienced. It is likely that the intensity of sound 
in even this quietest environment is higher than the threshold of hearing.

Categorize  Because we are given intensities and asked to calculate pressure and displacement amplitudes, this prob-
lem is an analysis problem requiring the concepts discussed in this section.

Analyze  To find the amplitude of the pressure varia-
tion at the threshold of hearing, use Equation 17.12, 
taking the speed of sound waves in air to be v 5 
343 m/s and the density of air to be r 5 1.20 kg/m3:

 DPmax 5 "2rvI

 5 "2 11.20 kg/m3 2 1343 m/s 2 11.00 3 10212 W/m2 2
5   2.87 3 1025 N/m2

Calculate the corresponding displacement amplitude 
using Equation 17.10, recalling that v 5 2pf (Eq. 16.9):

 smax 5
DPmax

rvv
5

2.87 3 1025 N/m211.20 kg/m3 2 1343 m/s 2 12p 3 1 000 Hz 2
5   1.11 3 10211 m

In a similar manner, one finds that the loudest sounds the human ear can tolerate (the threshold of pain) corre-
spond to a pressure amplitude of   28.7 N/m2   and a displacement amplitude equal to   1.11 3 1025 m  .

Finalize  Because atmospheric pressure is about 105 N/m2, the result for the pressure amplitude tells us that the ear 
is sensitive to pressure fluctuations as small as 3 parts in 1010! The displacement amplitude is also a remarkably small 
number! If we compare this result for smax to the size of an atom (about 10210 m), we see that the ear is an extremely 
sensitive detector of sound waves.

S O L U T I O N

Q uick Quiz 17.2  A vibrating guitar string makes very little sound if it is not 
mounted on the guitar body. Why does the sound have greater intensity if the 
string is attached to the guitar body? (a) The string vibrates with more energy. 
(b) The energy leaves the guitar at a greater rate. (c) The sound power is spread 
over a larger area at the listener’s position. (d) The sound power is concentrated 
over a smaller area at the listener’s position. (e) The speed of sound is higher in 
the material of the guitar body. (f) None of these answers is correct.

Q



17.3 Intensity of Periodic Sound Waves 515

 

Because a point source emits energy in the form of 
spherical waves, use Equation 17.13 to find the intensity:

I 5
1Power 2 avg

4pr 2 5
80.0 W

4p 13.00 m 22 5  0.707 W/m2

Solve for r in Equation 17.13 and use the given value for I:  r 5 Å 1Power 2 avg

4pI
5 Å 80.0 W

4p 11.00 3 1028 W/m2 2
5   2.52 3 104 m

This intensity is close to the threshold of pain.

(B)  Find the distance at which the intensity of the sound is 1.00 3 1028 W/m2.

S O L U T I O N

Sound Level in Decibels
Example 17.1 illustrates the wide range of intensities the human ear can detect. 
Because this range is so wide, it is convenient to use a logarithmic scale, where the 
sound level b (Greek letter beta) is defined by the equation

b ; 10 log  a I
I0
b  (17.14)

The constant I0 is the reference intensity, taken to be at the threshold of hearing  
(I0 5 1.00 3 10212 W/m2), and I is the intensity in watts per square meter to which 
the sound level b corresponds, where b is measured2 in decibels (dB). On this 
scale, the threshold of pain (I 5 1.00 W/m2) corresponds to a sound level of b 5  
10 log [(1 W/m2)/(10212 W/m2)] 5 10 log (1012) 5 120 dB, and the threshold of 
hearing corresponds to b 5 10 log [(10212 W/m2)/(10212 W/m2)] 5 0 dB.
 Prolonged exposure to high sound levels may seriously damage the human ear. 
Ear plugs are recommended whenever sound levels exceed 90 dB. Recent evidence 
suggests that “noise pollution” may be a contributing factor to high blood pressure, 
anxiety, and nervousness. Table 17.2 gives some typical sound levels.

Q uick Quiz 17.3  Increasing the intensity of a sound by a factor of 100 causes the 
sound level to increase by what amount? (a) 100 dB (b) 20 dB (c) 10 dB (d) 2 dB

b ; 10 log  a I
I0II
b

Q

2The unit bel is named after the inventor of the telephone, Alexander Graham Bell (1847–1922). The prefix deci - is 
the SI prefix that stands for 1021.

Example 17.3   Sound Levels

Two identical machines are positioned the same distance from a worker. The intensity of sound delivered by each oper-
ating machine at the worker’s location is 2.0 3 1027 W/m2.

(A)  Find the sound level heard by the worker when one machine is operating.

Conceptualize  Imagine a situation in which one source of sound is active and is then joined by a second identical 
source, such as one person speaking and then a second person speaking at the same time or one musical instrument 
playing and then being joined by a second instrument.

Categorize  This example is a relatively simple analysis problem requiring Equation 17.14.

S O L U T I O N

Table 17.2  

  Sound Levels
Source of Sound b (dB)

Nearby jet airplane 150
Jackhammer;  

machine gun 130
Siren; rock concert 120
Subway; power  

lawn mower 100
Busy traffic 80
Vacuum cleaner 70
Normal conversation 60
Mosquito buzzing 40
Whisper 30
Rustling leaves 10
Threshold of hearing 0

▸ 17.2 c o n t i n u e d

continued
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Analyze  Use Equation 17.14 to calculate the 
sound level at the worker’s location with one 
machine operating:

b1 5 10 log a 2.0 3 1027 W/m2

1.00 3 10212 W/m2b 5 10 log 12.0 3 105 2 5  53 dB

Use Equation 17.14 to calculate the sound 
level at the worker’s location with double  
the intensity:

b2 5 10 log a 4.0 3 1027 W/m2

1.00 3 10212 W/m2b 5 10 log 14.0 3 105 2 5  56 dB

(B)  Find the sound level heard by the worker when two machines are operating.

S O L U T I O N

Finalize  These results show that when the intensity is doubled, the sound level increases by only 3 dB. This 3-dB 
increase is independent of the original sound level. (Prove this to yourself!)

 Loudness is a psychological response to a sound. It depends on both the intensity and the frequency of the 
sound. As a rule of thumb, a doubling in loudness is approximately associated with an increase in sound level of 10 dB. 
(This rule of thumb is relatively inaccurate at very low or very high frequencies.) If the loudness of the machines in this 
example is to be doubled, how many machines at the same distance from the worker must be running?

Answer  Using the rule of thumb, a doubling of loudness corresponds to a sound level increase of 10 dB. Therefore,

b2 2 b1 5 10 dB 5 10 log aI2

I0
b 2 10 log aI1

I0
b 5 10 log aI2

I1
b

 log aI2

I1
b 5 1 S I2 5 10I1

Therefore, ten machines must be operating to double the loudness.

WHAT IF ?

Loudness and Frequency
The discussion of sound level in decibels relates to a physical measurement of the 
strength of a sound. Let us now extend our discussion from the What If? section 
of Example 17.3 concerning the psychological “measurement” of the strength of a 
sound.
 Of course, we don’t have instruments in our bodies that can display numerical 
values of our reactions to stimuli. We have to “calibrate” our reactions somehow 
by comparing different sounds to a reference sound, but that is not easy to accom-
plish. For example, earlier we mentioned that the threshold intensity is 10212 W/m2,  
corresponding to an intensity level of 0 dB. In reality, this value is the threshold 
only for a sound of frequency 1 000 Hz, which is a standard reference frequency in 
acoustics. If we perform an experiment to measure the threshold intensity at other 
frequencies, we find a distinct variation of this threshold as a function of frequency. 
For example, at 100 Hz, a barely audible sound must have an intensity level of about  
30 dB! Unfortunately, there is no simple relationship between physical measurements 
and psychological “measurements.” The 100-Hz, 30-dB sound is psychologically  
“equal” in loudness to the 1 000-Hz, 0-dB sound (both are just barely audible), but 
they are not physically equal in sound level (30 dB 2 0 dB).
 By using test subjects, the human response to sound has been studied, and the 
results are shown in the white area of Figure 17.7 along with the approximate fre-
quency and sound-level ranges of other sound sources. The lower curve of the white 
area corresponds to the threshold of hearing. Its variation with frequency is clear 
from this diagram. Notice that humans are sensitive to frequencies ranging from 
about 20 Hz to about 20 000 Hz. The upper bound of the white area is the thresh-

 

▸ 17.3 c o n t i n u e d
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old of pain. Here the boundary of the white area appears straight because the psy-
chological response is relatively independent of frequency at this high sound level.

The most dramatic change with frequency is in the lower left region of the white 
area, for low frequencies and low intensity levels. Our ears are particularly insen-
sitive in this region. If you are listening to your home entertainment system and 
the bass (low frequencies) and treble (high frequencies) sound balanced at a high 
volume, try turning the volume down and listening again. You will probably notice 
that the bass seems weak, which is due to the insensitivity of the ear to low frequen-
cies at low sound levels as shown in Figure 17.7.

17.4 The Doppler Effect
Perhaps you have noticed how the sound of a vehicle’s horn changes as the vehicle 
moves past you. The frequency of the sound you hear as the vehicle approaches you 
is higher than the frequency you hear as it moves away from you. This experience is 
one example of the Doppler effect.3

To see what causes this apparent frequency change, imagine you are in a boat 
that is lying at anchor on a gentle sea where the waves have a period of T 5 3.0 s. 
Hence, every 3.0 s a crest hits your boat. Figure 17.8a shows this situation, with 
the water waves moving toward the left. If you set your watch to t 5 0 just as one 
crest hits, the watch reads 3.0 s when the next crest hits, 6.0 s when the third crest 

17.4
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Figure 17.7  Approximate 
ranges of frequency and sound 
level of various sources and that of 
normal human hearing, shown by 
the white area. (From R. L. Reese, 
University Physics, Pacific Grove, 
Brooks/Cole, 2000.)

3Named after Austrian physicist Christian Johann Doppler (1803–1853), who in 1842 predicted the effect for both 
sound waves and light waves.
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In all frames, the waves 
travel to the left, and their 
source is far to the right 
of the boat, out of the 
frame of the figure.
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b

vwaves
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Figure 17.8  (a) Waves moving 
toward a stationary boat. (b) The 
boat moving toward the wave 
source. (c) The boat moving away 
from the wave source.
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hits, and so on. From these observations, you conclude that the wave frequency is  
f 5 1/T 5 1/(3.0 s) 5 0.33 Hz. Now suppose you start your motor and head directly 
into the oncoming waves as in Figure 17.8b. Again you set your watch to t 5 0 as a 
crest hits the front (the bow) of your boat. Now, however, because you are moving 
toward the next wave crest as it moves toward you, it hits you less than 3.0 s after 
the first hit. In other words, the period you observe is shorter than the 3.0-s period 
you observed when you were stationary. Because f 5 1/T, you observe a higher wave 
frequency than when you were at rest.
 If you turn around and move in the same direction as the waves (Fig. 17.8c), you 
observe the opposite effect. You set your watch to t 5 0 as a crest hits the back (the 
stern) of the boat. Because you are now moving away from the next crest, more 
than 3.0 s has elapsed on your watch by the time that crest catches you. Therefore, 
you observe a lower frequency than when you were at rest.
 These effects occur because the relative speed between your boat and the waves 
depends on the direction of travel and on the speed of your boat. (See Section 4.6.) 
When you are moving toward the right in Figure 17.8b, this relative speed is higher 
than that of the wave speed, which leads to the observation of an increased fre-
quency. When you turn around and move to the left, the relative speed is lower, as is 
the observed frequency of the water waves.
 Let’s now examine an analogous situation with sound waves in which the water 
waves become sound waves, the water becomes the air, and the person on the boat 
becomes an observer listening to the sound. In this case, an observer O is moving 
and a sound source S is stationary. For simplicity, we assume the air is also station-
ary and the observer moves directly toward the source (Fig. 17.9). The observer 
moves with a speed vO toward a stationary point source (vS 5 0), where stationary 
means at rest with respect to the medium, air.
 If a point source emits sound waves and the medium is uniform, the waves move 
at the same speed in all directions radially away from the source; the result is a 
spherical wave as mentioned in Section 17.3. The distance between adjacent wave 
fronts equals the wavelength l. In Figure 17.9, the circles are the intersections of 
these three-dimensional wave fronts with the two-dimensional paper.
 We take the frequency of the source in Figure 17.9 to be f, the wavelength to be l, 
and the speed of sound to be v. If the observer were also stationary, he would detect 
wave fronts at a frequency f. (That is, when vO 5 0 and vS 5 0, the observed frequency 
equals the source frequency.) When the observer moves toward the source, the 
speed of the waves relative to the observer is v9 5 v 1 vO , as in the case of the boat in 
Figure 17.8, but the wavelength l is unchanged. Hence, using Equation 16.12, v 5 lf,  
we can say that the frequency f 9 heard by the observer is increased and is given by

f r 5
v r
l

5
v 1 vO

l

Because l 5 v/f , we can express f 9 as

 f r 5 av 1 vO

v b f 1observer moving toward source 2  (17.15)

If the observer is moving away from the source, the speed of the wave relative to the 
observer is v9 5 v 2 vO . The frequency heard by the observer in this case is decreased 
and is given by

 f r 5 av 2 vO

v b f    ( observer moving away from source) (17.16)

 These last two equations can be reduced to a single equation by adopting a sign 
convention. Whenever an observer moves with a speed vO relative to a stationary 
source, the frequency heard by the observer is given by Equation 17.15, with vO 
interpreted as follows: a positive value is substituted for vO when the observer moves 

Figure 17.9 An observer O  
(the cyclist) moves with a speed  
vO toward a stationary point 
source S, the horn of a parked 
truck. The observer hears a fre-
quency f 9 that is greater than the 
source frequency.

O

O

S

vS
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toward the source, and a negative value is substituted when the observer moves 
away from the source.

Now suppose the source is in motion and the observer is at rest. If the source 
moves directly toward observer A in Figure 17.10a, each new wave is emitted from a 
position to the right of the origin of the previous wave. As a result, the wave fronts 
heard by the observer are closer together than they would be if the source were not 
moving. (Fig. 17.10b shows this effect for waves moving on the surface of water.) 
As a result, the wavelength l9 measured by observer A is shorter than the wave-
length l of the source. During each vibration, which lasts for a time interval T (the 
period), the source moves a distance vST 5 vS /f and the wavelength is shortened by 
this amount. Therefore, the observed wavelength l9 is

l r 5 l 2 Dl 5 l 2
vS

f

Because l 5 v/f, the frequency f 9 heard by observer A is

f r 5
v
l r

5
v

l 2 1vS /f 2 5
v1v/f 2 2 1vS /f 2

f r 5 a v
v 2 vS

b f     (source moving toward observer) (17.17)

That is, the observed frequency is increased whenever the source is moving toward 
the observer.
 When the source moves away from a stationary observer, as is the case for 
observer B in Figure 17.10a, the observer measures a wavelength l9 that is greater 
than l and hears a decreased frequency:

 f r 5 a v
v 1 vS

b f     (source moving away from observer) (17.18)

 We can express the general relationship for the observed frequency when a 
source is moving and an observer is at rest as Equation 17.17, with the same sign 
convention applied to vS as was applied to vO : a positive value is substituted for vS
when the source moves toward the observer, and a negative value is substituted 
when the source moves away from the observer.

Finally, combining Equations 17.15 and 17.17 gives the following general rela-
tionship for the observed frequency that includes all four conditions described by 
Equations 17.15 through 17.18:

f r 5 av 1 vO

v 2 vS
b f  (17.19)f r 5 av 1 vO

v 2 vS
b f  General Doppler-shift 

expression

Figure 17.10 (a) A source S mov-
ing with a speed vS toward a sta-
tionary observer A and away from 
a stationary observer B. Observer 
A hears an increased frequency, 
and observer B hears a decreased 
frequency. (b) The Doppler effect 
in water, observed in a ripple tank. 
Letters shown in the photo refer 
to Quick Quiz 17.4.S
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Pitfall Prevention 17.1
Doppler Effect Does Not Depend  
on Distance Some people think 
that the Doppler effect depends 
on the distance between the 
source and the observer. Although 
the intensity of a sound varies 
as the distance changes, the 
apparent frequency depends only 
on the relative speed of source 
and observer. As you listen to 
an approaching source, you will 
detect increasing intensity but 
constant frequency. As the source 
passes, you will hear the frequency 
suddenly drop to a new constant 
value and the intensity begin to 
decrease.
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In this expression, the signs for the values substituted for vO and vS depend on the 
direction of the velocity. A positive value is used for motion of the observer or the 
source toward the other (associated with an increase in observed frequency), and 
a negative value is used for motion of one away from the other (associated with a 
decrease in observed frequency).
 Although the Doppler effect is most typically experienced with sound waves, it 
is a phenomenon common to all waves. For example, the relative motion of source 
and observer produces a frequency shift in light waves. The Doppler effect is used 
in police radar systems to measure the speeds of motor vehicles. Likewise, astrono-
mers use the effect to determine the speeds of stars, galaxies, and other celestial 
objects relative to the Earth.

Q uick Quiz 17.4  Consider detectors of water waves at three locations A, B, and C 
in Figure 17.10b. Which of the following statements is true? (a) The wave speed 
is highest at location A. (b) The wave speed is highest at location C. (c) The 
detected wavelength is largest at location B. (d) The detected wavelength is larg-
est at location C. (e) The detected frequency is highest at location C. (f) The 
detected frequency is highest at location A.

Q uick Quiz 17.5  You stand on a platform at a train station and listen to a train 
approaching the station at a constant velocity. While the train approaches, but 
before it arrives, what do you hear? (a) the intensity and the frequency of the 
sound both increasing (b) the intensity and the frequency of the sound both 
decreasing (c) the intensity increasing and the frequency decreasing (d) the 
intensity decreasing and the frequency increasing (e) the intensity increasing 
and the frequency remaining the same (f) the intensity decreasing and the fre-
quency remaining the same

Q

Q

Example 17.4   The Broken Clock Radio 

Your clock radio awakens you with a steady and irritating sound of frequency 600 Hz. One morning, it malfunctions 
and cannot be turned off. In frustration, you drop the clock radio out of your fourth-story dorm window, 15.0 m from 
the ground. Assume the speed of sound is 343 m/s. As you listen to the falling clock radio, what frequency do you hear 
just before you hear it striking the ground?

Conceptualize  The speed of the clock radio increases as it falls. Therefore, it is a source of sound moving away from 
you with an increasing speed so the frequency you hear should be less than 600 Hz.

Categorize  We categorize this problem as one in which we combine the particle under constant acceleration model for the 
falling radio with our understanding of the frequency shift of sound due to the Doppler effect.

AM

S O L U T I O N

Analyze  Because the clock radio is modeled as a parti-
cle under constant acceleration due to gravity, use Equa-
tion 2.13 to express the speed of the source of sound:

(1)   vS 5 vyi 1 ayt 5 0 2 gt 5 2gt

From Equation 2.16, find the time at which the clock 
radio strikes the ground:

yf 5 yi 1 vyit 2 1
2gt 2 5 0 1 0 2 1

2gt 2 S t 5 Å2
2yf

g

Substitute into Equation (1): vS 5 12g 2 Å2
2yf

g
5 2"22g yf

Use Equation 17.19 to determine the Doppler-shifted 
frequency heard from the falling clock radio:

f r 5 c v 1 0

v 2 12"22gyf 2 d f 5 a v

v 1 "22gyf

b f



Example 17.5   Doppler Submarines

A submarine (sub A) travels through water at a speed of 8.00 m/s, emitting a sonar wave at a frequency of 1 400 Hz. 
The speed of sound in the water is 1 533 m/s. A second submarine (sub B) is located such that both submarines are 
traveling directly toward each other. The second submarine is moving at 9.00 m/s.

(A)  What frequency is detected by an observer riding on sub B as the subs approach each other?

Conceptualize  Even though the problem involves subs moving in water, there is a Doppler effect just like there is when 
you are in a moving car and listening to a sound moving through the air from another car.

Categorize  Because both subs are moving, we categorize this problem as one involving the Doppler effect for both a 
moving source and a moving observer.

S O L U T I O N

Analyze  Use Equation 17.19 to find the Doppler-
shifted frequency heard by the observer in sub B, 
being careful with the signs assigned to the source 
and observer speeds:

 f r 5 av 1 vO

v 2 vS
b f

 f r 5 c1 533 m/s 1 119.00 m/s 2
1 533 m/s 2 118.00 m/s 2 d 11 400 Hz 2 5  1 416 Hz

Use Equation 17.19 to find the Doppler-shifted fre-
quency heard by the observer in sub B, again being 
careful with the signs assigned to the source and 
observer speeds:

 f r 5 av 1 vO

v 2 vS
b f

 f r 5 c1 533 m/s 1 129.00 m/s 2
1 533 m/s 2 128.00 m/s 2  d 11 400 Hz 2 5  1 385 Hz

The sound of apparent frequency 1 416 Hz found 
in part (A) is reflected from a moving source (sub 
B) and then detected by a moving observer (sub A). 
Find the frequency detected by sub A:

  f s 5 av 1 vO

v 2 vS
b f r

5 c1 533 m/s 1 118.00 m/s 2
1 533 m/s 2 119.00 m/s 2 d 11 416 Hz 2 5 1 432 Hz

(B)  The subs barely miss each other and pass. What frequency is detected by an observer riding on sub B as the subs 
recede from each other?

S O L U T I O N

Notice that the frequency drops from 1 416 Hz to 1 385 Hz as the subs pass. This effect is similar to the drop in fre-
quency you hear when a car passes by you while blowing its horn.

(C) While the subs are approaching each other, some of the sound from sub A reflects from sub B and returns to sub 
A. If this sound were to be detected by an observer on sub A, what is its frequency?

S O L U T I O N

Substitute numerical values: f r 5 c 343 m/s

343 m/s 1 "22 19.80 m/s2 2 1215.0 m 2 d 1600 Hz 2
5 571 Hz

Finalize  The frequency is lower than the actual frequency of 600 Hz because the clock radio is moving away from you. 
If it were to fall from a higher floor so that it passes below y 5 215.0 m, the clock radio would continue to accelerate 
and the frequency would continue to drop.

 

▸ 17.4 c o n t i n u e d

continued
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▸ 17.5 c o n t i n u e d

Finalize This technique is used by police officers to measure the speed of a moving car. Microwaves are emitted from 
the police car and reflected by the moving car. By detecting the Doppler-shifted frequency of the reflected micro-
waves, the police officer can determine the speed of the moving car.

Shock Waves
Now consider what happens when the speed vS of a source exceeds the wave speed v. 
This situation is depicted graphically in Figure 17.11a. The circles represent spheri-
cal wave fronts emitted by the source at various times during its motion. At t 5 0, 
the source is at S0 and moving toward the right. At later times, the source is at S1, 
and then S2, and so on. At the time t, the wave front centered at S0 reaches a radius 
of vt. In this same time interval, the source travels a distance vSt. Notice in Figure 
17.11a that a straight line can be drawn tangent to all the wave fronts generated at 
various times. Therefore, the envelope of these wave fronts is a cone whose apex 
half-angle u (the “Mach angle”) is given by

sin u 5
vt
vS t

5
v
vS

The ratio vS/v is referred to as the Mach number, and the conical wave front pro-
duced when vS . v (supersonic speeds) is known as a shock wave. An interesting anal-
ogy to shock waves is the V-shaped wave fronts produced by a boat (the bow wave) 
when the boat’s speed exceeds the speed of the surface-water waves (Fig. 17.12).
 Jet airplanes traveling at supersonic speeds produce shock waves, which are 
responsible for the loud “sonic boom” one hears. The shock wave carries a great 
deal of energy concentrated on the surface of the cone, with correspondingly great 
pressure variations. Such shock waves are unpleasant to hear and can cause dam-
age to buildings when aircraft fly supersonically at low altitudes. In fact, an air-
plane flying at supersonic speeds produces a double boom because two shock waves 
are formed, one from the nose of the plane and one from the tail. People near the 
path of a space shuttle as it glides toward its landing point have reported hearing 
what sounds like two very closely spaced cracks of thunder.

Q uick Quiz 17.6  An airplane flying with a constant velocity moves from a cold air 
mass into a warm air mass. Does the Mach number (a) increase, (b) decrease, or 
(c) stay the same?

Q

Figure 17.11  (a) A representa-
tion of a shock wave produced 
when a source moves from S0 to 
the right with a speed vS that is 
greater than the wave speed v in 
the medium. (b) A stroboscopic 
photograph of a bullet moving at 
supersonic speed through the hot 
air above a candle.
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The envelope of the wave 
fronts forms a cone whose 
apex half-angle is given by
sin u � v/vS.
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Notice the shock wave in 
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Figure 17.12  The V-shaped bow 
wave of a boat is formed because 
the boat speed is greater than the 
speed of the water waves it gener-
ates. A bow wave is analogous to a 
shock wave formed by an airplane 
traveling faster than sound.
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(Fig. OQ17.3) sounding its siren at a frequency of  
500 Hz. Which statement is correct? (a)   You hear a 
frequency less than 500 Hz. (b) You hear a frequency 
equal to 500 Hz. (c) You hear a frequency greater 

 1. Table 17.1 shows the speed of sound is typically an 
order of magnitude larger in solids than in gases. To 
what can this higher value be most directly attributed? 
(a) the difference in density between solids and gases 
(b) the difference in compressibility between solids 
and gases (c) the limited size of a solid object com-
pared to a free gas (d) the impossibility of holding a 
gas under significant tension

 2. Two sirens A and B are sounding so that the frequency 
from A is twice the frequency from B. Compared with 
the speed of sound from A, is the speed of sound from 
B (a) twice as fast, (b) half as fast, (c) four times as fast, 
(d) one-fourth as fast, or (e) the same?

 3. As you travel down the highway in your car, an ambu-
lance approaches you from the rear at a high speed 

Concepts and Principles

 Sound waves are longitudinal 
and travel through a compressible 
medium with a speed that depends 
on the elastic and inertial proper-
ties of that medium. The speed 
of sound in a gas having a bulk 
modulus B and density r is

 v 5 ÅB
r

 (17.8)

 For sinusoidal sound waves, the variation in the position of an element of 
the medium is

 s(x, t) 5 smax cos (kx 2 vt) (17.1)

and the variation in pressure from the equilibrium value is

 DP 5 DPmax sin (kx 2 vt) (17.2)

where DPmax is the pressure amplitude. The pressure wave is 908 out of phase 
with the displacement wave. The relationship between smax and DPmax is

 DPmax 5 rvvsmax (17.10)

 The change in frequency heard by an observer whenever there is relative motion between a source of sound waves 
and the observer is called the Doppler effect. The observed frequency is

 f r 5 av 1 vO

v 2 vS
b f  (17.19)

In this expression, the signs for the values substituted for vO and vS depend on the direction of the velocity. A positive 
value for the speed of the observer or source is substituted if the velocity of one is toward the other, whereas a nega-
tive value represents a velocity of one away from the other.

Objective Questions 1. denotes answer available in Student Solutions Manual/Study Guide

Figure OQ17.3
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Summary

 The intensity of a periodic sound 
wave, which is the power per unit  
area, is

 I ;
1Power 2 avg

A
5
1DPmax 22

2rv
 (17.11, 17.12)

 The sound level of a sound wave in decibels is

 b ; 10 log a I
I0
b  (17.14)

The constant I0 is a reference intensity, usually taken to be at the 
 threshold of hearing (1.00 3 10212 W/m2), and I is the intensity of the 
sound wave in watts per square meter.

Definitions
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how does the intensity change? (a) It becomes one-
ninth as large. (b) It becomes one-third as large. (c) It 
is unchanged. (d) It becomes three times larger. (e) It 
becomes nine times larger.

 10. Suppose an observer and a source of sound are both at 
rest relative to the ground and a strong wind is blow-
ing away from the source toward the observer. (i) What 
effect does the wind have on the observed frequency? 
(a) It causes an increase. (b) It causes a decrease. (c) It 
causes no change. (ii) What effect does the wind have 
on the observed wavelength? Choose from the same 
possibilities as in part (i). (iii) What effect does the 
wind have on the observed speed of the wave? Choose 
from the same possibilities as in part (i).

 11. A source of sound vibrates with constant frequency. 
Rank the frequency of sound observed in the follow-
ing cases from highest to the lowest. If two frequencies 
are equal, show their equality in your ranking. All the 
motions mentioned have the same speed, 25 m/s. (a) The  
source and observer are stationary. (b) The source is 
moving toward a stationary observer. (c) The source 
is moving away from a stationary observer. (d) The 
observer is moving toward a stationary source. (e) The 
observer is moving away from a stationary source.

 12. With a sensitive sound-level meter, you measure the 
sound of a running spider as 210 dB. What does the 
negative sign imply? (a) The spider is moving away 
from you. (b) The frequency of the sound is too low to 
be audible to humans. (c) The intensity of the sound is 
too faint to be audible to humans. (d) You have made a 
mistake; negative signs do not fit with logarithms.

 13. Doubling the power output from a sound source emit-
ting a single frequency will result in what increase 
in decibel level? (a) 0.50  dB (b)  2.0 dB (c) 3.0 dB 
(d) 4.0 dB (e) above 20 dB

 14. Of the following sounds, which one is most likely to 
have a sound level of 60 dB? (a) a rock concert (b) the 
turning of a page in this textbook (c) dinner-table con-
versation (d) a cheering crowd at a football game

than 500  Hz. (d) You hear a frequency greater than  
500 Hz, whereas the ambulance driver hears a fre-
quency lower than 500 Hz. (e)  You hear a frequency 
less than 500 Hz, whereas the ambulance driver hears 
a frequency of 500 Hz.

 4. What happens to a sound wave as it travels from air 
into water? (a) Its intensity increases. (b) Its wavelength 
decreases. (c) Its frequency increases. (d) Its frequency 
remains the same. (e) Its velocity decreases.

 5. A church bell in a steeple rings once. At 300 m in front of 
the church, the maximum sound intensity is 2 mW/m2.  
At 950 m behind the church, the maximum intensity is 
0.2 mW/m2. What is the main reason for the difference 
in the intensity? (a) Most of the sound is absorbed by the 
air before it gets far away from the source. (b) Most of the 
sound is absorbed by the ground as it travels away from  
the source. (c) The bell broadcasts the sound mostly 
toward the front. (d) At a larger distance, the power is 
spread over a larger area.

 6. If a 1.00-kHz sound source moves at a speed of 50.0 m/s  
toward a listener who moves at a speed of 30.0 m/s in 
a direction away from the source, what is the apparent 
frequency heard by the listener? (a) 796 Hz (b) 949 Hz 
(c) 1 000 Hz (d) 1 068 Hz (e) 1 273 Hz

 7. A sound wave can be characterized as (a) a transverse 
wave, (b) a longitudinal wave, (c) a transverse wave or a 
longitudinal wave, depending on the nature of its source, 
(d) one that carries no energy, or (e) a wave that does not 
require a medium to be transmitted from one place to 
the other.

 8. Assume a change at the source of sound reduces the 
wavelength of a sound wave in air by a factor of 2. (i) What 
happens to its frequency? (a) It increases by a factor of 4. 
(b) It increases by a factor of 2. (c) It is unchanged. (d) It 
decreases by a factor of 2. (e) It changes by an unpredict-
able factor. (ii) What happens to its speed? Choose from 
the same possibilities as in part (i).

 9. A point source broadcasts sound into a uniform 
medium. If the distance from the source is tripled, 

 1. How can an object move with respect to an observer so 
that the sound from it is not shifted in frequency?

 2. Older auto-focus cameras sent out a pulse of sound 
and measured the time interval required for the pulse 
to reach an object, reflect off of it, and return to be 
detected. Can air temperature affect the camera’s 
focus? New cameras use a more reliable infrared system.

 3. A friend sitting in her car far down the road waves to 
you and beeps her horn at the same moment. How 
far away must she be for you to calculate the speed of 
sound to two significant figures by measuring the time 
interval required for the sound to reach you?

 4. How can you determine that the speed of sound is 
the same for all frequencies by listening to a band or 
orchestra?

 5. Explain how the distance 
to a lightning bolt (Fig. 
CQ17.5) can be deter-
mined by counting the 
seconds between the flash 
and the sound of thunder.

 6. You are driving toward a 
cliff and honk your horn. 
Is there a Doppler shift of 
the sound when you hear 
the echo? If so, is it like a 
moving source or a mov-
ing observer? What if the 
reflection occurs not from 
a cliff, but from the forward edge of a huge alien space-
craft moving toward you as you drive?

Conceptual Questions 1. denotes answer available in Student Solutions Manual/Study Guide

Figure CQ17.5

©
 iS

to
ck

ph
ot

o.
co

m
/C

ol
in

 O
rt

hn
er



 Problems 525

 4. An experimenter wishes to generate in air a sound wave 
that has a displacement amplitude of 5.50 3 1026 m. The 
pressure amplitude is to be limited to 0.840 Pa. What is 
the minimum wavelength the sound wave can have?

 5. Calculate the pressure amplitude of a 2.00-kHz sound 
wave in air, assuming that the displacement amplitude 
is equal to 2.00 3 10–8 m.

 6. Earthquakes at fault lines in the Earth’s crust create 
seismic waves, which are longitudinal (P waves) or 
transverse (S waves). The P waves have a speed of about 
7 km/s. Estimate the average bulk modulus of the 
Earth’s crust given that the density of rock is about  
2 500 kg/m3.

 7. A dolphin (Fig. P17.7) in sea-
water at a temperature of 258C 
emits a sound wave directed 
toward the ocean floor 150 m 
below. How much time passes 
before it hears an echo?

 8. A sound wave propagates in 
air at 278C with frequency 
4.00 kHz. It passes through a 
region where the temperature 
gradually changes and then 
moves through air at 08C. Give 
numerical answers to the fol-
lowing questions to the extent possible and state your 
reasoning about what happens to the wave physically. 
(a) What happens to the speed of the wave? (b) What 
happens to its frequency? (c)  What happens to its 
wavelength?

 9. Ultrasound is used in medicine both for diagnostic 
imaging (Fig. P17.9, page 526) and for therapy. For  

M

Figure P17.7
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Note: Throughout this chapter, pressure variations DP are 
measured relative to atmospheric pressure, 1.013 3 105 Pa.

Section 17.1  Pressure Variations in Sound Waves

 1. A sinusoidal sound wave moves through a medium and 
is described by the displacement wave function

s(x, t) 5 2.00 cos (15.7x 2 858t)

  where s is in micrometers, x is in meters, and t is in sec-
onds. Find (a) the amplitude, (b) the wavelength, and 
(c) the speed of this wave. (d) Determine the instanta-
neous displacement from equilibrium of the elements 
of the medium at the position x 5 0.050 0 m at t 5 
3.00 ms. (e) Determine the maximum speed of the ele-
ment’s oscillatory motion.

 2. As a certain sound wave travels through the air, it 
produces pressure variations (above and below atmo-
spheric pressure) given by DP 5 1.27 sin (px 2 340pt) 
in SI units. Find (a) the amplitude of the pressure vari-
ations, (b) the frequency, (c) the wavelength in air, and 
(d) the speed of the sound wave.

 3. Write an expression that describes the pressure varia-
tion as a function of position and time for a sinusoi-
dal sound wave in air. Assume the speed of sound is  
343 m/s, l 5 0.100 m, and DPmax 5 0.200 Pa.

Section 17.2  Speed of Sound Waves

Problem 85 in Chapter 2 can also be assigned with this 
section.

Note: In the rest of this chapter, unless otherwise speci-
fied, the equilibrium density of air is r 5 1.20 kg/m3 
and the speed of sound in air is v 5 343 m/s. Use Table 
17.1 to find speeds of sound in other media.

W

Problems

 
The problems found in this  

 chapter may be assigned 

online in Enhanced WebAssign

1.  straightforward; 2. intermediate;  

3. challenging

1.   full solution available in the Student 
Solutions Manual/Study Guide

AMT   Analysis Model tutorial available in 

Enhanced WebAssign

 GP  Guided Problem

 M   Master It tutorial available in Enhanced 

WebAssign

 W   Watch It video solution available in 

Enhanced WebAssign

BIO
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 7. The radar systems used by police to detect speeders are 
sensitive to the Doppler shift of a pulse of microwaves. 
Discuss how this sensitivity can be used to measure the 
speed of a car.

 8. The Tunguska event. On June 30, 1908, a meteor 
burned up and exploded in the atmosphere above 
the Tunguska River valley in Siberia. It knocked down 
trees over thousands of square kilometers and started 
a forest fire, but produced no crater and apparently 
caused no human casualties. A witness sitting on his 
doorstep outside the zone of falling trees recalled 
events in the following sequence. He saw a moving 
light in the sky, brighter than the Sun and descending 

at a low angle to the horizon. He felt his face become 
warm. He felt the ground shake. An invisible agent 
picked him up and immediately dropped him about 
a meter from where he had been seated. He heard a 
very loud protracted rumbling. Suggest an explana-
tion for these observations and for the order in which 
they happened.

 9. A sonic ranger is a device that determines the distance 
to an object by sending out an ultrasonic sound pulse 
and measuring the time interval required for the wave 
to return by reflection from the object. Typically, these 
devices cannot reliably detect an object that is less than 
half a meter from the sensor. Why is that?
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 14. A flowerpot is knocked off a balcony from a height d 
above the sidewalk as shown in Figure P17.13. It falls 
toward an unsuspecting man of height h who is stand-
ing below. Assume the man requires a time interval of 
Dt to respond to the warning. How close to the sidewalk 
can the flowerpot fall before it is too late for a warning 
shouted from the balcony to reach the man in time? Use 
the symbol v for the speed of sound.

 15. The speed of sound in air (in meters per second) 
depends on temperature according to the approxi-
mate expression

v 5 331.5 1 0.607TC

  where TC is the Celsius temperature. In dry air, the 
temperature decreases about 18C for every 150-m rise 
in altitude. (a) Assume this change is constant up to an 
altitude of 9 000 m. What time interval is required for 
the sound from an airplane flying at 9 000 m to reach 
the ground on a day when the ground temperature is 
308C? (b) What If? Compare your answer with the time 
interval required if the air were uniformly at 308C. 
Which time interval is longer?

 16. A sound wave moves down a cylinder as in Figure 
17.2. Show that the pressure variation of the wave is 
described by DP 5 6 rvv!s 2

max 2 s 2, where s 5 s(x, t)  
is given by Equation 17.1.

 17. A hammer strikes one end of a thick iron rail of length 
8.50 m. A microphone located at the opposite end of 
the rail detects two pulses of sound, one that travels 
through the air and a longitudinal wave that travels 
through the rail. (a) Which pulse reaches the micro-
phone first? (b) Find the separation in time between 
the arrivals of the two pulses.

 18. A cowboy stands on horizontal ground between two 
parallel, vertical cliffs. He is not midway between the 
cliffs. He fires a shot and hears its echoes. The second 
echo arrives 1.92 s after the first and 1.47 s before the 
third. Consider only the sound traveling parallel to  
the ground and reflecting from the cliffs. (a) What is 
the distance between the cliffs? (b) What If? If he can 
hear a fourth echo, how long after the third echo does 
it arrive?

Section 17.3  Intensity of Periodic Sound Waves
 19. Calculate the sound level (in decibels) of a sound wave 

that has an intensity of 4.00 mW/m2.

 20. The area of a typical eardrum is about 5.00 3 1025 m2. 
(a) Calculate the average sound power incident on an 
eardrum at the threshold of pain, which corresponds 
to an intensity of 1.00 W/m2. (b) How much energy is 
transferred to the eardrum exposed to this sound for 
1.00 min?

 21. The intensity of a sound wave at a fixed distance 
from a speaker vibrating at 1.00 kHz is 0.600 W/m2.  
(a) Determine the intensity that results if the frequency 
is increased to 2.50 kHz while a constant displacement 
amplitude is maintained. (b) Calculate the intensity 
if the frequency is reduced to 0.500 kHz and the dis-
placement amplitude is doubled.

S

S

Q/C

diagnosis, short pulses of ultrasound are passed 
through the patient’s body. An echo reflected from a 
structure of interest is recorded, and the distance to 
the structure can be determined from the time delay 
for the echo’s return. To reveal detail, the wavelength 
of the reflected ultrasound must be small compared to 
the size of the object reflecting the wave. The speed of 
ultrasound in human tissue is about 1 500 m/s (nearly 
the same as the speed of sound in water). (a) What 
is the wavelength of ultrasound with a frequency of  
2.40 MHz? (b) In the whole set of imaging techniques, 
frequencies in the range 1.00 MHz to 20.0 MHz are 
used. What is the range of wavelengths corresponding 
to this range of frequencies?

Figure P17.9 A view of a fetus 
in the uterus made with ultra-
sound imaging.
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 10. A sound wave in air has a pressure amplitude equal to  
4.00 3 1023 Pa. Calculate the displacement amplitude 
of the wave at a frequency of 10.0 kHz.

 11. Suppose you hear a clap of thunder 16.2 s after see-
ing the associated lightning strike. The speed of light 
in air is 3.00 3 108 m/s. (a) How far are you from the 
lightning strike? (b) Do you need to know the value of 
the speed of light to answer? Explain.

 12. A rescue plane flies horizontally at a constant speed 
searching for a disabled boat. When the plane is 
directly above the boat, the boat’s crew blows a loud 
horn. By the time the plane’s sound detector receives 
the horn’s sound, the plane has traveled a distance 
equal to half its altitude above the ocean. Assuming it 
takes the sound 2.00 s to reach the plane, determine 
(a) the speed of the plane and (b) its altitude.

 13. A flowerpot is knocked off a 
window ledge from a height d 5 
20.0  m above the sidewalk as 
shown in Figure P17.13. It falls 
toward an unsuspecting man of 
height h 5 1.75 m who is stand-
ing below. Assume the man 
requires a time interval of Dt 5 
0.300 s to respond to the warn-
ing. How close to the sidewalk 
can the flowerpot fall before it 
is too late for a warning shouted 
from the balcony to reach the 
man in time?
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Figure P17.13  
Problems 13 and 14.
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 31. A family ice show is held at an enclosed arena. The 
skaters perform to music with level 80.0 dB. This level 
is too loud for your baby, who yells at 75.0 dB. (a) What 
total sound intensity engulfs you? (b) What is the com-
bined sound level?

 32. Two small speakers emit sound waves of different fre-
quencies equally in all directions. Speaker A has an 
output of 1.00 mW, and speaker B has an output of  
1.50 mW. Determine the sound level (in decibels) at 
point C in Figure P17.32 assuming (a) only speaker 
A emits sound, (b) only speaker B emits sound, and  
(c) both speakers emit sound.

C

A B

3.00 m 2.00 m

4.00 m

Figure P17.32

 33. A firework charge is detonated many meters above the 
ground. At a distance of d1 5 500 m from the explo-
sion, the acoustic pressure reaches a maximum of 
DPmax  5 10.0  Pa (Fig. P17.33). Assume the speed of 
sound is constant at 343  m/s throughout the atmo-
sphere over the region considered, the ground absorbs 
all the sound falling on it, and the air absorbs sound 
energy as described by the rate 7.00  dB/km. What 
is the sound level (in decibels) at a distance of d2 5  
4.00 3 103 m from the explosion?

d1 d2

Figure P17.33

 34. A fireworks rocket explodes at a height of 100 m above 
the ground. An observer on the ground directly under 
the explosion experiences an average sound intensity 
of 7.00 3 1022 W/m2 for 0.200 s. (a) What is the total 
amount of energy transferred away from the explosion 
by sound? (b) What is the sound level (in decibels) 
heard by the observer?

 35. The sound level at a distance of 3.00 m from a source is 
120 dB. At what distance is the sound level (a) 100 dB 
and (b) 10.0 dB?

 36. Why is the following situation impossible? It is early on a 
Saturday morning, and much to your displeasure your 
next-door neighbor starts mowing his lawn. As you try 
to get back to sleep, your next-door neighbor on the 
other side of your house also begins to mow the lawn 
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 22. The intensity of a sound wave at a fixed distance from a 
speaker vibrating at a frequency f is I. (a) Determine the 
intensity that results if the frequency is increased to f 9 
while a constant displacement amplitude is maintained. 
(b) Calculate the intensity if the frequency is reduced 
to f/2 and the displacement amplitude is doubled.

 23. A person wears a hearing aid that uniformly increases 
the sound level of all audible frequencies of sound by 
30.0 dB. The hearing aid picks up sound having a fre-
quency of 250 Hz at an intensity of 3.0 3 10211 W/m2. 
What is the intensity delivered to the eardrum?

 24. The sound intensity at a distance of 16 m from a noisy 
generator is measured to be 0.25 W/m2. What is the 
sound intensity at a distance of 28 m from the generator?

 25. The power output of a certain public-address speaker 
is 6.00 W. Suppose it broadcasts equally in all direc-
tions. (a) Within what distance from the speaker would 
the sound be painful to the ear? (b) At what distance 
from the speaker would the sound be barely audible?

 26. A sound wave from a police siren has an intensity of 
100.0  W/m2 at a certain point; a second sound wave 
from a nearby ambulance has an intensity level that is 
10 dB greater than the police siren’s sound wave at the 
same point. What is the sound level of the sound wave 
due to the ambulance?

 27. A train sounds its horn as it approaches an intersection. 
The horn can just be heard at a level of 50 dB by an 
observer 10 km away. (a) What is the average power gen-
erated by the horn? (b) What intensity level of the horn’s 
sound is observed by someone waiting at an intersection 
50 m from the train? Treat the horn as a point source 
and neglect any absorption of sound by the air.

 28. As the people sing in church, the sound level every-
where inside is 101 dB. No sound is transmitted through 
the massive walls, but all the windows and doors 
are open on a summer morning. Their total area is  
22.0 m2. (a) How much sound energy is radiated 
through the windows and doors in 20.0 min? (b) Sup-
pose the ground is a good reflector and sound radi-
ates from the church uniformly in all horizontal and 
upward directions. Find the sound level 1.00 km away.

 29. The most soaring vocal melody is in Johann Sebastian 
Bach’s Mass in B Minor. In one section, the basses, ten-
ors, altos, and sopranos carry the melody from a low 
D to a high A. In concert pitch, these notes are now 
assigned frequencies of 146.8 Hz and 880.0 Hz. Find 
the wavelengths of (a) the initial note and (b) the final 
note. Assume the chorus sings the melody with a uni-
form sound level of 75.0 dB. Find the pressure ampli-
tudes of (c) the initial note and (d) the final note. Find 
the displacement amplitudes of (e) the initial note and 
(f) the final note.

 30. Show that the difference between decibel levels b1 and 
b2 of a sound is related to the ratio of the distances r1 
and r2 from the sound source by

b2 2 b1 5 20 log ar1

r2
b
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amplitude of this unit’s motion is 0.500 m. The 
speaker emits sound waves of frequency 440 Hz. Deter-
mine (a) the highest and (b) the lowest frequencies 
heard by the person to the right of the speaker. (c)If  
the maximum sound level heard by the person is 
60.0 dB when the speaker is at its closest distance d 5  
1.00  m from him, what is the minimum sound level 
heard by the observer?

m

d

k

Figure P17.41 Problems 41 and 42.

 42. Review. A block with a speaker bolted to it is connected 
to a spring having spring constant k and oscillates as 
shown in Figure P17.41. The total mass of the block and 
speaker is m, and the amplitude of this unit’s motion 
is A. The speaker emits sound waves of frequency f. 
Determine (a) the highest and (b) the lowest frequen-
cies heard by the person to the right of the speaker.  
(c) If the maximum sound level heard by the person 
is b when the speaker is at its closest distance d from 
him, what is the minimum sound level heard by the 
observer?

 43. Expectant parents are thrilled to hear their unborn 
baby’s heartbeat, revealed by an ultrasonic detector 
that produces beeps of audible sound in synchroniza-
tion with the fetal heartbeat. Suppose the fetus’s ven-
tricular wall moves in simple harmonic motion with an 
amplitude of 1.80 mm and a frequency of 115 beats per 
minute. (a) Find the maximum linear speed of the heart 
wall. Suppose a source mounted on the detector in 
contact with the mother’s abdomen produces sound at  
2 000 000.0 Hz, which travels through tissue at 1.50 km/s.  
(b) Find the maximum change in frequency between 
the sound that arrives at the wall of the baby’s heart 
and the sound emitted by the source. (c) Find the 
maximum change in frequency between the reflected 
sound received by the detector and that emitted by the 
source.

 44. Why is the following situation impossible? At the Summer 
Olympics, an athlete runs at a constant speed down a 
straight track while a spectator near the edge of the 
track blows a note on a horn with a fixed frequency. 
When the athlete passes the horn, she hears the fre-
quency of the horn fall by the musical interval called a 
minor third. That is, the frequency she hears drops to 
five-sixths its original value.

 45. Standing at a crosswalk, you hear a frequency of 
560 Hz from the siren of an approaching ambulance. 
After the ambulance passes, the observed frequency of 
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with an identical mower the same distance away. This 
situation annoys you greatly because the total sound 
now has twice the loudness it had when only one neigh-
bor was mowing.

Section 17.4  The Doppler Effect
 37. An ambulance moving at 42 m/s sounds its siren whose 

frequency is 450 Hz. A car is moving in the same direc-
tion as the ambulance at 25 m/s. What frequency does a 
person in the car hear (a) as the ambulance approaches 
the car? (b) After the ambulance passes the car?

 38. When high-energy charged particles move through 
a transparent medium with a speed greater than the 
speed of light in that medium, a shock wave, or bow 
wave, of light is produced. This phenomenon is called 
the Cerenkov effect. When a nuclear reactor is shielded 
by a large pool of water, 
Cerenkov radiation can 
be seen as a blue glow in 
the vicinity of the reactor 
core due to high-speed 
electrons moving through 
the water (Fig. 17.38). 
In a particular case, the 
Cerenkov radiation pro-
duces a wave front with an 
apex half-angle of 53.08. 
Calculate the speed of 
the electrons in the water. 
The speed of light in 
water is 2.25 3 108 m/s.

 39. A driver travels northbound on a highway at a speed 
of 25.0  m/s. A police car, traveling southbound at a 
speed of 40.0 m/s, approaches with its siren producing 
sound at a frequency of 2 500 Hz. (a) What frequency 
does the driver observe as the police car approaches? 
(b) What frequency does the driver detect after the 
police car passes him? (c) Repeat parts (a) and (b) for 
the case when the police car is behind the driver and 
travels northbound.

 40. Submarine A travels horizontally at 11.0 m/s through 
ocean water. It emits a sonar signal of frequency f 5  
5.27 3 103 Hz in the forward direction. Submarine B is 
in front of submarine A and traveling at 3.00 m/s rela-
tive to the water in the same direction as submarine 
A. A crewman in submarine B uses his equipment to 
detect the sound waves (“pings”) from submarine A. 
We wish to determine what is heard by the crewman 
in submarine B. (a) An observer on which submarine 
detects a frequency f 9 as described by Equation 17.19? 
(b) In Equation 17.19, should the sign of vS be positive 
or negative? (c) In Equation 17.19, should the sign of 
vO be positive or negative? (d) In Equation 17.19, what 
speed of sound should be used? (e) Find the frequency 
of the sound detected by the crewman on submarine B.

 41. Review. A block with a speaker bolted to it is con-
nected to a spring having spring constant k 5 20.0 N/m  
and  oscillates as shown in Figure P17.41. The total 
mass of the block and speaker is 5.00 kg, and the 

Figure P17.38
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to complaints, Strauss later transposed the note down 
to F above high C, 1.397 kHz. By what increment did 
the wavelength change?

 51. Trucks carrying garbage to the town dump form a 
nearly steady procession on a country road, all travel-
ing at 19.7 m/s in the same direction. Two trucks arrive 
at the dump every 3 min. A bicyclist is also traveling 
toward the dump, at 4.47 m/s. (a) With what frequency 
do the trucks pass the cyclist? (b) What If? A hill does 
not slow down the trucks, but makes the out-of-shape 
cyclist’s speed drop to 1.56 m/s. How often do the 
trucks whiz past the cyclist now?

 52. If a salesman claims a loudspeaker is rated at 150 W, 
he is referring to the maximum electrical power input 
to the speaker. Assume a loudspeaker with an input 
power of 150 W broadcasts sound equally in all direc-
tions and produces sound with a level of 103 dB at a 
distance of 1.60 m from its center. (a) Find its sound 
power output. (b) Find the efficiency of the speaker, 
that is, the fraction of input power that is converted 
into useful output power.

 53. An interstate highway has been built through a neigh-
borhood in a city. In the afternoon, the sound level 
in an apartment in the neighborhood is 80.0 dB as 
100 cars pass outside the window every minute. Late 
at night, the traffic flow is only five cars per minute. 
What is the average late-night sound level?

 54.  A train whistle ( f 5 400 Hz) sounds higher or lower 
in frequency depending on whether it approaches or 
recedes. (a) Prove that the difference in frequency 
between the approaching and receding train whistle is 

Df 5
2u/v

1 2 u2/v 2 f

  where u is the speed of the train and v is the speed of 
sound. (b) Calculate this difference for a train moving 
at a speed of 130 km/h. Take the speed of sound in air 
to be 340 m/s.

 55. An ultrasonic tape measure uses frequencies above  
20 MHz to determine dimensions of structures such as 
buildings. It does so by emitting a pulse of ultrasound 
into air and then measuring the time interval for an 
echo to return from a reflecting surface whose dis-
tance away is to be measured. The distance is displayed 
as a digital readout. For a tape measure that emits a 
pulse of ultrasound with a frequency of 22.0 MHz,  
(a) what is the distance to an object from which the echo 
pulse returns after 24.0 ms when the air temperature is 
26°C? (b) What should be the duration of the emitted 
pulse if it is to include ten cycles of the ultrasonic wave? 
(c) What is the spatial length of such a pulse?

 56. The tensile stress in a thick copper bar is 99.5% of its 
elastic breaking point of 13.0 3 1010 N/m2. If a 500-Hz  
sound wave is transmitted through the material, (a) what 
displacement amplitude will cause the bar to break?  
(b) What is the maximum speed of the elements of 
copper at this moment? (c) What is the sound intensity 
in the bar?

the siren is 480 Hz. Determine the ambulance’s speed 
from these observations.

 46. Review. A tuning fork vibrating at 512 Hz falls from 
rest and accelerates at 9.80 m/s2. How far below the 
point of release is the tuning fork when waves of fre-
quency 485 Hz reach the release point?

 47. A supersonic jet traveling at Mach 3.00 at an altitude 
of h 5 20 000 m is directly over a person at time t 5 0 
as shown in Figure P17.47. Assume the average speed 
of sound in air is 335 m/s over the path of the sound.  
(a) At what time will the person encounter the shock 
wave due to the sound emitted at t 5 0? (b) Where will 
the plane be when this shock wave is heard?

h

t � 0 t � ?

Observer
Observer hears
the “boom”

h

x

uu

a b

Figure P17.47

Additional Problems

 48. A bat (Fig. P17.48) can 
detect very small objects, 
such as an insect whose 
length is approximately 
equal to one wavelength 
of the sound the bat 
makes. If a bat emits 
chirps at a frequency of 
60.0 kHz and the speed 
of sound in air is 340 m/s,  
what is the smallest insect 
the bat can detect?

 49. Some studies suggest 
that the upper frequency 
limit of hearing is deter-
mined by the diameter of 
the eardrum. The diam-
eter of the eardrum is approximately equal to half the 
wavelength of the sound wave at this upper limit. If  
the relationship holds exactly, what is the diameter of 
the eardrum of a person capable of hearing 20 000 Hz?  
(Assume a body temperature of 37.0°C.)

 50. The highest note written for a singer in a published 
score was F-sharp above high C, 1.480 kHz, for Zerbi-
netta in the original version of Richard Strauss’s opera 
Ariadne auf Naxos. (a) Find the wavelength of this sound 
in air. (b) Suppose people in the fourth row of seats 
hear this note with level 81.0 dB. Find the displace-
ment amplitude of the sound. (c) What If? In response 
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530 Chapter 17 Sound Waves

together once. The sound pulse you produce has no 
definite frequency and no wavelength. The sound you 
hear reflected from the bleachers has an identifiable 
frequency and may remind you of a short toot on a 
trumpet, buzzer, or kazoo. (a) Explain what accounts 
for this sound. Compute order-of-magnitude esti-
mates for (b) the frequency, (c) the wavelength, and 
(d) the duration of the sound on the basis of data you 
specify.

 61. To measure her speed, a skydiver carries a buzzer emit-
ting a steady tone at 1 800 Hz. A friend on the ground 
at the landing site directly below listens to the ampli-
fied sound he receives. Assume the air is calm and 
the speed of sound is independent of altitude. While 
the skydiver is falling at terminal speed, her friend 
on the ground receives waves of frequency 2 150 Hz.  
(a) What is the skydiver’s speed of descent? (b) What 

If? Suppose the skydiver can hear the sound of the 
buzzer reflected from the ground. What frequency 
does she receive?

 62. Spherical waves of wavelength 45.0 cm propagate out-
ward from a point source. (a) Explain how the intensity 
at a distance of 240 cm compares with the intensity at a 
distance of 60.0 cm. (b) Explain how the amplitude at 
a distance of 240 cm compares with the amplitude at a 
distance of 60.0 cm. (c) Explain how the phase of the 
wave at a distance of 240 cm compares with the phase 
at 60.0 cm at the same moment.

 63. A bat (Fig. P17.48), moving at 5.00 m/s, is chasing a 
flying insect. If the bat emits a 40.0-kHz chirp and 
receives back an echo at 40.4 kHz, (a) what is the speed 
of the insect? (b) Will the bat be able to catch the 
insect? Explain.

 64. Two ships are moving along a line due east (Fig. P17.64). 
The trailing vessel has a speed relative to a land-based 
observation point of v1 5 64.0 km/h, and the lead-
ing ship has a speed of v2 5 45.0 km/h relative to that 
point. The two ships are in a region of the ocean where 
the current is moving uniformly due west at vcurrent 5 
10.0 km/h. The trailing ship transmits a sonar signal 
at a frequency of 1 200.0 Hz through the water. What 
frequency is monitored by the leading ship?

v1

vcurrent

v2

Figure P17.64

 65. A police car is traveling east at 40.0 m/s along a straight 
road, overtaking a car ahead of it moving east at  
30.0 m/s. The police car has a malfunctioning siren 
that is stuck at 1 000 Hz. (a) What would be the wave-
length in air of the siren sound if the police car were at 
rest? (b) What is the wavelength in front of the police 
car? (c) What is it behind the police car? (d) What is 
the frequency heard by the driver being chased?

M

Q/C

Q/C

 57. Review. A 150-g glider moves at v1 5 2.30 m/s on an 
air track toward an originally stationary 200-g glider 
as shown in Figure P17.57. The gliders undergo a com-
pletely inelastic collision and latch together over a time 
interval of 7.00 ms. A student suggests roughly half 
the decrease in mechanical energy of the two-glider 
system is transferred to the environment by sound. Is 
this suggestion reasonable? To evaluate the idea, find 
the implied sound level at a position 0.800 m from the 
gliders. If the student’s idea is unreasonable, suggest a 
better idea.

v�0

200 g150 g

1v
Before the collision

Latches

Figure P17.57

 58. Consider the following wave function in SI units:

DP 1r, t 2 5 a25.0
r
b sin 11.36r 2 2 030t 2

  Explain how this wave function can apply to a wave 
radiating from a small source, with r being the radial 
distance from the center of the source to any point out-
side the source. Give the most detailed description of 
the wave that you can. Include answers to such ques-
tions as the following and give representative values for 
any quantities that can be evaluated. (a) Does the wave 
move more toward the right or the left? (b) As it moves 
away from the source, what happens to its amplitude? 
(c) Its speed? (d) Its frequency? (e) Its wavelength?  
(f) Its power? (g) Its intensity?

 59. Review. For a certain type of steel, stress is always  
proportional to strain with Young’s modulus 20 3  
1010 N/m2. The steel has density 7.86 3 103 kg/m3. It 
will fail by bending permanently if subjected to com-
pressive stress greater than its yield strength sy 5  
400 MPa. A rod 80.0 cm long, made of this steel, is 
fired at 12.0 m/s straight at a very hard wall. (a) The 
speed of a one-dimensional compressional wave mov-
ing along the rod is given by v 5 !Y/r, where Y 
is Young’s modulus for the rod and r is the density. 
Calculate this speed. (b) After the front end of the 
rod hits the wall and stops, the back end of the rod 
keeps moving as described by Newton’s first law until 
it is stopped by excess pressure in a sound wave mov-
ing back through the rod. What time interval elapses 
before the back end of the rod receives the message 
that it should stop? (c) How far has the back end of the 
rod moved in this time interval? Find (d) the strain 
and (e) the stress in the rod. (f) If it is not to fail, what 
is the maximum impact speed a rod can have in terms 
of sy, Y, and r?

 60. A large set of unoccupied football bleachers has solid 
seats and risers. You stand on the field in front of 
the bleachers and sharply clap two wooden boards 
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from an upwind position so that she is moving in the 
direction in which the wind is blowing and (d) if she 
is approaching from a downwind position and moving 
against the wind?

Challenge Problems

 71. The Doppler equation presented in the text is valid 
when the motion between the observer and the 
source occurs on a straight line so that the source and 
observer are moving either directly toward or directly 
away from each other. If this restriction is relaxed, one 
must use the more general Doppler equation

f r 5 av 1 vO cos uO

v 2 vS cos uS
b f

  where uO and uS are defined in Figure P17.71a. Use 
the preceding equation to solve the following prob-
lem. A train moves at a constant speed of v 5 25.0 m/s 
toward the intersection shown in Figure P17.71b. A car 
is stopped near the crossing, 30.0 m from the tracks. 
The train’s horn emits a frequency of 500 Hz when the 
train is 40.0 m from the intersection. (a) What is the 
frequency heard by the passengers in the car? (b) If 
the train emits this sound continuously and the car is 
stationary at this position long before the train arrives 
until long after it leaves, what range of frequencies do 
passengers in the car hear? (c) Suppose the car is fool-
ishly trying to beat the train to the intersection and is 
traveling at 40.0 m/s toward the tracks. When the car is 
30.0 m from the tracks and the train is 40.0 m from the 
intersection, what is the frequency heard by the pas-
sengers in the car now?

vS
S

vO
S

uS

uO

a b

O

S
vS

Figure P17.71

 72. In Section 17.2, we derived the speed of sound in a gas 
using the impulse–momentum theorem applied to the 
cylinder of gas in Figure 17.5. Let us find the speed 
of sound in a gas using a different approach based on 
the element of gas in Figure 17.3. Proceed as follows. 
(a) Draw a force diagram for this element showing the 
forces exerted on the left and right surfaces due to 
the pressure of the gas on either side of the element.  
(b) By applying Newton’s second law to the element, 
show that

2
' 1DP 2
'x

A Dx 5 rA Dx 
'2s
't 2

S

 66. The speed of a one-dimensional compressional wave 
traveling along a thin copper rod is 3.56 km/s. The rod 
is given a sharp hammer blow at one end. A listener 
at the far end of the rod hears the sound twice, trans-
mitted through the metal and through air, with a time 
interval Dt between the two pulses. (a) Which sound 
arrives first? (b) Find the length of the rod as a func-
tion of Dt. (c) Find the length of the rod if Dt 5 127 ms. 
(d) Imagine that the copper rod is replaced by another 
material through which the speed of sound is vr .  
What is the length of the rod in terms of t and vr ? 
(e) Would the answer to part (d) go to a well-defined 
limit as the speed of sound in the rod goes to infinity? 
Explain your answer.

 67. A large meteoroid enters the Earth’s atmosphere at a 
speed of 20.0 km/s and is not significantly slowed 
before entering the ocean. (a) What is the Mach angle 
of the shock wave from the meteoroid in the lower 
atmosphere? (b) If we assume the meteoroid survives 
the impact with the ocean surface, what is the (initial) 
Mach angle of the shock wave the meteoroid produces 
in the water?

 68. Three metal rods are 
located relative to each 
other as shown in Fig-
ure P17.68, where L3 5 
L1 1 L2. The speed of 
sound in a rod is given 
by v 5 !Y/r, where Y 
is Young’s modulus for the rod and r is the density. Val-
ues of density and Young’s modulus for the three mate-
rials are r1 5 2.70 3 103 kg/m3, Y1 5 7.00 3 1010 N/m2,  
r2 5 11.3 3 103 kg/m3, Y2 5 1.60 3 1010 N/m2, r3 5  
8.80 3 103 kg/m3, Y3 5 11.0 3 1010 N/m2. If L3 5 1.50 m,  
what must the ratio L1/L2 be if a sound wave is to travel 
the length of rods 1 and 2 in the same time interval 
required for the wave to travel the length of rod 3?

 69. With particular experimental methods, it is possible to 
produce and observe in a long, thin rod both a trans-
verse wave whose speed depends primarily on ten-
sion in the rod and a longitudinal wave whose speed 
is determined by Young’s modulus and the density of 
the material according to the expression v 5 !Y/r. 
The transverse wave can be modeled as a wave in a 
stretched string. A particular metal rod is 150 cm long 
and has a radius of 0.200 cm and a mass of 50.9  g. 
Young’s modulus for the material is 6.80 3 1010 N/m2.  
What must the tension in the rod be if the ratio of the 
speed of longitudinal waves to the speed of transverse 
waves is 8.00?

 70. A siren mounted on the roof of a firehouse emits 
sound at a frequency of 900 Hz. A steady wind is blow-
ing with a speed of 15.0 m/s. Taking the speed of 
sound in calm air to be 343 m/s, find the wavelength 
of the sound (a) upwind of the siren and (b) down-
wind of the siren. Firefighters are approaching the 
siren from various directions at 15.0 m/s. What fre-
quency does a firefighter hear (c) if she is approaching 

Q/C

3
1 2

L3

L2L1

Figure P17.68
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 73. Equation 17.13 states that at distance r away from a 
point source with power (Power)avg, the wave intensity is

I 5
1Power 2 avg

4pr 2

  Study Figure 17.10 and prove that at distance r straight 
in front of a point source with power (Power)avg moving 
with constant speed vS the wave intensity is

I 5
1Power 2 avg

4pr 2 av 2 vS

v
b

S
  (c) By substituting DP 5 2(B 's/'x) (Eq. 17.3), derive 

the following wave equation for sound:

B
r

  
'2s
'x 2 5

'2s
't 2

  (d) To a mathematical physicist, this equation demon-
strates the existence of sound waves and determines their 
speed. As a physics student, you must take another step 
or two. Substitute into the wave equation the trial solu-
tion s(x, t) 5 smax cos (kx 2 vt). Show that this function 
satisfies the wave equation, provided v/k 5 v 5 !B/r.



Blues master B. B. King takes 

advantage of standing waves on 

strings. He changes to higher notes 

on the guitar by pushing the strings 

against the frets on the fingerboard, 

shortening the lengths of the 

portions of the strings that vibrate. 

(AP Photo/Danny Moloshok)
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The wave model was introduced in the previous two chapters. We have seen that 
waves are very different from particles. A particle is of zero size, whereas a wave has a 

characteristic size, its wavelength. Another important difference between waves and par-

ticles is that we can explore the possibility of two or more waves combining at one point 

in the same medium. Particles can be combined to form extended objects, but the particles 

must be at different locations. In contrast, two waves can both be present at the same loca-

tion. The ramifications of this possibility are explored in this chapter.

 When waves are combined in systems with boundary conditions, only certain allowed 

frequencies can exist and we say the frequencies are quantized. Quantization is a notion 

that is at the heart of quantum mechanics, a subject introduced formally in Chapter 40. 

There we show that analysis of waves under boundary conditions explains many of the 

quantum phenomena. In this chapter, we use quantization to understand the behavior of the 

wide array of musical instruments that are based on strings and air columns.
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We also consider the combination of waves having different frequencies. When two 

sound waves having nearly the same frequency interfere, we hear variations in the loudness 

called beats. Finally, we discuss how any nonsinusoidal periodic wave can be described as a 

sum of sine and cosine functions.

18.1 Analysis Model: Waves in Interference
Many interesting wave phenomena in nature cannot be described by a single travel-
ing wave. Instead, one must analyze these phenomena in terms of a combination of 
traveling waves. As noted in the introduction, waves have a remarkable difference 
from particles in that waves can be combined at the same location in space. To ana-
lyze such wave combinations, we make use of the superposition principle:

If two or more traveling waves are moving through a medium, the resultant 
value of the wave function at any point is the algebraic sum of the values of 
the wave functions of the individual waves.

Waves that obey this principle are called linear waves. (See Section 16.6.) In the case 
of mechanical waves, linear waves are generally characterized by having amplitudes 
much smaller than their wavelengths. Waves that violate the superposition prin-
ciple are called nonlinear waves and are often characterized by large amplitudes. In 
this book, we deal only with linear waves.

One consequence of the superposition principle is that two traveling waves can 
pass through each other without being destroyed or even altered. For instance, 
when two pebbles are thrown into a pond and hit the surface at different locations, 
the expanding circular surface waves from the two locations simply pass through 
each other with no permanent effect. The resulting complex pattern can be viewed 
as two independent sets of expanding circles.

Figure 18.1 is a pictorial representation of the superposition of two pulses. The 
wave function for the pulse moving to the right is y1, and the wave function for the 
pulse moving to the left is y2. The pulses have the same speed but different shapes, 
and the displacement of the elements of the medium is in the positive y direction 
for both pulses. When the waves overlap (Fig. 18.1b), the wave function for the 
resulting complex wave is given by y1 1 y2. When the crests of the pulses coincide 
(Fig. 18.1c), the resulting wave given by y1 1 y2 has a larger amplitude than that of 
the individual pulses. The two pulses finally separate and continue moving in their 
original directions (Fig. 18.1d). Notice that the pulse shapes remain unchanged 
after the interaction, as if the two pulses had never met!
 The combination of separate waves in the same region of space to produce a 
resultant wave is called interference. For the two pulses shown in Figure 18.1, the 
displacement of the elements of the medium is in the positive y direction for both 
pulses, and the resultant pulse (created when the individual pulses overlap) exhib-
its an amplitude greater than that of either individual pulse. Because the displace-
ments caused by the two pulses are in the same direction, we refer to their superpo-
sition as constructive interference.

 Now consider two pulses traveling in opposite directions on a taut string where 
one pulse is inverted relative to the other as illustrated in Figure 18.2. When these 
pulses begin to overlap, the resultant pulse is given by y1 1 y2, but the values of the 
function y2 are negative. Again, the two pulses pass through each other; because 
the displacements caused by the two pulses are in opposite directions, however, we 
refer to their superposition as destructive interference.

 The superposition principle is the centerpiece of the analysis model called 
waves in interference. In many situations, both in acoustics and optics, waves com-
bine according to this principle and exhibit interesting phenomena with practical 
applications.

18.1

Superposition principle 

Constructive interference 

Destructive interference 

Pitfall Prevention 18.1
Do Waves Actually Interfere? In 
popular usage, the term interfere 
implies that an agent affects a 
situation in some way so as to pre-
clude something from happening. 
For example, in American foot-
ball, pass interference means that 
a defending player has affected 
the receiver so that the receiver 
is unable to catch the ball. This 
usage is very different from its 
use in physics, where waves pass 
through each other and interfere, 
but do not affect each other in 
any way. In physics, interference 
is similar to the notion of combina-
tion as described in this chapter.
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Q uick Quiz 18.1  Two pulses move in opposite directions on a string and are iden-
tical in shape except that one has positive displacements of the elements of the 
string and the other has negative displacements. At the moment the two pulses 
completely overlap on the string, what happens? (a) The energy associated with 
the pulses has disappeared. (b) The string is not moving. (c) The string forms a 
straight line. (d) The pulses have vanished and will not reappear.

Superposition of Sinusoidal Waves
Let us now apply the principle of superposition to two sinusoidal waves traveling in 
the same direction in a linear medium. If the two waves are traveling to the right 
and have the same frequency, wavelength, and amplitude but differ in phase, we 
can express their individual wave functions as

y1 5 A sin (kx 2 vt)    y2 5 A sin (kx 2 vt 1 f)

where, as usual, k 5 2p/l, v 5 2pf, and f is the phase constant as discussed in Sec-
tion 16.2. Hence, the resultant wave function y is

y 5 y1 1 y2 5 A [sin (kx 2 vt) 1  sin (kx 2 vt 1 f)]

To simplify this expression, we use the trigonometric identity

sin a 1 sin b 5 2 cos aa 2 b
2

b sin aa 1 b
2

b

Q

b

c

d

a

y2 y 1

y 1 y2

y 1 y2

y2y 1

�

�

When the pulses overlap, the 
wave function is the sum of 
the individual wave functions.

When the crests of the two 
pulses align, the amplitude is 
the sum of the individual 
amplitudes.

When the pulses no longer 
overlap, they have not been 
permanently affected by the 
interference.

Figure 18.1 Constructive interfer-
ence. Two positive pulses travel on 
a stretched string in opposite direc-
tions and overlap.

y 1

y 2

y 2
y 1

y 1 y 2�

y 1 y 2�

When the pulses overlap, the 
wave function is the sum of 
the individual wave functions.

When the crests of the two 
pulses align, the amplitude is 
the difference between the 
individual amplitudes.

When the pulses no longer 
overlap, they have not been 
permanently affected by the 
interference.

b

c

d

a

Figure 18.2 Destructive interfer-
ence. Two pulses, one positive and 
one negative, travel on a stretched 
string in opposite directions and 
overlap.
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Letting a 5 kx 2 vt and b 5 kx 2 vt 1 f, we find that the resultant wave function y 
reduces to

y 5 2A cos af

2
b sin akx 2 vt 1

f

2
b

This result has several important features. The resultant wave function y also is 
sinusoidal and has the same frequency and wavelength as the individual waves 
because the sine function incorporates the same values of k and v that appear in 
the original wave functions. The amplitude of the resultant wave is 2A cos (f/2), 
and its phase constant is f/2. If the phase constant f of the original wave equals 0,  
then cos (f/2) 5 cos 0 5 1 and the amplitude of the resultant wave is 2A, twice the 
amplitude of either individual wave. In this case, the crests of the two waves are at 
the same locations in space and the waves are said to be everywhere in phase and 
therefore interfere constructively. The individual waves y1 and y2 combine to form 
the red-brown curve y of amplitude 2A shown in Figure 18.3a. Because the indi-
vidual waves are in phase, they are indistinguishable in Figure 18.3a, where they 
appear as a single blue curve. In general, constructive interference occurs when 
cos (f/2) 5 61. That is true, for example, when f 5 0, 2p, 4p, . . . rad, that is, when 
f is an even multiple of p.
 When f is equal to p rad or to any odd multiple of p, then cos (f/2) 5 cos (p/2) 5 
0 and the crests of one wave occur at the same positions as the troughs of the sec-
ond wave (Fig. 18.3b). Therefore, as a consequence of destructive interference, the 
resultant wave has zero amplitude everywhere as shown by the straight red-brown 
line in Figure 18.3b. Finally, when the phase constant has an arbitrary value other 
than 0 or an integer multiple of p rad (Fig. 18.3c), the resultant wave has an ampli-
tude whose value is somewhere between 0 and 2A.
 In the more general case in which the waves have the same wavelength but dif-
ferent amplitudes, the results are similar with the following exceptions. In the in-
phase case, the amplitude of the resultant wave is not twice that of a single wave, 
but rather is the sum of the amplitudes of the two waves. When the waves are p rad 
out of phase, they do not completely cancel as in Figure 18.3b. The result is a wave 
whose amplitude is the difference in the amplitudes of the individual waves.

Interference of Sound Waves
One simple device for demonstrating interference of sound waves is illustrated in 
Figure 18.4. Sound from a loudspeaker S is sent into a tube at point P, where there is 

Resultant of two traveling  
sinusoidal waves

y

x

x

x

y
y1 y2 y

y y y1 y2

� 60°

y

f

� 180°f

� 0°f

The individual waves are in phase 
and therefore indistinguishable.

Constructive interference: the 
amplitudes add.

The individual waves are 180° out 
of phase.

Destructive interference: the 
waves cancel.

This intermediate result is neither 
constructive nor destructive.

b

c

a

Figure 18.3 The superposition 
of two identical waves y1 and y2 
(blue and green, respectively) to 
yield a resultant wave (red-brown).

A sound wave from the speaker 
(S) propagates into the tube and 
splits into two parts at point P.

Path length r1

Path length r2

R

S

P

The two waves, which combine 
at the opposite side, are 
detected at the receiver (R).

Figure 18.4  An acoustical 
system for demonstrating interfer-
ence of sound waves. The upper 
path length r2 can be varied by 
sliding the upper section.
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a T-shaped junction. Half the sound energy travels in one direction, and half travels 
in the opposite direction. Therefore, the sound waves that reach the receiver R can 
travel along either of the two paths. The distance along any path from speaker to 
receiver is called the path length r. The lower path length r1 is fixed, but the upper 
path length r2 can be varied by sliding the U-shaped tube, which is similar to that 
on a slide trombone. When the difference in the path lengths Dr 5 |r2 2 r1| is either 
zero or some integer multiple of the wavelength l (that is, Dr 5 nl, where n 5  
0, 1, 2, 3, . . .), the two waves reaching the receiver at any instant are in phase and 
interfere constructively as shown in Figure 18.3a. For this case, a maximum in the 
sound intensity is detected at the receiver. If the path length r2 is adjusted such that 
the path difference Dr 5 l/2, 3l/2, . . . , nl/2 (for n odd), the two waves are exactly 
p rad, or 180°, out of phase at the receiver and hence cancel each other. In this case 
of destructive interference, no sound is detected at the receiver. This simple experi-
ment demonstrates that a phase difference may arise between two waves generated 
by the same source when they travel along paths of unequal lengths. This impor-
tant phenomenon will be indispensable in our investigation of the interference of 
light waves in Chapter 37.

Example 18.1   Two Speakers Driven by the Same Source 

Two identical loudspeakers placed 3.00 m apart are driven by the same oscillator (Fig. 18.5). A listener is originally at 
point O, located 8.00 m from the center of the line connecting the two speakers. The listener then moves to point P, 
which is a perpendicular distance 0.350 m from O, and she experiences the first minimum in sound intensity. What is 
the frequency of the oscillator?

Conceptualize  In Figure 18.4, a sound wave enters a 
tube and is then acoustically split into two different paths 
before recombining at the other end. In this example, 
a signal representing the sound is electrically split and 
sent to two different loudspeakers. After leaving the 
speakers, the sound waves recombine at the position of 
the listener. Despite the difference in how the splitting 
occurs, the path difference discussion related to Figure 
18.4 can be applied here.

Categorize  Because the sound waves from two separate sources combine, we apply the waves in interference analysis 
model.

AM

S O L U T I O N

3.00 m

8.00 m 

r2

8.00 m 

r1 0.350 m 

1.85 m 

P
1.15 m 

O

Figure 18.5  (Example 18.1) Two identical loudspeakers emit 
sound waves to a listener at P.

continued

Imagine two waves traveling 
in the same location through 
a medium. The displacement 
of elements of the medium is 
affected by both waves. Accord-
ing to the principle of superpo-

sition, the displacement is the 
sum of the individual displace-
ments that would be caused by 
each wave. When the waves are in phase, constructive interference 
occurs and the resultant displacement is larger than the individual 
displacements. Destructive interference occurs when the waves are 
out of phase. 

Analysis Model   Waves in Interference

Examples: 

and a tuning fork vibrating together 
and notices beats (Section 18.7)

combine to form an interference pat-
tern on a screen (Chapter 37)

swirls of color (Chapter 37)

combine to form a Laue pattern  
(Chapter 38)

y1 � y2

y1 � y2

Destructive
interference

Constructive
interference

y1 y2

y2
y1
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What if the speakers were connected out of phase? What happens at point P in Figure 18.5?

Answer  In this situation, the path difference of l/2 combines with a phase difference of l/2 due to the incorrect wir-
ing to give a full phase difference of l. As a result, the waves are in phase and there is a maximum intensity at point P.

WHAT IF ?

To obtain the oscillator frequency, use Equation 16.12, 
v 5 lf, where v is the speed of sound in air, 343 m/s: f 5

v
l

5
343 m/s
0.26 m

5   1.3 kHz

Finalize  This example enables us to understand why the 
speaker wires in a stereo system should be connected 
properly. When connected the wrong way—that is, when 
the positive (or red) wire is connected to the negative 
(or black) terminal on one of the speakers and the other 
is correctly wired—the speakers are said to be “out of 
phase,” with one speaker moving outward while the other 
moves inward. As a consequence, the sound wave com-

ing from one speaker destructively interferes with the 
wave coming from the other at point O in Figure 18.5. A 
rarefaction region due to one speaker is superposed on 
a compression region from the other speaker. Although 
the two sounds probably do not completely cancel each 
other (because the left and right stereo signals are usu-
ally not identical), a substantial loss of sound quality 
occurs at point O.

18.2 Standing Waves
The sound waves from the pair of loudspeakers in Example 18.1 leave the speakers 
in the forward direction, and we considered interference at a point in front of the 
speakers. Suppose we turn the speakers so that they face each other and then have 
them emit sound of the same frequency and amplitude. In this situation, two identi-
cal waves travel in opposite directions in the same medium as in Figure 18.6. These 
waves combine in accordance with the waves in interference model.

We can analyze such a situation by considering wave functions for two transverse 
sinusoidal waves having the same amplitude, frequency, and wavelength but travel-
ing in opposite directions in the same medium:

y1 5 A sin (kx 2 vt)    y2 5 A sin (kx 1 vt)

where y1 represents a wave traveling in the positive x direction and y2 represents one 
traveling in the negative x direction. Adding these two functions gives the resultant 
wave function y:

y 5 y1 1 y2 5 A sin (kx 2 vt) 1 A sin (kx 1 vt)

When we use the trigonometric identity sin (a 6 b) 5 sin a cos b 6 cos a sin b, this 
expression reduces to

 y 5 (2A sin kx) cos vt (18.1)

 Equation 18.1 represents the wave function of a standing wave. A standing wave 
such as the one on a string shown in Figure 18.7 is an oscillation pattern with a sta-
tionary outline that results from the superposition of two identical waves traveling in 
opposite directions.

18.2

y 5 (2A sin A kx) cos x vt

vS

vS

Figure 18.6  Two identical loud-
speakers emit sound waves toward 
each other. When they overlap, 
identical waves traveling in opposite 
directions will combine to form 
standing waves.

From the shaded triangles, find the path lengths from 
the speakers to the listener:

 r 1 5 "18.00 m 22 1 11.15 m 22 5 8.08 m

 r2 5 "18.00 m 22 1 11.85 m 22 5 8.21 m

Hence, the path difference is r2 2 r1 5 0.13 m. Because this path difference must equal l/2 for the first minimum,  
l 5 0.26 m.

Analyze  Figure 18.5 shows the physical arrangement of the speakers, along with two shaded right triangles that can be 
drawn on the basis of the lengths described in the problem. The first minimum occurs when the two waves reaching 
the listener at point P are 180° out of phase, in other words, when their path difference Dr equals l/2.

 

▸ 18.1 c o n t i n u e d
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 Notice that Equation 18.1 does not contain a function of kx 2 vt. Therefore, it 
is not an expression for a single traveling wave. When you observe a standing wave, 
there is no sense of motion in the direction of propagation of either original wave. 
Comparing Equation 18.1 with Equation 15.6, we see that it describes a special kind 
of simple harmonic motion. Every element of the medium oscillates in simple har-
monic motion with the same angular frequency v (according to the cos vt factor 
in the equation). The amplitude of the simple harmonic motion of a given element 
(given by the factor 2A sin kx, the coefficient of the cosine function) depends on 
the location x of the element in the medium, however.
 If you can find a noncordless telephone with a coiled cord connecting the hand-
set to the base unit, you can see the difference between a standing wave and a trav-
eling wave. Stretch the coiled cord out and flick it with a finger. You will see a pulse 
traveling along the cord. Now shake the handset up and down and adjust your shak-
ing frequency until every coil on the cord is moving up at the same time and then 
down. That is a standing wave, formed from the combination of waves moving away 
from your hand and reflected from the base unit toward your hand. Notice that 
there is no sense of traveling along the cord like there was for the pulse. You only 
see up-and-down motion of the elements of the cord. 
 Equation 18.1 shows that the amplitude of the simple harmonic motion of an 
element of the medium has a minimum value of zero when x satisfies the condition 
sin kx 5 0, that is, when

kx 5 0, p, 2p, 3p, . . .

Because k 5 2p/l, these values for kx give

 x 5 0, 
l

2
, l, 

3l

2
, c 5

nl

2
  n 5 0, 1, 2, 3, c (18.2)

These points of zero amplitude are called nodes.

 The element of the medium with the greatest possible displacement from equi-
librium has an amplitude of 2A, which we define as the amplitude of the standing 
wave. The positions in the medium at which this maximum displacement occurs 
are called antinodes. The antinodes are located at positions for which the coordi-
nate x satisfies the condition sin kx 5 61, that is, when

kx 5
p

2
, 

3p

2
, 

5p

2
, c

Therefore, the positions of the antinodes are given by

 x 5
l

4
, 

3l

4
, 

5l

4
, c 5

nl

4
 n 5 1, 3, 5, c (18.3)

Positions of nodes

Positions of antinodes

Figure 18.7  Multiflash pho-
tograph of a standing wave on a 
string. The time behavior of the 
vertical displacement from equi-
librium of an individual element 
of the string is given by cos vt. 
That is, each element vibrates at 
an angular frequency v.Antinode Antinode

Node

2A sin kx

Node

The amplitude of the vertical oscillation of any element of the string 
depends on the horizontal position of the element. Each element 
vibrates within the confines of the envelope function 2A sin kx.
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Pitfall Prevention 18.2
Three Types of Amplitude We 
need to distinguish carefully here 
between the amplitude of the 

individual waves, which is A, and 
the amplitude of the simple har-

monic motion of the elements of 

the medium, which is 2A sin kx. A 
given element in a standing wave 
vibrates within the constraints of 
the envelope function 2A sin kx, 
where x is that element’s position 
in the medium. Such vibration is 
in contrast to traveling sinusoidal 
waves, in which all elements oscil-
late with the same amplitude and 
the same frequency and the ampli-
tude A of the wave is the same 
as the amplitude A of the simple 
harmonic motion of the elements. 
Furthermore, we can identify the 
amplitude of the standing wave 
as 2A.
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Two nodes and two antinodes are labeled in the standing wave in Figure 18.7. 
The light blue curve labeled 2A sin kx in Figure 18.7 represents one wavelength of 
the traveling waves that combine to form the standing wave. Figure 18.7 and Equa-
tions 18.2 and 18.3 provide the following important features of the locations of 
nodes and antinodes:

The distance between adjacent antinodes is equal to l/2.
The distance between adjacent nodes is equal to l/2.
The distance between a node and an adjacent antinode is l/4.

Wave patterns of the elements of the medium produced at various times by two 
transverse traveling waves moving in opposite directions are shown in Figure 18.8. 
The blue and green curves are the wave patterns for the individual traveling waves, 
and the red-brown curves are the wave patterns for the resultant standing wave. At 
t 5 0 (Fig. 18.8a), the two traveling waves are in phase, giving a wave pattern in 
which each element of the medium is at rest and experiencing its maximum dis-
placement from equilibrium. One-quarter of a period later, at t 5 T/4 (Fig. 18.8b), 
the traveling waves have moved one-fourth of a wavelength (one to the right and 
the other to the left). At this time, the traveling waves are out of phase, and each 
element of the medium is passing through the equilibrium position in its simple 
harmonic motion. The result is zero displacement for elements at all values of x; 
that is, the wave pattern is a straight line. At t 5 T/2 (Fig. 18.8c), the traveling 
waves are again in phase, producing a wave pattern that is inverted relative to the 
t 5 0 pattern. In the standing wave, the elements of the medium alternate in time 
between the extremes shown in Figures 18.8a and 18.8c.

Q uick Quiz 18.2  Consider the waves in Figure 18.8 to be waves on a stretched 
string. Define the velocity of elements of the string as positive if they are moving 
upward in the figure. (i) At the moment the string has the shape shown by the 
red-brown curve in Figure 18.8a, what is the instantaneous velocity of elements 
along the string? (a) zero for all elements (b) positive for all elements (c) nega-
tive for all elements (d) varies with the position of the element (ii) From the same 
choices, at the moment the string has the shape shown by the red-brown curve in 
Figure 18.8b, what is the instantaneous velocity of elements along the string?

The distance between adjacent antinodes is equal to l/2.
The distance between adjacent nodes is equal to l/2.
The distance between a node and an adjacent antinode is l/4.

Q

 t = 0

y1

y2

y
N N N N N

AA

 t = T/4

y2

y1

y

t = T/2

y1

A A

y2

y
N N N N N

A A

A A

a b c

Figure 18.8 Standing-wave  
patterns produced at various times 
by two waves of equal amplitude 
traveling in opposite directions. 
For the resultant wave y, the nodes 
(N) are points of zero displace-
ment and the antinodes (A) are 
points of maximum displacement.

Example 18.2   Formation of a Standing Wave

Two waves traveling in opposite directions produce a standing wave. The individual wave functions are

y1 5 4.0 sin (3.0x 2 2.0t)

y2 5 4.0 sin (3.0x 1 2.0t)

where x and y are measured in centimeters and t is in seconds.

(A)  Find the amplitude of the simple harmonic motion of the element of the medium located at x 5 2.3 cm.
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18.3 Analysis Model: Waves Under  
Boundary Conditions

Consider a string of length L fixed at both ends as shown in Figure 18.9. We will use 
this system as a model for a guitar string or piano string. Waves can travel in both 
directions on the string. Therefore, standing waves can be set up in the string by a 
continuous superposition of waves incident on and reflected from the ends. Notice 
that there is a boundary condition for the waves on the string: because the ends of 
the string are fixed, they must necessarily have zero displacement and are there-
fore nodes by definition. The condition that both ends of the string must be nodes 
fixes the wavelength of the standing wave on the string according to Equation 18.2, 
which, in turn, determines the frequency of the wave. The boundary condition 
results in the string having a number of discrete natural patterns of oscillation, 
called normal modes, each of which has a characteristic frequency that is easily cal-
culated. This situation in which only certain frequencies of oscillation are allowed 
is called quantization. Quantization is a common occurrence when waves are sub-
ject to boundary conditions and is a central feature in our discussions of quantum 
physics in the extended version of this text. Notice in Figure 18.8 that there are 
no boundary conditions, so standing waves of any frequency can be established; 
there is no quantization without boundary conditions. Because boundary condi-
tions occur so often for waves, we identify an analysis model called waves under 

boundary conditions for the discussion that follows.
The normal modes of oscillation for the string in Figure 18.9 can be described 

by imposing the boundary conditions that the ends be nodes and that the nodes be 
separated by one-half of a wavelength with antinodes halfway between the nodes. 
The first normal mode that is consistent with these requirements, shown in Figure 
18.10a (page 542), has nodes at its ends and one antinode in the middle. This normal 

18.3

From the equations for the waves, we see that A 5 4.0 cm, 
k 5 3.0 rad/cm, and v 5 2.0 rad/s. Use Equation 18.1 to 
write an expression for the standing wave:

y 5 (2A sin kx) cos vt 5 8.0 sin 3.0x cos 2.0t

Find the amplitude of the simple harmonic motion of 
the element at the position x 5 2.3 cm by evaluating the 
sine function at this position:

ymax 5 (8.0 cm) sin 3.0x |x 5 2.3

5 (8.0 cm) sin (6.9 rad) 5   4.6 cm

Find the wavelength of the traveling waves: k 5
2p

l
5 3.0 rad/cm S l 5

2p

3.0
 cm

Use Equation 18.2 to find the locations of the nodes: x 5 n 
l

2
5 n a p

3.0
b cm n 5 0, 1, 2, 3, c

Use Equation 18.3 to find the locations of the antinodes: x 5 n 
l

4
5 n a p

6.0
b cm n 5 1, 3, 5, 7, c

(B)  Find the positions of the nodes and antinodes if one end of the string is at x 5 0.

S O L U T I O N

L

Figure 18.9  A string of length L 
fixed at both ends.

Conceptualize  The waves described by the given equations are identical except for their directions of travel, so they 
indeed combine to form a standing wave as discussed in this section. We can represent the waves graphically by the 
blue and green curves in Figure 18.8.

Categorize  We will substitute values into equations developed in this section, so we categorize this example as a sub-
stitution problem.

S O L U T I O N

 

▸ 18.2 c o n t i n u e d
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mode is the longest-wavelength mode that is consistent with our boundary condi-
tions. The first normal mode occurs when the wavelength l1 is equal to twice the 
length of the string, or l1 5 2L. The section of a standing wave from one node to 
the next node is called a loop. In the first normal mode, the string is vibrating in 
one loop. In the second normal mode (see Fig. 18.10b), the string vibrates in two 
loops. When the left half of the string is moving upward, the right half is moving 
downward. In this case, the wavelength l2 is equal to the length of the string, as 
expressed by l2 5 L. The third normal mode (see Fig. 18.10c) corresponds to the 
case in which l3 5 2L/3, and the string vibrates in three loops. In general, the wave-
lengths of the various normal modes for a string of length L fixed at both ends are

 ln 5
2L
n
 n 5 1, 2, 3, c (18.4)

where the index n refers to the nth normal mode of oscillation. These modes are 
possible. The actual modes that are excited on a string are discussed shortly.
 The natural frequencies associated with the modes of oscillation are obtained 
from the relationship f 5 v/l, where the wave speed v is the same for all frequen-
cies. Using Equation 18.4, we find that the natural frequencies fn of the normal 
modes are

 fn 5
v
ln

5 n 
v

2L
 n 5 1, 2, 3, c (18.5)

These natural frequencies are also called the quantized frequencies associated with the  
vibrating string fixed at both ends.
 Because v 5 !T/m (see Eq. 16.18) for waves on a string, where T is the tension 
in the string and m is its linear mass density, we can also express the natural fre-
quencies of a taut string as

 fn 5
n

2L
 ÅT

m
 n 5 1, 2, 3, c (18.6)

The lowest frequency f1, which corresponds to n 5 1, is called either the fundamen-

tal or the fundamental frequency and is given by

 f1 5
1

2L
 ÅT

m
 (18.7)

 The frequencies of the remaining normal modes are integer multiples of the 
fundamental frequency (Eq. 18.5). Frequencies of normal modes that exhibit such 
an integer- multiple relationship form a harmonic series, and the normal modes 
are called harmonics. The fundamental frequency f1 is the frequency of the first 
harmonic, the frequency f2 5 2f1 is that of the second harmonic, and the frequency 
fn 5 nf1 is that of the nth harmonic. Other oscillating systems, such as a drumhead, 
exhibit normal modes, but the frequencies are not related as integer multiples of 
a fundamental (see Section 18.6). Therefore, we do not use the term harmonic in 
association with those types of systems.

Wavelengths of 
normal modes

Natural frequencies of 
normal modes as functions 
of wave speed and length 

of string

Natural frequencies of  
normal modes as functions 

of string tension and 
linear mass density

Fundamental frequency
of a taut string 

n � 1

N
A

N

L � – 1
1
2
l

f1

a

Fundamental, or first harmonic

N NA A N

n � 2 L � 2l

f2

b

Second harmonic

n  � 3

N N N NA A A

L  � – 3
3
2
l

f3

c

Third harmonic

Figure 18.10 The normal modes of vibration of the string in Figure 18.9 form a harmonic series. 
The string vibrates between the extremes shown.
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Let us examine further how the various harmonics are created in a string. To 
excite only a single harmonic, the string would have to be distorted into a shape 
that corresponds to that of the desired harmonic. After being released, the string 
would vibrate at the frequency of that harmonic. This maneuver is difficult to 
perform, however, and is not how a string of a musical instrument is excited. If 
the string is distorted into a general, nonsinusoidal shape, the resulting vibration 
includes a combination of various harmonics. Such a distortion occurs in musical 
instruments when the string is plucked (as in a guitar), bowed (as in a cello), or 
struck (as in a piano). When the string is distorted into a nonsinusoidal shape, only 
waves that satisfy the boundary conditions can persist on the string. These waves 
are the harmonics.

The frequency of a string that defines the musical note that it plays is that of the 
fundamental, even though other harmonics are present. The string’s frequency can 
be varied by changing the string’s tension or its length. For example, the tension 
in guitar and violin strings is varied by a screw adjustment mechanism or by tun
ing pegs located on the neck of the instrument. As the tension is increased, the 
frequency of the normal modes increases in accordance with Equation 18.6. Once 
the instrument is “tuned,” players vary the frequency by moving their fingers along 
the neck, thereby changing the length of the oscillating portion of the string. As the 
length is shortened, the frequency increases because, as Equation 18.6 specifies, the 
normal-mode frequencies are inversely proportional to string length.

uick Quiz 18.3  When a standing wave is set up on a string fixed at both ends, 
which of the following statements is true? (a) The number of nodes is equal to 
the number of antinodes. (b) The wavelength is equal to the length of the string 
divided by an integer. (c) The frequency is equal to the number of nodes times 
the fundamental frequency. (d) The shape of the string at any instant shows a 
symmetry about the midpoint of the string.

continued

Example 18.3   Give Me a C Note!

The middle C string on a piano has a fundamental frequency of 262 Hz, and the string for the first A above middle C 
has a fundamental frequency of 440 Hz.

Calculate the frequencies of the next two harmonics of the C string.

Imagine a wave that is not free 
to travel throughout all  space 
as in the traveling wave model. 
If the wave is subject to bound
ary conditions, such that cer
tain requirements must be met 
at specific locations in space, 
the wave is limited to a set of 
normal modes with quantized wavelengths and quantized natural 
frequencies.

For waves on a string fixed at both ends, the natural frequencies are

   1, 2, 3, (18.6)

where  is the tension in the string and  is its linear mass density.

Analysis Model  Waves Under Boundary Conditions

Examples: 

a guitar string combine to form a 
standing wave 

in a clarinet combine to form stand-
ing waves (Section 18.5)

small region of space is modeled as a 
wave and exhibits quantized energies 
(Chapter 41)

mined by modeling electrons as wave-
like particles in a box (Chapter 43)
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Finalize  If the frequencies of piano strings were determined solely by tension, this result suggests that the ratio of ten-
sions from the lowest string to the highest string on the piano would be enormous. Such large tensions would make it 
difficult to design a frame to support the strings. In reality, the frequencies of piano strings vary due to additional param-
eters, including the mass per unit length and the length of the string. The What If? below explores a variation in length.

 If you look inside a real piano, you’ll see that the assumption made in part (B) is only partially true. The 
strings are not likely to have the same length. The string densities for the given notes might be equal, but suppose the 
length of the A string is only 64% of the length of the C string. What is the ratio of their tensions?

Answer  Using Equation 18.7 again, we set up the ratio of frequencies:

f1A

f1C
5

LC

LA ÅTA

TC
   S   

TA

TC
5 aLA

L C
b2a f1A

f1C
b2

TA

TC
5 10.64 22 a440

262
b2

5 1.16

Notice that this result represents only a 16% increase in tension, compared with the 182% increase in part (B).

WHAT IF ?

Knowing that the fundamental frequency is f1 5 262 Hz, 
find the frequencies of the next harmonics by multiply-
ing by integers:

f2 5 2f1 5   524 Hz

f3 5 3f1 5   786 Hz

Analyze  Use Equation 18.7 to write expressions for the 
fundamental frequencies of the two strings:

f1A 5
1

2L
 ÅTA

m
    and    f1C 5

1
2L

 ÅTC

m

Divide the first equation by the second and solve for the 
ratio of tensions:

f 1A

f 1C
5 ÅTA

TC
   S   

TA

TC
5 a f1A

f 1C
b2

5 a440
262

b2

5  2.82

(B)  If the A and C strings have the same linear mass density m and length L, determine the ratio of tensions in the 
two strings.

Categorize  This part of the example is more of an analysis problem than is part (A) and uses the waves under boundary 
conditions model.

S O L U T I O N

Conceptualize  Remember that the harmonics of a vibrating string have frequencies that are related by integer mul-
tiples of the fundamental.

Categorize  This first part of the example is a simple substitution problem.

S O L U T I O N

 

▸ 18.3 c o n t i n u e d

Example 18.4   Changing String Vibration with Water 

One end of a horizontal string is attached to a vibrating blade, and the other end passes over a pulley as in Figure 
18.11a. A sphere of mass 2.00 kg hangs on the end of the string. The string is vibrating in its second harmonic. A con-
tainer of water is raised under the sphere so that the sphere is completely submerged. In this configuration, the string 
vibrates in its fifth harmonic as shown in Figure 18.11b. What is the radius of the sphere?

Conceptualize  Imagine what happens when the sphere is immersed in the water. The buoyant force acts upward on 
the sphere, reducing the tension in the string. The change in tension causes a change in the speed of waves on the 
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string, which in turn causes a change in the wavelength. This altered wavelength results in the string vibrating in its 
fifth normal mode rather than the second.

Categorize  The hanging sphere is modeled as a particle in equilibrium. One of the forces acting on it is the buoyant 
force from the water. We also apply the waves under boundary conditions model to the string.

ba

Figure 18.11  (Example 18.4) 
(a) When the sphere hangs in air, 
the string vibrates in its second 
harmonic. (b) When the sphere 
is immersed in water, the string 
vibrates in its fifth harmonic.

Analyze  Apply the particle in equilibrium model to the 
sphere in Figure 18.11a, identifying T1 as the tension in 
the string as the sphere hangs in air:

o F 5 T1 2 mg 5 0

T1 5 mg

Apply the particle in equilibrium model to the sphere in 
Figure 18.11b, where T2 is the tension in the string as the 
sphere is immersed in water:

T2 1 B 2 mg 5 0

(1)   B 5 mg 2 T2

Write the equation for the frequency of a standing wave 
on a string (Eq. 18.6) twice, once before the sphere is 
immersed and once after. Notice that the frequency f is 
the same in both cases because it is determined by the 
vibrating blade. In addition, the linear mass density m 
and the length L of the vibrating portion of the string 
are the same in both cases. Divide the equations:

f 5
n 1

2L ÅT1

m

f 5
n 2

2L ÅT2

m

   
S   1 5

n 1

n 2 ÅT1

T2

Solve for T2: T2 5 an 1

n 2
b2

T1 5 an 1

n 2
b2

mg

Substitute this result into Equation (1): (2)   B 5 mg 2 an 1

n 2
b2

mg 5 mg c1 2 an 1

n 2
b2 d

The desired quantity, the radius of the sphere, will appear in the expression for the buoyant force B. Before proceed-
ing in this direction, however, we must evaluate T2 from the information about the standing wave.

Finalize  Notice that only certain radii of the sphere will result in the string vibrating in a normal mode; the speed of 
waves on the string must be changed to a value such that the length of the string is an integer multiple of half wave-
lengths. This limitation is a feature of the quantization that was introduced earlier in this chapter: the sphere radii that 
cause the string to vibrate in a normal mode are quantized.

Using Equation 14.5, express the buoyant force in terms 
of the radius of the sphere:

B 5 rwater gVsphere 5 rwater g 143 pr 3 2
Solve for the radius of the sphere and substitute from 
Equation (2):

r 5 a 3B
4prwaterg

b1/3

 5 e 3m
4prwater

c1 2 an 1

n 2
b2 d f 1/3

Substitute numerical values: r 5 e 3 12.00 kg 2
4p 11 000 kg/m3 2 c1 2 a2

5
b2 d f 1/3

 

5  0.073 7 m 5  7.37 cm

 

▸ 18.4 c o n t i n u e d
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1Strictly speaking, the open end of an air column is not exactly a displacement antinode. A compression reaching 
an open end does not reflect until it passes beyond the end. For a tube of circular cross section, an end correction 
equal to approximately 0.6R , where R is the tube’s radius, must be added to the length of the air column. Hence, the 
effective length of the air column is longer than the true length L. We ignore this end correction in this discussion.

Vibrating
blade 

When the blade vibrates at one of
the natural frequencies of the
string, large-amplitude standing
waves are created.

Figure 18.12  Standing waves are 
set up in a string when one end is 
connected to a vibrating blade.

18.4 Resonance
We have seen that a system such as a taut string is capable of oscillating in one or 
more normal modes of oscillation. Suppose we drive such a string with a vibrating 
blade as in Figure 18.12. We find that if a periodic force is applied to such a system, 
the amplitude of the resulting motion of the string is greatest when the frequency 
of the applied force is equal to one of the natural frequencies of the system. This 
phenomenon, known as resonance, was discussed in Section 15.7 with regard to a 
simple harmonic oscillator. Although a block–spring system or a simple pendulum 
has only one natural frequency, standing-wave systems have a whole set of natural 
frequencies, such as that given by Equation 18.6 for a string. Because an oscillat-
ing system exhibits a large amplitude when driven at any of its natural frequencies, 
these frequencies are often referred to as resonance frequencies.

Consider the string in Figure 18.12 again. The fixed end is a node, and the end 
connected to the blade is very nearly a node because the amplitude of the blade’s 
motion is small compared with that of the elements of the string. As the blade oscil-
lates, transverse waves sent down the string are reflected from the fixed end. As 
we learned in Section 18.3, the string has natural frequencies that are determined 
by its length, tension, and linear mass density (see Eq. 18.6). When the frequency 
of the blade equals one of the natural frequencies of the string, standing waves 
are produced and the string oscillates with a large amplitude. In this resonance 
case, the wave generated by the oscillating blade is in phase with the reflected wave 
and the string absorbs energy from the blade. If the string is driven at a frequency 
that is not one of its natural frequencies, the oscillations are of low amplitude and 
exhibit no stable pattern.

Resonance is very important in the excitation of musical instruments based on 
air columns. We shall discuss this application of resonance in Section 18.5.

18.5 Standing Waves in Air Columns
The waves under boundary conditions model can also be applied to sound waves in 
a column of air such as that inside an organ pipe or a clarinet. Standing waves in 
this case are the result of interference between longitudinal sound waves traveling 
in opposite directions.

In a pipe closed at one end, the closed end is a displacement node because the 
rigid barrier at this end does not allow longitudinal motion of the air. Because the 
pressure wave is 90° out of phase with the displacement wave (see Section 17.1), 
the closed end of an air column corresponds to a pressure antinode (that is, a 
point of maximum pressure variation).

The open end of an air column is approximately a displacement antinode1 and 
a pressure node. We can understand why no pressure variation occurs at an open 
end by noting that the end of the air column is open to the atmosphere; therefore, 
the pressure at this end must remain constant at atmospheric pressure.
 You may wonder how a sound wave can reflect from an open end because there 
may not appear to be a change in the medium at this point: the medium through 
which the sound wave moves is air both inside and outside the pipe. Sound can be 
represented as a pressure wave, however, and a compression region of the sound 
wave is constrained by the sides of the pipe as long as the region is inside the pipe. 
As the compression region exits at the open end of the pipe, the constraint of the 
pipe is removed and the compressed air is free to expand into the atmosphere. 
Therefore, there is a change in the character of the medium between the inside 

18.4
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of the pipe and the outside even though there is no change in the material of the 
medium. This change in character is sufficient to allow some reflection.

With the boundary conditions of nodes or antinodes at the ends of the air col-
umn, we have a set of normal modes of oscillation as is the case for the string fixed 
at both ends. Therefore, the air column has quantized frequencies.

The first three normal modes of oscillation of a pipe open at both ends are 
shown in Figure 18.13a. Notice that both ends are displacement antinodes (approx-
imately). In the first normal mode, the standing wave extends between two adjacent 
antinodes, which is a distance of half a wavelength. Therefore, the wavelength is 
twice the length of the pipe, and the fundamental frequency is f1 5 v/2L. As Figure 
18.13a shows, the frequencies of the higher harmonics are 2f1, 3f1, . . . .

In a pipe open at both ends, the natural frequencies of oscillation form a har-
monic series that includes all integral multiples of the fundamental frequency.

Because all harmonics are present and because the fundamental frequency is given 
by the same expression as that for a string (see Eq. 18.5), we can express the natural 
frequencies of oscillation as

 fn 5 n 
v

2L
    n 5 1, 2, 3, . . .  (18.8)

Despite the similarity between Equations 18.5 and 18.8, you must remember that v 
in Equation 18.5 is the speed of waves on the string, whereas v in Equation 18.8 is 
the speed of sound in air.
 If a pipe is closed at one end and open at the other, the closed end is a displace-
ment node (see Fig. 18.13b). In this case, the standing wave for the fundamental 
mode extends from an antinode to the adjacent node, which is one-fourth of a wave-
length. Hence, the wavelength for the first normal mode is 4L , and the fundamental  

 Natural frequencies of a pipe 
open at both ends

Third harmonic
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First harmonic
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In a pipe open at both ends, the 
ends are displacement antinodes 
and the harmonic series contains 
all integer multiples of the 
fundamental.

In a pipe closed at one end, the 
open end is a displacement 
antinode and the closed end is 
a node. The harmonic series 
contains only odd integer 
multiples of the fundamental.

a b

Figure 18.13  Graphical  
representations of the motion of 
elements of air in standing lon-
gitudinal waves in (a) a column 
open at both ends and (b) a col-
umn closed at one end.

Pitfall Prevention 18.3
Sound Waves in Air Are Lon-
gitudinal, Not Transverse The 
standing longitudinal waves are 
drawn as transverse waves in Fig-
ure 18.13. Because they are in the 
same direction as the propaga-
tion, it is difficult to draw longitu-
dinal displacements. Therefore, it 
is best to interpret the red-brown 
curves in Figure 18.13 as a graphi-
cal representation of the waves 
(our diagrams of string waves are 
pictorial representations), with 
the vertical axis representing the 
horizontal displacement s(x, t) of 
the elements of the medium.
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frequency is f1 5 v/4L. As Figure 18.13b shows, the higher-frequency waves that sat-
isfy our conditions are those that have a node at the closed end and an antinode at 
the open end; hence, the higher harmonics have frequencies 3f1, 5f1, . . . .

In a pipe closed at one end, the natural frequencies of oscillation form a har-
monic series that includes only odd integral multiples of the fundamental 
frequency.

We express this result mathematically as

 fn 5 n 
v

4L
    n 5 1, 3, 5, . . . (18.9)

 It is interesting to investigate what happens to the frequencies of instruments 
based on air columns and strings during a concert as the temperature rises. The 
sound emitted by a flute, for example, becomes sharp (increases in frequency) 
as the flute warms up because the speed of sound increases in the increasingly 
warmer air inside the flute (consider Eq. 18.8). The sound produced by a violin 
becomes flat (decreases in frequency) as the strings thermally expand because the 
expansion causes their tension to decrease (see Eq. 18.6).
 Musical instruments based on air columns are generally excited by resonance. 
The air column is presented with a sound wave that is rich in many frequencies. The 
air column then responds with a large-amplitude oscillation to the frequencies that 
match the quantized frequencies in its set of harmonics. In many woodwind instru-
ments, the initial rich sound is provided by a vibrating reed. In brass instruments, 
this excitation is provided by the sound coming from the vibration of the player’s 
lips. In a flute, the initial excitation comes from blowing over an edge at the mouth-
piece of the instrument in a manner similar to blowing across the opening of a bot-
tle with a narrow neck. The sound of the air rushing across the bottle opening has 
many frequencies, including one that sets the air cavity in the bottle into resonance.

Q uick Quiz 18.4  A pipe open at both ends resonates at a fundamental frequency 
fopen. When one end is covered and the pipe is again made to resonate, the  
fundamental frequency is fclosed. Which of the following expressions describes 
how these two resonant frequencies compare? (a) fclosed 5 fopen (b) fclosed 5 1

2 fopen 
(c) fclosed 5 2 fopen (d) fclosed 5 3

2 fopen

Q uick Quiz 18.5 Balboa Park in San Diego has an outdoor organ. When the air 
temperature increases, the fundamental frequency of one of the organ pipes  
(a) stays the same, (b) goes down, (c) goes up, or (d) is impossible to determine.

 Natural frequencies of 
a pipe closed at one end  

and open at the other

Q

Q

Find the frequency of the first harmonic of the culvert, 
modeling it as an air column open at both ends:

f1 5
v

2L
5

343 m/s
2 11.23 m 2 5  139 Hz

Find the next harmonics by multiplying by integers: f2 5 2f1 5   279 Hz

f3 5 3f1 5   418 Hz 

Example 18.5   Wind in a Culvert

A section of drainage culvert 1.23 m in length makes a howling noise when the wind blows across its open ends.

(A)  Determine the frequencies of the first three harmonics of the culvert if it is cylindrical in shape and open at 
both ends. Take v 5 343 m/s as the speed of sound in air.

Conceptualize  The sound of the wind blowing across the end of the pipe contains many frequencies, and the culvert 
responds to the sound by vibrating at the natural frequencies of the air column.

Categorize  This example is a relatively simple substitution problem.

S O L U T I O N
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Find the frequency of the first harmonic of the culvert, 
modeling it as an air column closed at one end:

f1 5
v

4L
5

343 m/s
4 11.23 m 2 5  69.7 Hz

Find the next two harmonics by multiplying by odd 
integers:

f3 5 3f1 5   209 Hz

f5 5 5f1 5   349 Hz

(B)  What are the three lowest natural frequencies of the culvert if it is blocked at one end?

S O L U T I O N

Example 18.6   Measuring the Frequency of a Tuning Fork 

A simple apparatus for demonstrating resonance in an air col-
umn is depicted in Figure 18.14. A vertical pipe open at both 
ends is partially submerged in water, and a tuning fork vibrat-
ing at an unknown frequency is placed near the top of the pipe. 
The length L of the air column can be adjusted by moving the 
pipe vertically. The sound waves generated by the fork are rein-
forced when L corresponds to one of the resonance frequen-
cies of the pipe. For a certain pipe, the smallest value of L for 
which a peak occurs in the sound intensity is 9.00 cm.

(A)  What is the frequency of the tuning fork?

Conceptualize  Sound waves from the tuning fork enter the 
pipe at its upper end. Although the pipe is open at its lower 
end to allow the water to enter, the water’s surface acts like a 
barrier. The waves reflect from the water surface and combine 
with those moving downward to form a standing wave.

Categorize Because of the reflection of the sound waves from the water surface, we can model the pipe as open at 
the upper end and closed at the lower end. Therefore, we can apply the waves under boundary conditions model to this 
situation.

Analyze

AM
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First
resonance

Second
resonance

(third
harmonic)

Third
resonance

(fifth
harmonic)

/4

3 /4

5 /4

l

l

l

L

Water

a b

Figure 18.14  (Example 18.6) (a) Apparatus for dem-
onstrating the resonance of sound waves in a pipe closed 
at one end. The length L of the air column is varied by 
moving the pipe vertically while it is partially submerged 
in water. (b) The first three normal modes of the system 
shown in (a).

Use Equation 18.9 to find the fundamental frequency 
for L 5 0.090 0 m:

f1 5
v

4L
5

343 m/s
4 10.090 0  m 2 5  953 Hz

Use Equation 16.12 to find the wavelength of the sound 
wave from the tuning fork:

l 5
v
f

5
343 m/s
953 Hz

5 0.360 m

Notice from Figure 18.14b that the length of the air col-
umn for the second resonance is 3l/4:

L 5 3l/4 5  0.270 m

Notice from Figure 18.14b that the length of the air col-
umn for the third resonance is 5l/4:

L 5 5l/4 5  0.450 m

Because the tuning fork causes the air column to resonate at this frequency, this frequency must also be that of the 
tuning fork.

(B)  What are the values of L for the next two resonance conditions?

S O L U T I O N

 

▸ 18.5 c o n t i n u e d

Finalize Consider how this problem differs from the preceding example. In the culvert, the length was fixed and the 
air column was presented with a mixture of many frequencies. The pipe in this example is presented with one single 
frequency from the tuning fork, and the length of the pipe is varied until resonance is achieved.
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01 11 21 02 31 12

1 1.59 2.14 2.30 2.65 2.92

41 22 03 51 32 61

3.16 3.50 3.60 3.65 4.06 4.15

Elements of the medium moving 
out of the page at an instant of time.

Elements of the medium moving 
into the page at an instant of time.

Below each pattern 
is a factor by which 
the frequency of the 
mode is larger than 
that of the 01 mode. 
The frequencies of 
oscillation do not 
form a harmonic 
series because these 
factors are not 
integers.

Figure 18.16  Representation 
of some of the normal modes 
possible in a circular membrane 
fixed at its perimeter. The pair of 
numbers above each pattern cor-
responds to the number of radial 
nodes and the number of circular 
nodes, respectively. In each dia-
gram, elements of the membrane 
on either side of a nodal line move 
in opposite directions, as indicated 
by the colors. (Adapted from T. D. 
Rossing, The Science of Sound, 3rd 
ed., Reading, Massachusetts, Addison-
Wesley Publishing Co., 2001)

18.6 Standing Waves in Rods and Membranes
Standing waves can also be set up in rods and membranes. A rod clamped in the 
middle and stroked parallel to the rod at one end oscillates as depicted in Figure 
18.15a. The oscillations of the elements of the rod are longitudinal, and so the red-
brown curves in Figure 18.15 represent longitudinal displacements of various parts 
of the rod. For clarity, the displacements have been drawn in the transverse direc-
tion as they were for air columns. The midpoint is a displacement node because it 
is fixed by the clamp, whereas the ends are displacement antinodes because they 
are free to oscillate. The oscillations in this setup are analogous to those in a pipe 
open at both ends. The red-brown lines in Figure 18.15a represent the first normal 
mode, for which the wavelength is 2L and the frequency is f 5 v/2L, where v is the 
speed of longitudinal waves in the rod. Other normal modes may be excited by 
clamping the rod at different points. For example, the second normal mode (Fig. 
18.15b) is excited by clamping the rod a distance L/4 away from one end.
 It is also possible to set up transverse standing waves in rods. Musical instru-
ments that depend on transverse standing waves in rods or bars include triangles, 
marimbas, xylophones, glockenspiels, chimes, and vibraphones. Other devices that 
make sounds from vibrating bars include music boxes and wind chimes.
 Two-dimensional oscillations can be set up in a flexible membrane stretched 
over a circular hoop such as that in a drumhead. As the membrane is struck at 
some point, waves that arrive at the fixed boundary are reflected many times. The 
resulting sound is not harmonic because the standing waves have frequencies that 
are not related by integer multiples. Without this relationship, the sound may be 
more correctly described as noise rather than as music. The production of noise 
is in contrast to the situation in wind and stringed instruments, which produce 
sounds that we describe as musical.
 Some possible normal modes of oscillation for a two-dimensional circular mem-
brane are shown in Figure 18.16. Whereas nodes are points in one-dimensional 
standing waves on strings and in air columns, a two-dimensional oscillator has 
curves along which there is no displacement of the elements of the medium. The 
lowest normal mode, which has a frequency f1, contains only one nodal curve; this 
curve runs around the outer edge of the membrane. The other possible normal 
modes show additional nodal curves that are circles and straight lines across the 
diameter of the membrane.

18.7 Beats: Interference in Time
The interference phenomena we have studied so far involve the superposition of 
two or more waves having the same frequency. Because the amplitude of the oscil-
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Figure 18.15  Normal-mode 
longitudinal vibrations of a rod 
of length L (a) clamped at the 
middle to produce the first nor-
mal mode and (b) clamped at 
a distance L/4 from one end to 
produce the second normal mode. 
Notice that the red-brown curves 
are graphical representations of 
oscillations parallel to the rod 
(longitudinal waves).
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Figure 18.17 Beats are formed 
by the combination of two waves 
of slightly different frequencies. 
(a) The individual waves. (b) The 
combined wave. The envelope 
wave (dashed line) represents the 
beating of the combined sounds.

lation of elements of the medium varies with the position in space of the element 
in such a wave, we refer to the phenomenon as spatial interference. Standing waves in 
strings and pipes are common examples of spatial interference.

Now let’s consider another type of interference, one that results from the super-
position of two waves having slightly different frequencies. In this case, when the two 
waves are observed at a point in space, they are periodically in and out of phase. 
That is, there is a temporal (time) alternation between constructive and destructive 
interference. As a consequence, we refer to this phenomenon as interference in time 
or temporal interference. For example, if two tuning forks of slightly different frequen-
cies are struck, one hears a sound of periodically varying amplitude. This phenom-
enon is called beating.

Beating is the periodic variation in amplitude at a given point due to the 
superposition of two waves having slightly different frequencies.

 The number of amplitude maxima one hears per second, or the beat frequency, 
equals the difference in frequency between the two sources as we shall show below. 
The maximum beat frequency that the human ear can detect is about 20 beats/s. 
When the beat frequency exceeds this value, the beats blend indistinguishably with 
the sounds producing them.
 Consider two sound waves of equal amplitude and slightly different frequencies 
f1 and f2 traveling through a medium. We use equations similar to Equation 16.13 to 
represent the wave functions for these two waves at a point that we identify as x 5 0.  
We also choose the phase angle in Equation 16.13 as f 5 p/2:

 y1 5 A sin ap

2
2 v1tb 5 A cos 12pf1t 2

 y2 5 A sin ap

2
2 v2tb 5 A cos 12pf 2t 2

Using the superposition principle, we find that the resultant wave function at this 
point is

y 5 y1 1 y2 5 A (cos 2pf1t 1 cos 2pf2t)

The trigonometric identity

cos a 1 cos b 5 2 cos aa 2 b
2

b cos aa 1 b
2

b
allows us to write the expression for y as

y 5 c2A cos 2pa f1 2 f2

2
bt d  cos 2pa f1 1 f2

2
bt  (18.10)

Graphs of the individual waves and the resultant wave are shown in Figure 18.17. 
From the factors in Equation 18.10, we see that the resultant wave has an effective 

Definition of beating

 Resultant of two waves of 
different frequencies but 
equal amplitude

Beating is the periodic variation in amplitude at a given point due to the 
superposition of two waves having slightly different frequencies.
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Analyze  Set up a ratio of the fundamental frequencies 
of the two strings using Equation 18.5:

f 2

f 1
5
1v2/2L 21v1/2L 2 5

v2

v1

Use Equation 16.18 to substitute for the wave speeds on 
the strings:

f 2

f 1
5
"T2/m"T1/m

5 ÅT2

T1

Incorporate that the tension in one string is 1.0% larger 
than the other; that is, T2 5 1.010T1:

f 2

f 1
5 Å1.010T1

T1
5 1.005

Solve for the frequency of the tightened string: f2 5 1.005f1 5 1.005(440 Hz) 5 442 Hz

Finalize  Notice that a 1.0% mistuning in tension leads to an easily audible beat frequency of 2 Hz. A piano tuner can 
use beats to tune a stringed instrument by “beating” a note against a reference tone of known frequency. The tuner 
can then adjust the string tension until the frequency of the sound it emits equals the frequency of the reference 
tone. The tuner does so by tightening or loosening the string until the beats produced by it and the reference source 
become too infrequent to notice.

Find the beat frequency using Equation 18.12: fbeat 5 442 Hz 2 440 Hz 5   2 Hz

frequency equal to the average frequency ( f1 1 f2)/2. This wave is multiplied by an 
envelope wave given by the expression in the square brackets:

 yenvelope 5 2A cos 2pa f1 2 f2

2
bt  (18.11)

That is, the amplitude and therefore the intensity of the resultant sound vary 
in time. The dashed black line in Figure 18.17b is a graphical representation of 
the envelope wave in Equation 18.11 and is a sine wave varying with frequency  
( f1 2 f2)/2.
 A maximum in the amplitude of the resultant sound wave is detected whenever

cos 2pa f 1 2 f2

2
bt 5 61

Hence, there are two maxima in each period of the envelope wave. Because the 
amplitude varies with frequency as ( f1 2 f2)/2, the number of beats per second, or 
the beat frequency fbeat, is twice this value. That is,

 fbeat 5 0 f1 2 f 2 0  (18.12)

 For instance, if one tuning fork vibrates at 438 Hz and a second one vibrates at 
442 Hz, the resultant sound wave of the combination has a frequency of 440 Hz 
(the musical note A) and a beat frequency of 4 Hz. A listener would hear a 440-Hz 
sound wave go through an intensity maximum four times every second.

Beat frequency 

Example 18.7   The Mistuned Piano Strings 

Two identical piano strings of length 0.750 m are each tuned exactly to 440 Hz. The tension in one of the strings is 
then increased by 1.0%. If they are now struck, what is the beat frequency between the fundamentals of the two strings?

Conceptualize  As the tension in one of the strings is changed, its fundamental frequency changes. Therefore, when 
both strings are played, they will have different frequencies and beats will be heard.

Categorize  We must combine our understanding of the waves under boundary conditions model for strings with our new 
knowledge of beats.

AM
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18.8 Nonsinusoidal Wave Patterns
It is relatively easy to distinguish the sounds coming from a violin and a saxophone 
even when they are both playing the same note. On the other hand, a person 
untrained in music may have difficulty distinguishing a note played on a clarinet 
from the same note played on an oboe. We can use the pattern of the sound waves 
from various sources to explain these effects.

When frequencies that are integer multiples of a fundamental frequency are 
combined to make a sound, the result is a musical sound. A listener can assign a 
pitch to the sound based on the fundamental frequency. Pitch is a psychological 
reaction to a sound that allows the listener to place the sound on a scale from low to 
high (bass to treble). Combinations of frequencies that are not integer multiples of 
a fundamental result in a noise rather than a musical sound. It is much harder for a 
listener to assign a pitch to a noise than to a musical sound.

The wave patterns produced by a musical instrument are the result of the super-
position of frequencies that are integer multiples of a fundamental. This superposi-
tion results in the corresponding richness of musical tones. The human perceptive 
response associated with various mixtures of harmonics is the quality or timbre of 
the sound. For instance, the sound of the trumpet is perceived to have a “brassy” 
quality (that is, we have learned to associate the adjective brassy with that sound); 
this quality enables us to distinguish the sound of the trumpet from that of the sax-
ophone, whose quality is perceived as “reedy.” The clarinet and oboe, however, both 
contain air columns excited by reeds; because of this similarity, they have similar 
mixtures of frequencies and it is more difficult for the human ear to distinguish 
them on the basis of their sound quality.

The sound wave patterns produced by the majority of musical instruments are 
nonsinusoidal. Characteristic patterns produced by a tuning fork, a flute, and a 
clarinet, each playing the same note, are shown in Figure 18.18. Each instrument 
has its own characteristic pattern. Notice, however, that despite the differences in 
the patterns, each pattern is periodic. This point is important for our analysis of 
these waves.

The problem of analyzing nonsinusoidal wave patterns appears at first sight to 
be a formidable task. If the wave pattern is periodic, however, it can be represented 
as closely as desired by the combination of a sufficiently large number of sinusoidal 
waves that form a harmonic series. In fact, we can represent any periodic function 
as a series of sine and cosine terms by using a mathematical technique based on 
Fourier’s theorem.2 The corresponding sum of terms that represents the periodic 
wave pattern is called a Fourier series. Let y(t) be any function that is periodic in 
time with period T such that y(t 1 T) 5 y(t). Fourier’s theorem states that this func-
tion can be written as

 y(t) 5 o (An sin 2pfnt 1 Bn cos 2pfnt) (18.13)

where the lowest frequency is f1 5 1/T. The higher frequencies are integer multiples 
of the fundamental, fn 5 nf1, and the coefficients An and Bn represent the ampli-
tudes of the various waves. Figure 18.19 on page 554 represents a harmonic analysis 
of the wave patterns shown in Figure 18.18. Each bar in the graph represents one 
of the terms in the series in Equation 18.13 up to n 5 9. Notice that a struck tuning 
fork produces only one harmonic (the first), whereas the flute and clarinet produce 
the first harmonic and many higher ones.
 Notice the variation in relative intensity of the various harmonics for the flute 
and the clarinet. In general, any musical sound consists of a fundamental fre-
quency f plus other frequencies that are integer multiples of f, all having different 
intensities.

18.8

Fourier’s theorem

Pitfall Prevention 18.4
Pitch Versus Frequency Do not 
confuse the term pitch with fre-
quency. Frequency is the physical 
measurement of the number of 
oscillations per second. Pitch is a 
psychological reaction to sound 
that enables a person to place the 
sound on a scale from high to low 
or from treble to bass. Therefore, 
frequency is the stimulus and 
pitch is the response. Although 
pitch is related mostly (but not 
completely) to frequency, they are 
not the same. A phrase such as 
“the pitch of the sound” is incor-
rect because pitch is not a physical 
property of the sound.

Tuning fork

Flute

Clarinet

t

t

t

b

c

a

Figure 18.18  Sound wave pat-
terns produced by (a) a tuning 
fork, (b) a flute, and (c) a clarinet, 
each at approximately the same 
frequency.

2 Developed by Jean Baptiste Joseph Fourier (1786–1830).
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Square wave

5f

f

3f

f

3f

b

c

a
Waves of frequency f and 
3f are added to give the 
blue curve.

One more odd harmonic 
of frequency 5f  is added 
to give the green curve.

The synthesis curve 
(red-brown) approaches 
closer to the square wave 
(black curve) when odd 
frequencies up to 9f  are 
added.

Figure 18.20 Fourier synthesis 
of a square wave, represented by 
the sum of odd multiples of the 
first harmonic, which has fre-
quency f.

 We have discussed the analysis of a wave pattern using Fourier’s theorem. The 
analysis involves determining the coefficients of the harmonics in Equation 18.13 
from a knowledge of the wave pattern. The reverse process, called Fourier synthesis, 
can also be performed. In this process, the various harmonics are added together 
to form a resultant wave pattern. As an example of Fourier synthesis, consider the 
building of a square wave as shown in Figure 18.20. The symmetry of the square 
wave results in only odd multiples of the fundamental frequency combining in its 
synthesis. In Figure 18.20a, the blue curve shows the combination of f and 3f. In 
Figure 18.20b, we have added 5f to the combination and obtained the green curve. 
Notice how the general shape of the square wave is approximated, even though the 
upper and lower portions are not flat as they should be.
 Figure 18.20c shows the result of adding odd frequencies up to 9f. This approxi-
mation (red-brown curve) to the square wave is better than the approximations 
in Figures 18.20a and 18.20b. To approximate the square wave as closely as pos-
sible, we must add all odd multiples of the fundamental frequency, up to infinite 
frequency.
 Using modern technology, musical sounds can be generated electronically by 
mixing different amplitudes of any number of harmonics. These widely used elec-
tronic music synthesizers are capable of producing an infinite variety of musical 
tones.
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Figure 18.19  Harmonics of the wave patterns shown in Figure 18.18. Notice the variations in inten-
sity of the various harmonics. Parts (a), (b), and (c) correspond to those in Figure 18.18.
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Summary

 The superposition principle speci-
fies that when two or more waves move 
through a medium, the value of the 
resultant wave function equals the alge-
braic sum of the values of the individual 
wave functions.

 The phenomenon of beating is the periodic variation in intensity at 
a given point due to the superposition of two waves having slightly dif-
ferent frequencies. The beat frequency is

 f beat 5 0 f1 2 f 2 0  (18.12)
where f1 and f2 are the frequencies of the individual waves.

 Standing waves are formed from the combination of two sinusoidal waves having the same frequency, amplitude, 
and wavelength but traveling in opposite directions. The resultant standing wave is described by the wave function

 y 5 (2A sin kx) cos vt (18.1)

Hence, the amplitude of the standing wave is 2A, and the amplitude of the simple harmonic motion of any element  
of the medium varies according to its position as 2A sin kx. The points of zero amplitude (called nodes) occur at  
x 5 nl/2 (n 5 0, 1, 2, 3, . . .). The maximum amplitude points (called antinodes) occur at x 5 nl/4 (n 5 1, 3, 5, . . .). 
Adjacent antinodes are separated by a distance l/2. Adjacent nodes also are separated by a distance l/2.

Concepts and Principles

Analysis Models for Problem Solving

y1 � y2

y1 � y2

Destructive
interference

Constructive
interference

y1 y2

y2
y1

 Waves in Interference. When two travel-
ing waves having equal frequencies super-
impose, the resultant wave is described by 
the principle of superposition and has an 
amplitude that depends on the phase angle 
f between the two waves. Constructive 

interference occurs when the two waves 
are in phase, corresponding to f 5 0, 2p, 
4p, . . . rad. Destructive interference occurs 
when the two waves are 180° out of phase, 
corresponding to f 5 p, 3p, 5p, . . . rad.

 Waves Under Boundary 

Conditions. When a wave is 
subject to boundary condi-
tions, only certain natural 
frequencies are allowed; we 
say that the frequencies are 
quantized.
 For waves on a string 
fixed at both ends, the natural frequencies are

 fn 5
n

2L ÅT
m

     n 5 1, 2, 3, . . . (18.6)

where T is the tension in the string and m is its linear mass density.
 For sound waves with speed v in an air column of length L open 
at both ends, the natural frequencies are

 fn 5 n 
v

2L
    n 5 1, 2, 3, . . . (18.8)

 If an air column is open at one end and closed at the other, 
only odd harmonics are present and the natural frequencies are

 fn 5 n 
v

4L
    n 5 1, 3, 5, . . . (18.9)

n � 1

n � 2

n � 3

Rank the following situations according to the intensity 
of sound at the receiver from the highest to the lowest. 
Assume the tube walls absorb no sound energy. Give 
equal ranks to situations in which the intensity is equal. 

 1. In Figure OQ18.1 (page 556), a sound wave of wave-
length 0.8 m divides into two equal parts that recombine  
to interfere constructively, with the original difference 
between their path lengths being |r2 2 r1| 5 0.8 m. 

Objective Questions 1. denotes answer available in Student Solutions Manual/Study Guide
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forks has a frequency of 245 Hz, what is the frequency 
of the other tuning fork? (a) 240 Hz (b) 242.5 Hz  
(c) 247.5 Hz (d)  250 Hz (e) More than one answer 
could be correct.

 7. A tuning fork is known to vibrate with frequency  
262 Hz. When it is sounded along with a mandolin 
string, four beats are heard every second. Next, a bit of 
tape is put onto each tine of the tuning fork, and the 
tuning fork now produces five beats per second with 
the same mandolin string. What is the frequency of 
the string? (a) 257 Hz (b) 258 Hz (c) 262 Hz (d) 266 Hz  
(e) 267 Hz

 8. An archer shoots an arrow horizontally from the center 
of the string of a bow held vertically. After the arrow 
leaves it, the string of the bow will vibrate as a superpo-
sition of what standing-wave harmonics? (a) It vibrates 
only in harmonic number 1, the fundamental. (b) It 
vibrates only in the second harmonic. (c) It vibrates 
only in the odd-numbered harmonics 1, 3, 5, 7, . . . .  
(d) It vibrates only in the even-numbered harmonics 2, 
4, 6, 8, . . . . (e) It vibrates in all harmonics.

 9. As oppositely moving pulses of the same shape (one 
upward, one downward) on a string pass through each 
other, at one particular instant the string shows no dis-
placement from the equilibrium position at any point. 
What has happened to the energy carried by the pulses 
at this instant of time? (a) It was used up in producing 
the previous motion. (b) It is all potential energy. (c) It 
is all internal energy. (d) It is all kinetic energy. (e) The 
positive energy of one pulse adds to zero with the nega-
tive energy of the other pulse.

 10. A standing wave having three nodes is set up in a string 
fixed at both ends. If the frequency of the wave is dou-
bled, how many antinodes will there be? (a) 2 (b) 3  
(c) 4 (d) 5 (e) 6

 11. Suppose all six equal-length strings of an acoustic 
guitar are played without fingering, that is, without 
being pressed down at any frets. What quantities are 
the same for all six strings? Choose all correct answers.  
(a) the fundamental frequency (b) the fundamental 
wavelength of the string wave (c) the fundamental 
wavelength of the sound emitted (d) the speed of the 
string wave (e) the speed of the sound emitted

 12. Assume two identical sinusoidal waves are moving 
through the same medium in the same direction. 
Under what condition will the amplitude of the resul-
tant wave be greater than either of the two original 
waves? (a) in all cases (b) only if the waves have no dif-
ference in phase (c) only if the phase difference is less 
than 90° (d) only if the phase difference is less than 
120° (e) only if the phase difference is less than 180°

(a) From its original 
position, the sliding 
section is moved out by 
0.1 m. (b) Next it slides 
out an additional 0.1 m.  
(c) It slides out still 
another 0.1 m. (d) It 
slides out 0.1 m more.

 2. A string of length L, 
mass per unit length m, 
and tension T is vibrat-
ing at its fundamental 
frequency. (i) If the 
length of the string is 
doubled, with all other 
factors held constant, what is the effect on the funda-
mental frequency? (a) It becomes two times larger. (b) It  
becomes !2 times larger. (c) It is unchanged. (d) It 
becomes 1/!2 times as large. (e) It becomes one-half 
as large. (ii) If the mass per unit length is doubled, 
with all other factors held constant, what is the effect 
on the fundamental frequency? Choose from the same 
possibilities as in part (i). (iii) If the tension is doubled, 
with all other factors held constant, what is the effect 
on the fundamental frequency? Choose from the same 
possibilities as in part (i).

 3. In Example 18.1, we investigated an oscillator at 1.3 kHz  
driving two identical side-by-side speakers. We found 
that a listener at point O hears sound with maximum 
intensity, whereas a listener at point P hears a mini-
mum. What is the intensity at P? (a) less than but close 
to the intensity at O (b) half the intensity at O (c) very 
low but not zero (d) zero (e) indeterminate

 4. A series of pulses, each of amplitude 0.1 m, is sent down 
a string that is attached to a post at one end. The pulses 
are reflected at the post and travel back along the string 
without loss of amplitude. (i) What is the net displace-
ment at a point on the string where two pulses are cross-
ing? Assume the string is rigidly attached to the post.  
(a) 0.4 m (b) 0.3 m (c) 0.2 m (d) 0.1 m (e) 0 (ii) Next 
assume the end at which reflection occurs is free to slide 
up and down. Now what is the net displacement at a point 
on the string where two pulses are crossing? Choose your 
answer from the same possibilities as in part (i).

 5. A flute has a length of 58.0 cm. If the speed of sound 
in air is 343 m/s, what is the fundamental frequency of 
the flute, assuming it is a tube closed at one end and 
open at the other? (a) 148 Hz (b) 296 Hz (c) 444 Hz  
(d) 591 Hz (e) none of those answers

 6. When two tuning forks are sounded at the same time, 
a beat frequency of 5 Hz occurs. If one of the tuning 

r1

r2

Speaker

Receiver

Sliding section

Figure OQ18.1 Objective 
Question 1 and Problem 6.

Conceptual Questions 1. denotes answer available in Student Solutions Manual/Study Guide

 1. A crude model of the human throat is that of a pipe 
open at both ends with a vibrating source to introduce 
the sound into the pipe at one end. Assuming the 
vibrating source produces a range of frequencies, dis-
cuss the effect of changing the pipe’s length.

 2. When two waves interfere constructively or destruc-
tively, is there any gain or loss in energy in the system 
of the waves? Explain.

 3. Explain how a musical instrument such as a piano may 
be tuned by using the phenomenon of beats.
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 6. An airplane mechanic notices that the sound from a 
twin-engine aircraft rapidly varies in loudness when 
both engines are running. What could be causing this 
variation from loud to soft?

 7. Despite a reasonably steady hand, a person often spills 
his coffee when carrying it to his seat. Discuss reso-
nance as a possible cause of this difficulty and devise a 
means for preventing the spills.

 8. A soft-drink bottle resonates as air is blown across its 
top. What happens to the resonance frequency as the 
level of fluid in the bottle decreases?

 9. Does the phenomenon of wave interference apply only 
to sinusoidal waves?

 3. Two waves on one string are described by the wave 
functions

y1 5 3.0 cos (4.0x 2 1.6t)  y2 5 4.0 sin (5.0x 2 2.0t)

  where x and y are in centimeters and t is in seconds. 
Find the superposition of the waves y1 1 y2 at the points 
(a) x 5 1.00, t 5 1.00; (b) x 5 1.00, t 5 0.500; and (c) x 5  
0.500, t 5 0. Note: Remember that the arguments of the 
trigonometric functions are in radians.

 4. Two pulses of different amplitudes approach each 
other, each having a speed of v 5 1.00 m/s. Figure 
P18.4 shows the positions of the pulses at time t 5 0.  
(a) Sketch the resultant wave at t 5 2.00 s, 4.00 s,  
5.00 s, and 6.00 s. (b) What If? If the pulse on the 
right is inverted so that it is upright, how would your 
sketches of the resultant wave change?
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Figure P18.4

 5. A tuning fork generates sound waves with a frequency 
of 246 Hz. The waves travel in opposite directions along 
a hallway, are reflected by end walls, and return. The 
hallway is 47.0 m long and the tuning fork is located 
14.0 m from one end. What is the phase difference  

W

 4. What limits the amplitude of motion of a real vibrating 
system that is driven at one of its resonant frequencies?

 5. A tuning fork by itself produces a faint sound. Explain 
how each of the following methods can be used to 
obtain a louder sound from it. Explain also any effect 
on the time interval for which the fork vibrates audibly. 
(a) holding the edge of a sheet of paper against one 
vibrating tine (b) pressing the handle of the tuning 
fork against a chalkboard or a tabletop (c) holding the 
tuning fork above a column of air of properly chosen 
length as in Example 18.6 (d) holding the tuning fork 
close to an open slot cut in a sheet of foam plastic or 
cardboard (with the slot similar in size and shape to 
one tine of the fork and the motion of the tines per-
pendicular to the sheet)

Note: Unless otherwise specified, assume the speed of 
sound in air is 343 m/s, its value at an air temperature 
of 20.0°C. At any other Celsius temperature TC, the 
speed of sound in air is described by

v 5 331 Å1 1
TC

273

where v is in m/s and T is in °C.

Section 18.1  Analysis Model: Waves in Interference

 1. Two waves are traveling in the same direction along a 
stretched string. The waves are 90.0° out of phase. Each 
wave has an amplitude of 4.00 cm. Find the amplitude 
of the resultant wave.

 2. Two wave pulses A and B are moving in opposite direc-
tions, each with a speed v 5 2.00 cm/s. The amplitude 
of A is twice the amplitude of B. The pulses are shown 
in Figure P18.2 at t 5 0. Sketch the resultant wave at t 5  
1.00 s, 1.50 s, 2.00 s, 2.50 s, and 3.00 s.

W
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 11. Two sinusoidal waves in a string are defined by the 
wave functions

y1 5 2.00 sin (20.0x 2 32.0t)  y2 5 2.00 sin (25.0x 2 40.0t)

  where x, y1, and y2 are in centimeters and t is in sec-
onds. (a) What is the phase difference between these 
two waves at the point x 5 5.00 cm at t 5 2.00 s?  
(b) What is the positive x value closest to the origin for 
which the two phases differ by 6p at t 5 2.00 s? (At 
that location, the two waves add to zero.)

 12. Two identical sinusoidal waves with wavelengths of  
3.00 m travel in the same direction at a speed of  
2.00 m/s. The second wave originates from the same 
point as the first, but at a later time. The amplitude 
of the resultant wave is the same as that of each of the 
two initial waves. Determine the minimum possible 
time interval between the starting moments of the two 
waves.

 13. Two identical loudspeakers 10.0 m apart are driven 
by the same oscillator with a frequency of f 5 21.5 Hz 
(Fig.  P18.13) in an area where the speed of sound is 
344  m/s. (a) Show that a receiver at point A records 
a minimum in sound intensity from the two speak-
ers. (b) If the receiver is moved in the plane of the 
speakers, show that the path it should take so that the 
intensity remains at a minimum is along the hyperbola  
9x2 2 16y2 5 144 (shown in red-brown in Fig. P18.13). 
(c) Can the receiver remain at a minimum and move 
very far away from the two sources? If so, determine the 
limiting form of the path it must take. If not, explain 
how far it can go.

9.00 m 

10.0 m 

y

(x, y)

A x

Figure P18.13

Section 18.2  Standing Waves

 14. Two waves simultaneously present on a long string have 
a phase difference f between them so that a standing 
wave formed from their combination is described by

y 1x, t 2 5 2A sin akx 1
f

2
b cos avt 2

f

2
b

  (a) Despite the presence of the phase angle f, is it still 
true that the nodes are one-half wavelength apart? 
Explain. (b) Are the nodes different in any way from 
the way they would be if f were zero? Explain.

 15. Two sinusoidal waves traveling in opposite directions 
interfere to produce a standing wave with the wave 
function

y 5 1.50 sin (0.400x) cos (200t)

M

Q/C

Q/C

W

between the reflected waves when they meet at the tun-
ing fork? The speed of sound in air is 343 m/s.

 6. The acoustical system shown in Figure OQ18.1 is 
driven by a speaker emitting sound of frequency  
756 Hz. (a) If constructive interference occurs at a 
particular location of the sliding section, by what mini-
mum amount should the sliding section be moved 
upward so that destructive interference occurs instead? 
(b) What minimum distance from the original posi-
tion of the sliding section will again result in construc-
tive interference?

 7. Two pulses traveling on the same string are described 
by

y 1 5
513x 2 4t 22 1 2

        y 2 5
2513x 1 4t 2 6 22 1 2

  (a) In which direction does each pulse travel? (b) At 
what instant do the two cancel everywhere? (c) At what 
point do the two pulses always cancel?

 8. Two identical loudspeakers are placed on a wall 2.00 m 
apart. A listener stands 3.00 m from the wall directly 
in front of one of the speakers. A single oscillator is 
driving the speakers at a frequency of 300 Hz. (a) What  
is the phase difference in radians between the waves 
from the speakers when they reach the observer?  
(b) What If? What is the frequency closest to 300 Hz 
to which the oscillator may be adjusted such that the 
observer hears minimal sound?

 9. Two traveling sinusoidal waves are described by the 
wave functions

y1 5 5.00 sin [p(4.00x 2 1 200t)]

y2 5 5.00 sin [p(4.00x 2 1 200t 2 0.250)]

  where x, y1, and y2 are in meters and t is in seconds. 
(a) What is the amplitude of the resultant wave func-
tion y1 1 y2? (b) What is the frequency of the resultant 
wave function?

 10. Why is the following situation impossible? Two identical 
loudspeakers are driven by the same oscillator at fre-
quency 200 Hz. They are located on the ground a dis-
tance d 5 4.00 m from each other. Starting far from 
the speakers, a man walks straight toward the right-
hand speaker as shown in Figure P18.10. After passing 
through three minima in sound intensity, he walks to 
the next maximum and stops. Ignore any sound reflec-
tion from the ground.

AMT

M

x

d

Figure P18.10
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entire length. A fret is provided for limiting vibration to 
just the lower two-thirds of the string. (a) If the string is 
pressed down at this fret and plucked, what is the new 
fundamental frequency? (b) What If? The guitarist can 
play a “natural harmonic” by gently touching the string 
at the location of this fret and plucking the string at 
about one-sixth of the way along its length from the 
other end. What frequency will be heard then?

 23. The A string on a cello vibrates in its first normal mode 
with a frequency of 220 Hz. The vibrating segment 
is 70.0 cm long and has a mass of 1.20 g. (a) Find the 
tension in the string. (b) Determine the frequency of 
vibration when the string vibrates in three segments.

 24. A taut string has a length of 2.60 m and is fixed at 
both ends. (a) Find the wavelength of the fundamental 
mode of vibration of the string. (b) Can you find the 
frequency of this mode? Explain why or why not.

 25. A certain vibrating string on a piano has a length of 
74.0  cm and forms a standing wave having two anti-
nodes. (a) Which harmonic does this wave represent? 
(b) Determine the wavelength of this wave. (c) How 
many nodes are there in the wave pattern?

 26. A string that is 30.0 cm long and has a mass per unit 
length of 9.00 3 1023 kg/m is stretched to a tension 
of 20.0 N. Find (a) the fundamental frequency and  
(b) the next three frequencies that could cause stand-
ing-wave patterns on the string.

 27. In the arrangement shown in Figure P18.27, an object 
can be hung from a string (with linear mass density m 5  
0.002 00 kg/m) that passes over a light pulley. The 
string is connected to a vibrator (of constant frequency 
f ), and the length of the string between point P and the 
pulley is L 5 2.00 m. When the mass m of the object is 
either 16.0 kg or 25.0 kg, standing waves are observed; 
no standing waves are observed with any mass between 
these values, however. (a) What is the frequency of the 
vibrator? Note: The greater the tension in the string, 
the smaller the number of nodes in the standing wave. 
(b) What is the largest object mass for which standing 
waves could be observed?

L

P

Vibrator

PP
m

m

Figure P18.27 Problems 27 and 28.

 28. In the arrangement shown in Figure P18.27, an object 
of mass m 5 5.00 kg hangs from a cord around a light 
pulley. The length of the cord between point P and the 
pulley is L 5 2.00 m. (a) When the vibrator is set to a 
frequency of 150 Hz, a standing wave with six loops is 
formed. What must be the linear mass density of the 
cord? (b) How many loops (if any) will result if m is 
changed to 45.0 kg? (c)  How many loops (if any) will 
result if m is changed to 10.0 kg?

W

W

AMT

M

  where x and y are in meters and t is in seconds. Deter-
mine (a) the wavelength, (b) the frequency, and (c) the 
speed of the interfering waves.

 16. Verify by direct substitution that the wave function for 
a standing wave given in Equation 18.1,

y 5 (2A sin kx) cos vt

  is a solution of the general linear wave equation, Equa-
tion 16.27:

'2y

'x 2 5
1
v 2  

'2y

't 2

 17. Two transverse sinusoidal waves combining in a 
medium are described by the wave functions

y1 5 3.00 sin p(x 1 0.600t)  y2 5 3.00 sin p(x 2 0.600t)

  where x, y1, and y2 are in centimeters and t is in sec-
onds. Determine the maximum transverse position of 
an element of the medium at (a) x 5 0.250 cm, (b) x 5  
0.500 cm, and (c) x 5 1.50 cm. (d) Find the three small-
est values of x corresponding to antinodes.

 18. A standing wave is described by the wave function

y 5 6 sin ap

2
xb cos 1100pt 2

  where x and y are in meters and t is in seconds.  
(a) Prepare graphs showing y as a function of x for 
five instants: t 5 0, 5 ms, 10 ms, 15 ms, and 20 ms.  
(b) From the graph, identify the wavelength of the wave 
and explain how to do so. (c) From the graph, identify 
the frequency of the wave and explain how to do so.  
(d) From the equation, directly identify the wavelength 
of the wave and explain how to do so. (e) From the 
equation, directly identify the frequency and explain 
how to do so.

 19. Two identical loudspeakers are driven in phase by a 
common oscillator at 800 Hz and face each other at 
a distance of 1.25 m. Locate the points along the line 
joining the two speakers where relative minima of 
sound pressure amplitude would be expected.

Section 18.3  Analysis Model: Waves  
Under Boundary Conditions

 20. A standing wave is established in a 120-cm-long string 
fixed at both ends. The string vibrates in four segments 
when driven at 120 Hz. (a) Determine the wavelength. 
(b) What is the fundamental frequency of the string?

 21. A string with a mass m 5 8.00 g  
and a length L 5 5.00 m has 
one end attached to a wall; 
the other end is draped over a 
small, fixed pulley a distance 
d 5 4.00 m from the wall and 
attached to a hanging object 
with a mass M 5 4.00 kg as in 
Figure P18.21. If the horizon-
tal part of the string is plucked, what is the fundamen-
tal frequency of its vibration?

 22. The 64.0-cm-long string of a guitar has a fundamen-
tal frequency of 330 Hz when it vibrates freely along its 
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sider a seiche produced in a farm pond. Suppose the 
pond is 9.15 m long and assume it has a uniform width 
and depth. You measure that a pulse produced at one 
end reaches the other end in 2.50 s. (a) What is the 
wave speed? (b) What should be the frequency of the 
ground motion during the earthquake to produce a 
seiche that is a standing wave with antinodes at each 
end of the pond and one node at the center?

 36. High-frequency sound can 
be used to produce stand-
ing-wave vibrations in a 
wine glass. A standing-wave 
vibration in a wine glass is 
observed to have four nodes 
and four antinodes equally 
spaced around the 20.0-cm 
circumference of the rim 
of the glass. If transverse 
waves move around the glass 
at 900 m/s, an opera singer 
would have to produce a 
high harmonic with what frequency to shatter the glass 
with a resonant vibration as shown in Figure P18.36?

Section 18.5  Standing Waves in Air Columns
 37. The windpipe of one typical whooping crane is 5.00 feet  

long. What is the fundamental resonant frequency of 
the bird’s trachea, modeled as a narrow pipe closed at 
one end? Assume a temperature of 37°C.

 38. If a human ear canal can be thought of as resembling 
an organ pipe, closed at one end, that resonates at a 
fundamental frequency of 3 000 Hz, what is the length 
of the canal? Use a normal body temperature of  
37°C for your determination of the speed of sound in 
the canal.

 39. Calculate the length of a pipe that has a fundamental 
frequency of 240 Hz assuming the pipe is (a) closed at 
one end and (b) open at both ends.

 40. The overall length of a piccolo is 32.0 cm. The reso-
nating air column is open at both ends. (a) Find the 
frequency of the lowest note a piccolo can sound.  
(b) Opening holes in the side of a piccolo effectively 
shortens the length of the resonant column. Assume 
the highest note a piccolo can sound is 4 000 Hz. Find 
the distance between adjacent antinodes for this mode 
of vibration.

 41. The fundamental frequency of an open organ pipe 
corresponds to middle C (261.6 Hz on the chromatic 
musical scale). The third resonance of a closed organ 
pipe has the same frequency. What is the length of  
(a) the open pipe and (b) the closed pipe?

 42. The longest pipe on a certain organ is 4.88 m. What 
is the fundamental frequency (at 0.00°C) if the pipe 
is (a) closed at one end and (b) open at each end?  
(c) What will be the frequencies at 20.0°C?

 43. An air column in a glass tube is open at one end and 
closed at the other by a movable piston. The air in the 
tube is warmed above room temperature, and a 384-Hz 
tuning fork is held at the open end. Resonance is heard 
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 29. Review. A sphere of mass M 5  
1.00 kg is supported by a 
string that passes over a pul-
ley at the end of a horizontal 
rod of length L 5 0.300 m  
(Fig. P18.29). The string 
makes an angle u 5 35.0° with 
the rod. The fundamental 
frequency of standing waves 
in the portion of the string 
above the rod is f 5 60.0 Hz. 
Find the mass of the portion of the string above the rod.

 30. Review. A sphere of mass M is supported by a string 
that passes over a pulley at the end of a horizontal rod 
of length L (Fig. P18.29). The string makes an angle u 
with the rod. The fundamental frequency of standing 
waves in the portion of the string above the rod is f. 
Find the mass of the portion of the string above the 
rod.

 31. A violin string has a length of 0.350 m and is tuned to 
concert G, with fG 5 392 Hz. (a) How far from the end 
of the string must the violinist place her finger to play 
concert A, with fA 5 440 Hz? (b) If this position is to 
remain correct to one-half the width of a finger (that 
is, to within 0.600 cm), what is the maximum allowable 
percentage change in the string tension?

 32. Review. A solid copper object hangs at the bottom of a 
steel wire of negligible mass. The top end of the wire 
is fixed. When the wire is struck, it emits sound with a 
fundamental frequency of 300 Hz. The copper object 
is then submerged in water so that half its volume is 
below the water line. Determine the new fundamental 
frequency.

 33. A standing-wave pattern is observed in a thin wire with 
a length of 3.00 m. The wave function is

y � 0.002 00 sin (px) cos (100pt)

  where x and y are in meters and t is in seconds.  
(a) How many loops does this pattern exhibit? (b) What 
is the fundamental frequency of vibration of the wire?  
(c) What If? If the original frequency is held constant 
and the tension in the wire is increased by a factor of 9, 
how many loops are present in the new pattern?

Section 18.4  Resonance

 34. The Bay of Fundy, Nova Scotia, has the highest tides 
in the world. Assume in midocean and at the mouth 
of the bay the Moon’s gravity gradient and the Earth’s 
rotation make the water surface oscillate with an ampli-
tude of a few centimeters and a period of 12 h 24 min. 
At the head of the bay, the amplitude is several meters. 
Assume the bay has a length of 210 km and a uniform 
depth of 36.1 m. The speed of long-wavelength water 
waves is given by v 5 !gd, where d is the water’s depth. 
Argue for or against the proposition that the tide is 
magnified by standing-wave resonance.

 35. An earthquake can produce a seiche in a lake in which 
the water sloshes back and forth from end to end with 
remarkably large amplitude and long period. Con-
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Figure P18.29  
Problems 29 and 30.
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 Problems 561

 51. Two adjacent natural frequencies of an organ pipe are 
determined to be 550 Hz and 650 Hz. Calculate (a) the 
fundamental frequency and (b) the length of this pipe.

 52. Why is the following situation impossible? A student is lis-
tening to the sounds from an air column that is 0.730 m  
long. He doesn’t know if the column is open at both 
ends or open at only one end. He hears resonance 
from the air column at frequencies 235 Hz and 587 Hz.

 53. A student uses an audio oscillator of adjustable fre-
quency to measure the depth of a water well. The 
student reports hearing two successive resonances at  
51.87 Hz and 59.85  Hz. (a) How deep is the well?  
(b) How many antinodes are in the standing wave at 
51.87 Hz?

Section 18.6  Standing Waves in Rods and Membranes

 54. An aluminum rod is clamped one-fourth of the way 
along its length and set into longitudinal vibration by 
a variable-frequency driving source. The lowest fre-
quency that produces resonance is 4 400 Hz. The speed 
of sound in an aluminum rod is 5 100 m/s. Determine 
the length of the rod.

 55. An aluminum rod 1.60 m long is held at its center. It 
is stroked with a rosin-coated cloth to set up a longi-
tudinal vibration. The speed of sound in a thin rod 
of aluminum is 5 100 m/s. (a) What is the fundamen-
tal frequency of the waves established in the rod?  
(b) What harmonics are set up in the rod held in this 
manner? (c) What If? What would be the fundamental 
frequency if the rod were copper, in which the speed of 
sound is 3 560 m/s?

Section 18.7  Beats: Interference in Time

 56. While attempting to tune the note C at 523 Hz, a piano 
tuner hears 2.00 beats/s between a reference oscillator 
and the string. (a) What are the possible frequencies 
of the string? (b) When she tightens the string slightly, 
she hears 3.00 beats/s. What is the frequency of the 
string now? (c)  By what percentage should the piano 
tuner now change the tension in the string to bring it 
into tune?

 57. In certain ranges of a piano keyboard, more than one 
string is tuned to the same note to provide extra loud-
ness. For example, the note at 110 Hz has two strings 
at this frequency. If one string slips from its nor-
mal tension of 600 N to 540 N, what beat frequency 
is heard when the hammer strikes the two strings 
simultaneously?

 58. Review. Jane waits on a railroad platform while two 
trains approach from the same direction at equal 
speeds of 8.00 m/s. Both trains are blowing their whis-
tles (which have the same frequency), and one train is 
some distance behind the other. After the first train 
passes Jane but before the second train passes her, 
she hears beats of frequency 4.00 Hz. What is the fre-
quency of the train whistles?

 59. Review. A student holds a tuning fork oscillating at 
256  Hz. He walks toward a wall at a constant speed 
of 1.33 m/s. (a) What beat frequency does he observe 
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when the piston is at a distance d1 5 22.8 cm from the 
open end and again when it is at a distance d2 5 68.3 cm 
from the open end. (a) What speed of sound is implied 
by these data? (b) How far from the open end will the 
piston be when the next resonance is heard?

 44. A tuning fork with a frequency 
of f 5 512 Hz is placed near the 
top of the tube shown in Figure 
P18.44. The water level is low-
ered so that the length L slowly 
increases from an initial value 
of 20.0 cm. Determine the next 
two values of L that correspond 
to resonant modes.

 45. With a particular fingering, 
a flute produces a note with 
frequency 880 Hz at 20.0°C. 
The flute is open at both ends.  
(a) Find the air column length. 
(b) At the beginning of the 
halftime performance at a late-
season football game, the ambient temperature is 
25.00°C and the flutist has not had a chance to warm 
up her instrument. Find the frequency the flute pro-
duces under these conditions.

 46. A shower stall has dimensions 86.0 cm 3 86.0 cm 3 
210 cm. Assume the stall acts as a pipe closed at both 
ends, with nodes at opposite sides. Assume singing 
voices range from 130 Hz to 2 000 Hz and let the speed 
of sound in the hot air be 355 m/s. For someone sing-
ing in this shower, which frequencies would sound the 
richest (because of resonance)?

 47. A glass tube (open at both ends) of length L is posi-
tioned near an audio speaker of frequency f 5 680 Hz. 
For what values of L will the tube resonate with the 
speaker?

 48. A tunnel under a river is 2.00 km long. (a) At what fre-
quencies can the air in the tunnel resonate? (b) Explain 
whether it would be good to make a rule against blow-
ing your car horn when you are in the tunnel.

 49. As shown in Figure P18.49, 
water is pumped into a tall, 
vertical cylinder at a volume 
flow rate R 5 1.00 L/min. 
The radius of the cylinder is 
r 5 5.00 cm, and at the open 
top of the cylinder a tuning 
fork is vibrating with a fre-
quency f 5 512 Hz. As the 
water rises, what time interval 
elapses between successive 
resonances?

 50. As shown in Figure P18.49, 
water is pumped into a tall, 
vertical cylinder at a volume 
flow rate R. The radius of the cylinder is r, and at the 
open top of the cylinder a tuning fork is vibrating with 
a frequency f. As the water rises, what time interval 
elapses between successive resonances?
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Figure P18.44
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Figure P18.49  
Problems 49 and 50.S
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 66. A 2.00-m-long wire having a mass of 0.100 kg is fixed 
at both ends. The tension in the wire is maintained at 
20.0 N. (a) What are the frequencies of the first three 
allowed modes of vibration? (b) If a node is observed at 
a point 0.400 m from one end, in what mode and with 
what frequency is it vibrating?

 67. The fret closest to the bridge on a guitar is 21.4 cm 
from the bridge as shown in Figure P18.67. When the 
thinnest string is pressed down at this first fret, the 
string produces the highest frequency that can be 
played on that guitar, 2 349 Hz. The next lower note 
that is produced on the string has frequency 2 217 Hz. 
How far away from the first fret should the next fret 
be?

Bridge

Frets21.4 cm

Figure P18.67
 68. A string fixed at both ends and having a mass of 4.80 g, 

a length of 2.00 m, and a tension of 48.0 N vibrates in 
its second (n 5 2) normal mode. (a) Is the wavelength 
in air of the sound emitted by this vibrating string 
larger or smaller than the wavelength of the wave on 
the string? (b) What is the ratio of the wavelength in 
air of the sound emitted by this vibrating string and 
the wavelength of the wave on the string?

 69. A quartz watch contains a crystal oscillator in the form 
of a block of quartz that vibrates by contracting and 
expanding. An electric circuit feeds in energy to main-
tain the oscillation and also counts the voltage pulses 
to keep time. Two opposite faces of the block, 7.05 mm 
apart, are antinodes, moving alternately toward each 
other and away from each other. The plane halfway 
between these two faces is a node of the vibration. The 
speed of sound in quartz is equal to 3.70 3 103 m/s. 
Find the frequency of the vibration.

 70. Review. For the arrangement shown in Figure P18.70, 
the inclined plane and the small pulley are frictionless; 
the string supports the object of mass M at the bottom 
of the plane; and the string has mass m. The system 
is in equilibrium, and the vertical part of the string 
has a length h. We wish to study standing waves set up 
in the vertical section of the string. (a) What analysis 
model describes the object of mass M? (b) What analy-
sis model describes the waves on the vertical part of the 
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between the tuning fork and its echo? (b) How fast 
must he walk away from the wall to observe a beat fre-
quency of 5.00 Hz?

Section 18.8  Nonsinusoidal Wave Patterns

 60. An A-major chord consists of the notes called A, C#, 
and E. It can be played on a piano by simultaneously 
striking strings with fundamental frequencies of 
440.00 Hz, 554.37 Hz, and 659.26 Hz. The rich con-
sonance of the chord is associated with near equality 
of the frequencies of some of the higher harmonics of 
the three tones. Consider the first five harmonics of 
each string and determine which harmonics show near 
equality.

 61. Suppose a flutist plays a 523-Hz C note with first har-
monic displacement amplitude A1 5 100 nm. From Fig-
ure 18.19b read, by proportion, the displacement ampli-
tudes of harmonics 2 through 7. Take these as the values 
A2 through A7 in the Fourier analysis of the sound and 
assume B1 5 B2 5 ??? 5 B 7 5 0. Construct a graph of 
the waveform of the sound. Your waveform will not look 
exactly like the flute waveform in Figure 18.18b because 
you simplify by ignoring cosine terms; nevertheless, it 
produces the same sensation to human hearing.

Additional Problems

 62. A pipe open at both ends has a fundamental frequency 
of 300 Hz when the temperature is 0°C. (a) What is the 
length of the pipe? (b) What is the fundamental fre-
quency at a temperature of 30.0°C?

 63. A string is 0.400 m long and has a mass per unit length 
of 9.00 3 10–3 kg/m. What must be the tension in the 
string if its second harmonic has the same frequency as 
the second resonance mode of a 1.75-m-long pipe open 
at one end?

 64. Two strings are vibrating at the same frequency of 
150  Hz. After the tension in one of the strings is 
decreased, an observer hears four beats each second 
when the strings vibrate together. Find the new fre-
quency in the adjusted string.

 65. The ship in Figure P18.65 travels along a straight line 
parallel to the shore and a distance d 5 600 m from 
it. The ship’s radio receives simultaneous signals of the 
same frequency from antennas A and B, separated by 
a distance L 5 800 m. The signals interfere construc-
tively at point C, which is equidistant from A and B. 
The signal goes through the first minimum at point D, 
which is directly outward from the shore from point B. 
Determine the wavelength of the radio waves.
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at this moment? Explain your answer. (c) What if? The 
experiment is repeated after more mass has been added 
to the yo-yo body. The mass distribution is kept the same 
so that the yo-yo still moves with downward acceleration 
0.800 m/s2. At the 1.20-s point in this case, is the rate 
of change of the fundamental wavelength of the string 
vibration still equal to 1.92 m/s? Explain. (d) Is the rate 
of change of the second harmonic wavelength the same 
as in part (b)? Explain.

 75. On a marimba (Fig. P18.75), the wooden bar that 
sounds a tone when struck vibrates in a transverse 
standing wave having three antinodes and two nodes. 
The lowest- frequency note is 87.0 Hz, produced by a 
bar 40.0 cm long. (a) Find the speed of transverse 
waves on the bar. (b) A resonant pipe suspended verti-
cally below the center of the bar enhances the loudness 
of the emitted sound. If the pipe is open at the top end 
only, what length of the pipe is required to resonate 
with the bar in part (a)?

Figure P18.75
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 76. A nylon string has mass 5.50 g and 
length L 5 86.0 cm. The lower end 
is tied to the floor, and the upper 
end is tied to a small set of wheels 
through a slot in a track on which 
the wheels move (Fig. P18.76). The 
wheels have a mass that is negli-
gible compared with that of the 
string, and they roll without fric-
tion on the track so that the upper 
end of the string is essentially free. 
At equilibrium, the string is vertical 
and motionless. When it is carrying a small-amplitude 
wave, you may assume the string is always under uni-
form tension 1.30 N. (a) Find the speed of transverse 
waves on the string. (b) The string’s vibration pos-
sibilities are a set of standing-wave states, each with 
a node at the fixed bottom end and an antinode at 
the free top end. Find the node–antinode distances 
for each of the three simplest states. (c) Find the fre-
quency of each of these states.

 77. Two train whistles have identical frequencies of  
180 Hz. When one train is at rest in the station and 
the other is moving nearby, a commuter standing on 
the station platform hears beats with a frequency of 
2.00 beats/s when the whistles operate together. What 

L

Figure P18.76

M

string? (c) Find the tension in the string. (d) Model the 
shape of the string as one leg and the hypotenuse of 
a right triangle. Find the whole length of the string.  
(e) Find the mass per unit length of the string. (f) Find 
the speed of waves on the string. (g) Find the lowest 
frequency for a standing wave on the vertical section 
of the string. (h) Evaluate this result for M 5 1.50 kg, 
m 5 0.750 g, h 5 0.500 m, and u 5 30.0°. (i) Find the 
numerical value for the lowest frequency for a standing 
wave on the sloped section of the string.

 71. A 0.010 0-kg wire, 2.00 m long, is fixed at both ends and 
vibrates in its simplest mode under a tension of 200 N. 
When a vibrating tuning fork is placed near the wire, a 
beat frequency of 5.00 Hz is heard. (a) What could be 
the frequency of the tuning fork? (b) What should the 
tension in the wire be if the beats are to disappear?

 72. Two speakers are driven by the same oscillator of fre-
quency f. They are located a distance d from each 
other on a vertical pole. A man walks straight toward 
the lower speaker in a direction perpendicular to the 
pole as shown in Figure P18.72. (a) How many times 
will he hear a minimum in sound intensity? (b) How 
far is he from the pole at these moments? Let v repre-
sent the speed of sound and assume that the ground 
does not reflect sound. The man’s ears are at the same 
level as the lower speaker.

dL

Figure P18.72
 73. Review. Consider the apparatus shown in Figure 18.11 

and described in Example 18.4. Suppose the number 
of antinodes in Figure 18.11b is an arbitrary value n. 
(a) Find an expression for the radius of the sphere in 
the water as a function of only n. (b) What is the mini-
mum allowed value of n for a sphere of nonzero size? 
(c) What is the radius of the largest sphere that will 
produce a standing wave on the string? (d) What hap-
pens if a larger sphere is used?

 74. Review. The top end of a yo-yo string is held stationary. 
The yo-yo itself is much more massive than the string. It 
starts from rest and moves down with constant accelera-
tion 0.800 m/s2 as it unwinds from the string. The rub-
bing of the string against the edge of the yo-yo excites 
transverse standing-wave vibrations in the string. Both 
ends of the string are nodes even as the length of the 
string increases. Consider the instant 1.20 s after the 
motion begins from rest. (a) Show that the rate of change 
with time of the wavelength of the fundamental mode of 
oscillation is 1.92 m/s. (b) What if? Is the rate of change 
of the wavelength of the second harmonic also 1.92 m/s 
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(b) Determine the amplitude and phase angle for this 
sinusoidal wave.

 84. A flute is designed so that it produces a frequency of 
261.6 Hz, middle C, when all the holes are covered and 
the temperature is 20.0°C. (a) Consider the flute as a 
pipe that is open at both ends. Find the length of the 
flute, assuming middle C is the fundamental. (b) A sec-
ond player, nearby in a colder room, also attempts to 
play middle C on an identical flute. A beat frequency 
of 3.00 Hz is heard when both flutes are playing. What 
is the temperature of the second room?

 85. Review. A 12.0-kg object hangs in equilibrium from a 
string with a total length of L 5 5.00 m and a linear mass 
density of m 5 0.001 00 kg/m. The string is wrapped 
around two light, frictionless pulleys that are separated 
by a distance of d 5 2.00 m (Fig. P18.85a). (a) Deter-
mine the tension in the string. (b) At what frequency 
must the string between the pulleys vibrate to form the 
standing-wave pattern shown in Figure P18.85b?
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Figure P18.85 Problems 85 and 86.

 86. Review. An object of mass m hangs in equilibrium 
from a string with a total length L and a linear mass 
density m. The string is wrapped around two light, 
frictionless pulleys that are separated by a distance d 
(Fig. P18.85a). (a) Determine the tension in the string.  
(b) At what frequency must the string between the pul-
leys vibrate to form the standing-wave pattern shown in 
Figure P18.85b?

Challenge Problems

 87. Review. Consider the apparatus shown in Figure 
P18.87a, where the hanging object has mass M and the 
string is vibrating in its second harmonic. The vibrat-
ing blade at the left maintains a constant frequency. 
The wind begins to blow to the right, applying a con-
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are the two possible speeds and directions the moving 
train can have?

 78. Review. A loudspeaker at the front of a room and an 
identical loudspeaker at the rear of the room are being 
driven by the same oscillator at 456 Hz. A student 
walks at a uniform rate of 1.50 m/s along the length 
of the room. She hears a single tone repeatedly becom-
ing louder and softer. (a) Model these variations as 
beats between the Doppler-shifted sounds the student 
receives. Calculate the number of beats the student 
hears each second. (b) Model the two speakers as pro-
ducing a standing wave in the room and the student as 
walking between antinodes. Calculate the number of 
intensity maxima the student hears each second.

 79. Review. Consider the copper object hanging from 
the steel wire in Problem 32. The top end of the wire 
is fixed. When the wire is struck, it emits sound with a 
fundamental frequency of 300 Hz. The copper object is 
then submerged in water. If the object can be positioned 
with any desired fraction of its volume submerged, what 
is the lowest possible new fundamental frequency?

 80. Two wires are welded together end to end. The wires 
are made of the same material, but the diameter of one 
is twice that of the other. They are subjected to a ten-
sion of 4.60 N. The thin wire has a length of 40.0 cm 
and a linear mass density of 2.00 g/m. The combina-
tion is fixed at both ends and vibrated in such a way 
that two antinodes are present, with the node between 
them being right at the weld. (a) What is the frequency 
of vibration? (b) What is the length of the thick wire?

 81. A string of linear density 1.60 g/m is stretched between 
clamps 48.0 cm apart. The string does not stretch 
appreciably as the tension in it is steadily raised from 
15.0 N at t 5 0 to 25.0 N at t 5 3.50 s. Therefore, the 
tension as a function of time is given by the expression 
T 5 15.0 1 10.0t/3.50, where T is in newtons and t is 
in seconds. The string is vibrating in its fundamental 
mode throughout this process. Find the number of 
oscillations it completes during the 3.50-s interval.

 82. A standing wave is set up in a string of variable length 
and tension by a vibrator of variable frequency. Both 
ends of the string are fixed. When the vibrator has a 
frequency f, in a string of length L and under tension 
T, n antinodes are set up in the string. (a) If the length 
of the string is doubled, by what factor should the fre-
quency be changed so that the same number of anti-
nodes is produced? (b) If the frequency and length are 
held constant, what tension will produce n 1 1 anti-
nodes? (c) If the frequency is tripled and the length of 
the string is halved, by what factor should the tension be 
changed so that twice as many antinodes are produced?

 83. Two waves are described by the wave functions

y1(x, t) 5 5.00 sin (2.00x 2 10.0t)

y2(x, t) 5 10.0 cos (2.00x 2 10.0t)

  where x, y1, and y2 are in meters and t is in seconds. 
(a)  Show that the wave resulting from their super-
position can be expressed as a single sine function.  
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  Express Equation 18.13 with angular frequencies:

y 1t 2 5 a
n

1An sin nvt 1 Bn cos nvt 2
  Now proceed as follows. (a) Multiply both sides of Equa-

tion 18.13 by sin mvt and integrate both sides over one 
period T. Show that the left-hand side of the resulting 
equation is equal to 0 if m is even and is equal to 4A/mv  
if m is odd. (b) Using trigonometric identities, show 
that all terms on the right-hand side involving Bn are 
equal to zero. (c) Using trigonometric identities, show 
that all terms on the right-hand side involving An are 
equal to zero except for the one case of m 5 n. (d) Show 
that the entire right-hand side of the equation reduces 
to 1

2AmT. (e) Show that the Fourier series expansion for 
a square wave is

y 1t 2 5 a
n

 
4A
np

 sin nvt

stant horizontal force F
S

 on the hanging object. What 
is the magnitude of the force the wind must apply to 
the hanging object so that the string vibrates in its first 
harmonic as shown in Figure 18.87b?

 88. In Figures 18.20a and 18.20b, notice that the ampli-
tude of the component wave for frequency f is large, 
that for 3f is smaller, and that for 5f smaller still. How 
do we know exactly how much amplitude to assign to 
each frequency component to build a square wave? 
This problem helps us find the answer to that question. 
Let the square wave in Figure 18.20c have an ampli-
tude A and let t 5 0 be at the extreme left of the figure. 
So, one period T of the square wave is described by

y 1 t 2 5 μ A 0 , t ,
T
2

2A
T
2

, t , T
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