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Experiment 9: Compound Pendulum

A compound pendulum (also known as a physical pendulum) consists of a rigid body oscillating about a pivot. This
experiment uses a uniform metallic bar with holes/slots cut down the middle at regular intervals. The bar can be
hung from any one of these holes allowing us to change the location of the pivot.

Objective

Derive an equation for the time period T of the oscillations of a uniform metallic bar suspended from a pivot passing
through it.

Experimental Setup

The experimental equipment consists of a thin uniform metallic bar with holes/slots placed through it at regular
intervals. By allowing the bar to swing from different slots one can change the moment of inertia and consequently
the Time Period of oscillations.
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We define the total length of the bar as L and the distance from the pivot to the center of mass (CM) of the bar
to be l as indicated in the diagram above. The position of the bar at any instant of time is given by the angle θ.
When allowed to swing the bar performs an approximation of simple harmonic motion, that is, the angle θ varies in
a cyclic fashion with time period T .

Free-Body Diagram

To calculate the time period T one has to derive the equation of motion θ(t), namely how the angle θ varies as a
function of time t. The first step, as always, is drawing the extended free body diagram of the system (extended
because we are dealing with a rotational system and therefore the distance from the pivot is significant).
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There are two forces acting on the bar. Its weight, which acts at the bar’s center of mass/gravity, and a force of

unknown magnitude and direction acting at the pivot, ~Fp.

Derivation

We are interested in calculating θ(t) so we focus on the rotation of the bar about the pivot and calculate torque.

Since the unknown force ~Fp acts at the pivot, its torque about the pivot is zero (moment-arm has zero length).
Therefore only the weight mg appears in our calculations. The torque is given by

τ = −mgl sin(θ) (1)

where the negative sign denotes the fact that the rotational direction of the torque is always opposite to that of the
angle. For instance in the free-body diagram the angle θ is counter-clockwise while the torque exerted by the weight
is in the clockwise direction.

The effect of this torque is to produce angular acceleration according the Newton’s Second Law of Motion:

τ = Iα (2)

where I is the moment of inertia of the bar about the pivot and α = d2θ
dt2 is its angular acceleration. Note that since

I is calculated about the pivot it is a function of the distance l.

Substituting equations (1) and α = d2θ
dt2 into (2):

τ = Iα

⇒ −mgl sin(θ) = Iα

⇒ α = −mgl
I

sin(θ)

⇒ d2θ

dt2
= −mgl

I
sin(θ)

This is a differential equation which needs to be solved for the function θ(t). In its current form it has no analytical
solution. However if we limit the system to small angles θ � 1, that is only allow small-angle oscillations (small
amplitude) we can make the approximation

θ � 1 ⇒ sin(θ) ≈ θ
which transforms the differential equation in to

d2θ

dt2
= −mgl

I
θ (3)
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This differential equation has the well-known form d2x
dt2 = −ω2x with the equally well-known solution x(t) =

x0 sin(ωt + φ). ω = 2π
T is the angular frequency of the system while T is its time period. The solution x(t) of

the differential equation is sketched below. Note its periodic behavior. The motion of the swinging compound pen-
dulum is similar, it swings back and forth, taking the same amount of time (T ) to complete each oscillation.
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By simply inspecting (3) and comparing with the general form d2x
dt2 = −ω2x we can conclude that

ω2 =
mgl

I

⇒
(2π

T

)2
=
mgl

I

⇒ T = 2π

√
I

mgl

(4)

The final step is to calculate I for a given value of l. For this we use the parallel axis theorem. If the mass of the
bar is m then I is given by

I = ICM +ml2 (5)

where ICM is the moment of inertia of the bar about its center of mass and l is the distance from the pivot to
the center of mass. In turn, ICM is calculated by considering the bar to have negligible width and uniform mass
distribution, in which case the moment of inertia is known to be given by:

ICM =
1

12
mL2 (6)

where L is the total length of the bar.

Substituting (5) and (6) in to (4)

T = 2π

√
I

mgl

⇒ T = 2π

√
ICM +ml2

mgl

⇒ T = 2π

√
1
12 mL2 +ml2

mgl

⇒ T = 2π

√
L2 + 12l2

12gl

(7)

Thus we achieve our objective by deriving an equation that relates the time period T of a compound pendulum to
its physical characteristics, mainly its total length L and the distance l from the pivot to the bar’s center of mass,
and to the acceleration of gravity.
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Objective

Calculate the value of g (acceleration of gravity) and L (the length of the compound pendulum).

Apparatus

• Slotted metal bar

• Suspension bracket

• Stop-watch

• Meter Rule

• Telescope

Procedure

A compound pendulum is a rigid body whose mass is not concentrated at one point and which is capable of oscillating
about some fixed pivot (axis of rotation). In this experiment we will be studying the behavior of a uniform metallic
bar acting as a compound pendulum. The time-period of the oscillations of a uniform bar is governed by the
equation

T = 2π

√
L2 + 12 l2

12 gl
(1)

where

• T is the time period

• L is the total length of the bar

• g is the acceleration of gravity

• l is the distance from the center of mass of the bar to the pivot

Our aim is to vary l by changing the location of the pivot, and for each value of l measure the time period T . These
observations will be used to calculate the acceleration of gravity and the total length of the bar.

Setup

You will be provided a metallic bar with a number of holes/slots placed along its length. Its two ends will be labeled
A and B. The center of mass of the bar will be indicated by a line drawn across its middle. The bar is to be
suspended from the wall-mounted bracket using a set of pin and nuts.
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Choose the end of the bar labeled A. Pass the pin through the hole/slot closest to this end (furthest away from the
center) and use the provided nuts to tighten it in place. Ensure that roughly the same amount of pin protrudes from
both ends.

Now suspend the bar from the wall-bracket using the pin. The pin will support the bar and will allow it to oscillate
parallel to the wall in the vertical plain.

Place the telescope on a stool and position it so that you can view the suspended bar through it. Adjust the eye-
piece (by sliding it) to bring the bar in to focus. Rotate the telescope in place until the cross-hairs are diagonal (no
longer aligned with the horizontal and vertical directions). We will use the telescope to count the oscillations of the
bar.

Tabulation

Record your data in a table with the following format.

l (cm) t101 (s) t102 (s) t103 (s) t104 (s) t105 (s)

For each value of l we will measure the time for 10 oscillations, five times, giving us the five t10i . This table consists
of the measurements we take in the experiment. From these measured values we calculate other derived quantities
which will allow us to achieve our objective of calculating the values of g and L.

It is recommended that you observe and right down all of the measurements first before you calculate the rest of the
values. Using a pencil to write down the values will make it easy to fix inevitable mistakes.

Observation

Start with the pin placed in the top-most hole/slot (next to the end labeled A). Use the meter-stick to measure the
distance from the Center of Mass of the bar to the center of the pin from which the bar is suspended. This is l. Note
down this value in the table.

Start the oscillations by pulling the bar a few degrees (less than 20) out of its stationary vertical position and letting
go. Use the telescope to observe the bar swinging past its initial vertical position. This will allow you to count
complete oscillations of the pendulum (an oscillation is completed every time the pendulum swings past the initial
position moving in the same direction). Use the stop-watch to measure the time taken to complete 10 oscillations.
This is t101 .

Stop the pendulum and then start it swinging again. Take four more measurements of the time taken to complete
10 oscillations. These are t102 , t103 , t104 and t105 . Note these values in the first table.

Move the pin to the next hole/slot, below the current one. Measure the new value of l and repeat the above procedure
to get the five values for the time taken by 10 oscillations.

Keep moving the pin to the next hole/slot until you reach the center of the bar. You will now have your complete
set of measurements.

Finally measure Lactual the total length of the bar pendulum using the meter-stick.

Calculations

Use your measurements to calculate and record the derived quantities in a table with the following format.

l (cm) t̄10 (s) ∆(t10) (s) T (s) ∆T (s) l2 (cm2) T 2l (cm s2) ∆(T 2l) (cm s2)
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where t̄10 is the average/mean of the five t10i and ∆(t10) is the standard deviation given by

∆(t10) =

√√√√1

5

5∑
i=1

(t10i − t̄10)2 (2)

T (the time for one oscillation) is calculated by dividing the mean time for 10 oscillations (t10) by 10, that is

T =
t̄10
10

(3)

The corresponding uncertainty ∆T is given by

∆T =
∆(t̄10)

10
(4)

The uncertainty in the derived quantity T 2 l, denoted by ∆(T 2 l), comes from this uncertainty ∆T in T . It is
calculated using

∆(T 2 l)

T 2 l
= 2

∆T

T
(5)

where the factor of 2 comes from T being raised to the power 2 in the expression T 2 l.

Graph

The time period of the oscillations of a rigid bar is given by equation (1). This equation is not linear in the dependence
of T on l. We transform the equation to get a linear relationship. We start with the original equation.

T = 2π

√
L2 + 12 l2

12 gl

We square both sides to remove the square-root on the RHS.

T 2 = 4π2

(
L2 + 12 l2

12 gl

)
⇒ T 2 =

π2

3g

(
L2 + 12 l2

l

)
The equations is still not linear in T 2 and l because of the l in the denominator. We multiply both sides by l.

T 2 l =
π2

3g

(
12 l2 + L2

)
(6)

If we now consider this equation to be a relationship between T 2 l and l2 it is linear. Compare the equation to that
of the straight line y = mx+ c and you can immediately deduce that

slope =
12π2

3g
=

4π2

g

y-intercept =
π2L2

3g

(7)

Draw a linear graph of T 2 l vs. l2 including error bars. Take special care with your choice of scale. Label all
axes clearly.

Use your graph to calculate the slope and y-intercept of the best-fit line. Don’t forget to write down the
units.

Draw additional steep and shallow fit lines and calculate and note the uncertainty in the slope and
y-intercept.
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Results

1. Use the calculated value of the slope, its uncertainty and equation (7) to calculate the value of the acceleration
of gravity g and its associated uncertainty.

∆g

g
=

∆(slope)

slope

2. The actual value of g is 981 cm/s2. Compare your calculated value with this by calculating the percentage
uncertainty. It is defined as

percentage uncertainty =
| actual value−measured value |

actual value
× 100% (8)

3. Use the calculated value of the y-intercept, its uncertainty, equation (7) and the value of g (calculated from
the slope) to calculate the value of L (the length of the bar) and its associated uncertainty.

∆L

L
=

1

2

∆g

g
+

1

2

∆(y-intercept)

y-intercept

4. Compare this with the actual value (Lactual) measured directly using the meter-stick, by calculating the per-
centage uncertainty.

5. List the possible sources of error in this experiment.
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