Module 22 (Experimental)

5. Acoustic Beats

When two sound waves of slightly different frequencies interfere with each other, they result in beats,
which is a tone that varies in volume periodically and has a frequency equal to the difference of the
frequencies of the interfering sound waves. If the interfering sound waves have frequencies f; and f5,
then:

freat = Ifi — f2| = Af

The closer the frequencies of the interfering sound waves, the lower will be the frequency of the beats.
In the limit that the original frequencies become the same, the beat frequency becomes zero, meaning
that we will no longer hear any beats.




TASKS:

e Prove that when two sine waves are superimposed, the envelope wave has a frequency f,,,, =

|f1—fal
—
e If the envelope wave has the above frequency, then why is the perceived beat frequency fpeqr =

Ifs = f2I?

e Demonstrate the phenomenon of beats using Mathematica/Mathcad, etc.

e Think of 3 different ways in which we can generate beats.

e Think of a way to experimentally measure the beat frequency. What will be some sources of
error in your experiment?



6. Speed of Sound using Destructive Interference

Since sound is a wave, it can undergo constructive and destructive interference when two waves
superpose in the right way. In this experiment, we will use a pair of earphones to set up standing waves
inside a column. We will place one earphone on top of the column and the other end at the bottom and
then play a standard tone through them. As we vary the distance between the two earphones, there will
come a point where the sound intensity will drop substantially, and then rise again. This is the point
where destructive interference is taking place. We keep changing the distance until we find such a point
again and note the separation between these two points of destructive interference. Let this separation
be d. Then the wavelength A is given by:

Wavelength, 2
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Then using the given sound frequency f, we can find the speed of sound v; by:

ve = fA = 2df

TASKS:

e When this experiment is carried out, it is noticed that the sound intensity does not go exactly to
zero at the antinode, but reaches a finite minimum. Why do you think complete destructive
interference is not being achieved?

e Suppose we carried out the same experiment underwater. Would we need a bigger toilet paper
stack or a smaller one? What if we carried out this experiment in air but in a much hotter
environment?

e What can be some sources of error in this experiment?



7. Speed of Waves on a String

If we keep a string of length [ fixed at both ends and pluck it, waves will travel through it which upon
interference will lead to standing waves. Since the length is fixed, only certain discrete frequencies can
be generated on such a string, which is why a guitar string can only play certain fixed notes. It is
common knowledge that when the different strings on a guitar have different sounds when plucked.
Moreover, the sound of any given string changes when we vary tighten or loosen the string.

In this experiment, we will measure the speed of waves travelling on a guitar string and test its
dependence of the tension and the thickness of the string. The speed of the wave can be obtained by
simply measuring the frequency and wavelength. If the open string is plucked, then the relation
between the length of the string and the wavelength is given by:

A=2l

We can measure the frequency of the sound generated using computer software like eTuner, which will
enable us to find the speed of the wave on the string:

v=fA

Now we will vary 3 parameters and see how the speed changes. These are: the length of the string, the
tension of the string and the string thickness. The length can be changed by simply holding the string on
different frets, the tension can be changed with the tuning pegs on the end of the guitar neck while the
thickness can be changed by simply choosing a different string from among the 6 available.
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TASKS:

e Use dimensional analysis to figure out the relationship between speed v, tension T, length [ and
mass density (thickness) u.

e Using the data you obtain, plot v vs T, v vs [ and v vs u. Verify whether this agrees with your
dimensional analysis.

e Would our measurements of v change if we conducted the same experiment in outer space
(assuming we could measure the frequency without hearing it)?

e Assume the wave speed on a guitar string is 425 m/s and we are dealing with the 1% harmonic
(n =1). What is the range of lengths the guitar string needs to be in for the first harmonic to be
audible to the average human ear?

e Identify some possible sources of error in this experiment.



8. Pendulum Snake

The time period of a simple pendulum depends only on the length of the string and the acceleration due
to gravity.

The longer the string, the slower it oscillates back and forth. We can use this dependence to construct
an interesting device called a “pendulum snake”. In this device, we arrange multiple simple pendula in a
row, all of them with different lengths. Their different lengths give them a different time period, such
that when we release them from the same angle, they will soon go out of phase with each other and
generate an interesting snake-like pattern as they oscillate back and forth. After some period of time
they will be totally out of phase with each other, meaning that neighboring pendula will be a half-swing
apart. After the same period of time, they will line up again and the cycle will repeat.




TASKS:

In order for the pendula to come back in phase after a certain period of time, their time periods
need to be commensurable. If you are constructing such a device with 10 pendula and the max
allowed length for a pendulum is 1m, what is one possible set of lengths that you can choose to
give you the required pattern? Explain the physical reasoning that led you to your conclusion.
What will happen if the periods of the pendula have a ratio of 1/m with each other? Will they
ever come into phase with each other or not? Explain why.

The formula for the time period that we have given above only works under the small angle
approximation. Derive the formula (in integral form) for the time period for arbitrary
amplitudes.

Use the general formula derived above and the approximate formula T = 2m,/l/g to
determine the range of angles that we can work in if we can only tolerate 1% error in our time
measurement?

The formula for the time period also assumes that the string holding the bob is massless.
Assuming that the string has mass, what will be the new formula for the time period of the
pendulum?

Use the formula derived above and the approximate formula T = 2m,/1/g to find the maximum
ratio of the string mass to the bob mass that we can tolerate if we want to remain within a 1%
error in our time measurement?

What if we used heavier bobs in place of lighter ones? Will that change our results in any way?



5. Coupled Pendulums

The importance of coupled oscillations for natural and engineering sciences is
undisputed. But due to the complex processes behind the phenomena, its educational
arrangement remains challenging.

Based on traditional setups of coupled spring pendulums [1-3] and torsion
pendulums [3, 4], we investigale a low-cost experiment consisting of two
clothespins that are mounted on a fine string [5]. We use a simple approach via
spring pendulums to describe the dependencies of the coupling between the
clothespins, particularly with regard to the distance between their mounting points.
The theoretical approach coincides with experimental data that 1s extracted via
mobile video analysis using tablet PCs [6] and the apps Viana [7] and Graphical
Analysis [8].

M. Thees (4]) - E. Rexigel - N. Cullman

Technische Universitit Kaiserslautern, Department of Physics, Physics Education Research Group,
Kaiserslautern, Germany

e-mail: theem @ physik.uni-kl.de; rexigel @ physik.uni-kl.de; ncullman @rhrk.uni-kl.de



214 M. Thees et al.

36.1 Theoretical Background

Compared to a traditional setup of two spring-coupled spring pendulums with
identical masses, we use two identical clothespins mounted on a fine string with
identical distances between the pins and the mounting of the string (Figs. 36.1 and
30.2), resulting in two string-coupled torsion pendulums.

Writing Newton’s second law for x; and x, of the system in Fig. 36.1a yields

—kn — ku()ﬁ — x;) = mh and — kX3 — k[g(.i\fg — xl) = mig,
which, when written in terms of the center of mass X =1 (x; + y,) and difference

coordinate, ¥ = % (x1 — y,) become simple harmonic oscillator equations [3]:

}"{z—ﬁ-Xandf’z
m

k + 2kq» v
m

Thus, the system has two “normal™ modes of oscillation: one with frequency squared

given by w’ = kim, corresponding to the symmetric motion of both masses together,

and one given by

2_k+2k12

m *

Q

corresponding to the anti-symmetric motion. The actual motion of each clothespin
can be described as a superposition of those modes. The energy is translerred back
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Fig. 36.1 Schematic comparison between coupled spring pendulums (a) and coupled torsion
pendulums ([b] frontal view, [¢] side view); x; and ¢; describe the cormresponding deviations from
the rest positions
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Fig. 36.2 (a) Photo of the experimental setup. (b) Detailed view of the tight mounting and one of
the markers beneath the clothespins

and forth between the pins with a frequency given by halfl the beat frequency of the
superposition, so the time it takes the energy to transfer from one pin to the other is

. _The 7 _”'Q—}-a} _”'Q+m (36.1)
transfer = = = o Q2 — @2 2kya/m’ i

Likewise, we can apply the torque equation [3] to each of the clothespins, using
¢ and ¢, for the Hooke’s law proportionality constants of the small angular
displacements of the pins from their equilibrium position, arriving at

—M-g-r-sin g, —cp; —cr2(p) — @) = 1§,
and
—M - g-r-sin @y —cpy —ci2(@y — @) = 1,

where M, r, and [ are the mass, momentum arm to the center of mass, and moment of
inertia of one single pin, respectively. Thus, for small angles, and with the
identifications k — (Mgr + ¢), kj» — ¢2, and m — I, we expect that the energy
will be transferred between the clothespins in a time
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Q+w
Ttransfer — T * .
ransfer 26‘13/[

(36.2)

Finally, we expect that the Hooke’s law constants ¢ and ¢j> will depend inversely
on the length of the corresponding clothesline [3, 4], so we write ¢ = /L and
Cl12 = C]z/le, gi\o’il]g

Tiransfer — % I (Q + l'fr)) : LIE/CIZ' (36'3)

This result suggests that if Ly, is about the same length as L, i.e., Lj, = L + x with
x < L, then the transfer period should be approximately linear in x, since (Q + @)
depends so weakly on x. Altogether, we obtain

T I C Cra C
Traster =3 T \/(Mg”z”ulx)/”\/(Mg”z)/f (L),

Furthermore, the ratio of the y-intercept of the line to the slope of the line in this
theoretical model should be given by L: the experimental value comes to

y—intercept 145§
slope — 7.37%
m

= (0.197 £0.006)m

(Fig. 36.4), a reasonably satisfying result.

36.2 Experimental Setup

The two clothespins are mounted tightly on the fine string (“the clothesline’), which
is under tension with the help of two weights (we used m = 0.5 kg). The tablet is
placed beneath the pins with 1ts display pointing upwards in order to record a video
of the pins” motion with the front camera of the device (the default recording rate is
about 30 fps, iPad 4 mini). To improve tracking with the video analysis soltware, it is
helpful to attach a colored marker beneath each clothespin (Fig. 36.2b).

To conduct the experiment, one clothespin is deflected manually and released,
while the oscillation is recorded by the tablet PC. Due to the coupling via the string,
the energy of the oscillation is transferred between the clothespins periodically. After
several transfer periods, the recording is stopped and the video is imported into the
app Viana, where the position of each marker is tracked and displayed automatically.
We obtain the following diagram (Fig. 36.3) of the oscillation over time.

To determine Tynsfer- the data are imported into Graphical Analysis [8], where we
can read out the period with the help of a precise cursor. A systematical variation of
the distance between the clothespins resulted in an almost linear relation between the
distance x = L5~ L and Ty e (Fig. 36.4), in accordance to our theoretical approach
(Eq. 36.4).
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Fig. 36.3 Screenshot of the deviations over time of each clothespin, using L = 0.2 m and
L = 0.2 m (the y-axis points in the direction of movement); the period of energy transfer Tyunser iS
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Fig.36.4 Period-distance-diagram for L = 0.2 m; a simple linear regression yields
Tyransfer (X) = (7.37 £ 0.17) 5x + (1.45 £ 0.01) s and the coefficient of determination R*=0.99

36.3 Discussion

Combining this low-cost experiment with the simple but effective method of mobile
video analysis results in a low-cost setup that can easily be used for educational
purposes in school laboratories. Based on concepts of traditional spring-coupled
pendulums, this case is useful for qualitative and quantitative investigations, e.g.,
with the presented simple theoretical approach.
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Alternatively, the coupling could be varied via the tension of the string using

different weights. Furthermore, the focus of the investigations could also be on the
phase relationship between the oscillating clothespins, e.g., their normal modes.

The validation of our approach and further investigations are limited due to

additional vibrations of the string and the pins, leading to a nonlinear impact on
the energy transfer. Anyway research shows that learning with mobile video analysis
can also increase conceptual understanding [9, 1] while decreasing irrelevant
cognitive effort and negative emotions [ 10, 11].
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