
A Stirling engine from the early 

nineteenth century. Air is heated in the 

lower cylinder using an external source. 

As this happens, the air expands and 

pushes against a piston, causing it to 

move. The air is then cooled, allowing the 

cycle to begin again. This is one example 

of a heat engine, which we study in this 

chapter. (© SSPL/The Image Works)
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The first law of thermodynamics, which we studied in Chapter 20, is a statement of 

conservation of energy and is a special-case reduction of Equation 8.2. This law states 

that a change in internal energy in a system can occur as a result of energy transfer by 

heat, by work, or by both. Although the first law of thermodynamics is very important, 

it makes no distinction between processes that occur spontaneously and those that do 

not. Only certain types of energy transformation and energy transfer processes actually 

take place in nature, however. The second law of thermodynamics, the major topic in this 

chapter, establishes which processes do and do not occur. The following are examples 
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of processes that do not violate the first law of thermodynamics if they proceed in either 

direction, but are observed in reality to proceed in only one direction:

When two objects at different temperatures are placed in thermal contact with each 

other, the net transfer of energy by heat is always from the warmer object to the cooler 

object, never from the cooler to the warmer.

A rubber ball dropped to the ground bounces several times and eventually comes to rest, 

but a ball lying on the ground never gathers internal energy from the ground and begins 

bouncing on its own.

An oscillating pendulum eventually comes to rest because of collisions with air molecules 

and friction at the point of suspension. The mechanical energy of the system is converted 

to internal energy in the air, the pendulum, and the suspension; the reverse conversion of 

energy never occurs.

All these processes are irreversible; that is, they are processes that occur naturally in one 

direction only. No irreversible process has ever been observed to run backward. If it were to 

do so, it would violate the second law of thermodynamics.1

22.1 Heat Engines and the Second Law  
of Thermodynamics

A heat engine is a device that takes in energy by heat2 and, operating in a cyclic 
process, expels a fraction of that energy by means of work. For instance, in a typical 
process by which a power plant produces electricity, a fuel such as coal is burned 
and the high-temperature gases produced are used to convert liquid water to 
steam. This steam is directed at the blades of a turbine, setting it into rotation. The 
mechanical energy associated with this rotation is used to drive an electric genera-
tor. Another device that can be modeled as a heat engine is the internal combustion 
engine in an automobile. This device uses energy from a burning fuel to perform 
work on pistons that results in the motion of the automobile.
 Let us consider the operation of a heat engine in more detail. A heat engine car-
ries some working substance through a cyclic process during which (1) the working 
substance absorbs energy by heat from a high-temperature energy reservoir, (2) work 
is done by the engine, and (3) energy is expelled by heat to a lower-temperature 
reservoir. As an example, consider the operation of a steam engine (Fig. 22.1), which 
uses water as the working substance. The water in a boiler absorbs energy from burn-
ing fuel and evaporates to steam, which then does work by expanding against a pis-
ton. After the steam cools and condenses, the liquid water produced returns to the 
boiler and the cycle repeats.
 It is useful to represent a heat engine schematically as in Figure 22.2. The engine 
absorbs a quantity of energy |Q h | from the hot reservoir. For the mathematical 
discussion of heat engines, we use absolute values to make all energy transfers by 
heat positive, and the direction of transfer is indicated with an explicit positive or 
negative sign. The engine does work Weng (so that negative work W 5 2Weng is done 
on the engine) and then gives up a quantity of energy |Q c | to the cold reservoir. 

22.1

Lord Kelvin

British physicist and mathematician 
(1824–1907)
Born William Thomson in Belfast, Kel-

vin was the first to propose the use of 

an absolute scale of temperature. The 

Kelvin temperature scale is named in 

his honor. Kelvin’s work in thermody-

namics led to the idea that energy can-

not pass spontaneously from a colder 

object to a hotter object.
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1Although a process occurring in the time-reversed sense has never been observed, it is possible for it to occur. As we 

shall see later in this chapter, however, the probability of such a process occurring is infinitesimally small. From this 

viewpoint, processes occur with a vastly greater probability in one direction than in the opposite direction.

2We use heat as our model for energy transfer into a heat engine. Other methods of energy transfer are possible in 

the model of a heat engine, however. For example, the Earth’s atmosphere can be modeled as a heat engine in which 

the input energy transfer is by means of electromagnetic radiation from the Sun. The output of the atmospheric heat 

engine causes the wind structure in the atmosphere.

Figure 22.1  A steam-driven 
locomotive obtains its energy 
by burning wood or coal. The 
generated energy vaporizes water 
into steam, which powers the 
locomotive. Modern locomotives 
use diesel fuel instead of wood or 
coal. Whether old-fashioned or 
modern, such locomotives can be 
modeled as heat engines, which 
extract energy from a burning 
fuel and convert a fraction of it to 
mechanical energy.
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Because the working substance goes through a cycle, its initial and final internal 
energies are equal: DE int 5 0. Hence, from the first law of thermodynamics, DE int 5 
Q 1 W 5 Q 2 Weng 5 0, and the net work Weng done by a heat engine is equal 
to the net energy Q net transferred to it. As you can see from Figure 22.2, Q net 5  
|Q h | 2 |Q c |; therefore,

 Weng 5 |Q h| 2 |Q c| (22.1)

The thermal efficiency e of a heat engine is defined as the ratio of the net work 
done by the engine during one cycle to the energy input at the higher temperature 
during the cycle:

 e ;
Weng

0Q h 0 5
0Q h 0 2 0Q c 0

0Q h 0 5 1 2
0Q c 0
0Q h 0  (22.2)

You can think of the efficiency as the ratio of what you gain (work) to what you give 
(energy transfer at the higher temperature). In practice, all heat engines expel 
only a fraction of the input energy Q h by mechanical work; consequently, their 
efficiency is always less than 100%. For example, a good automobile engine has an 
efficiency of about 20%, and diesel engines have efficiencies ranging from 35% to 
40%.
 Equation 22.2 shows that a heat engine has 100% efficiency (e 5 1) only if |Q c| 5 
0, that is, if no energy is expelled to the cold reservoir. In other words, a heat engine 
with perfect efficiency would have to expel all the input energy by work. Because 
efficiencies of real engines are well below 100%, the Kelvin–Planck form of the 
second law of thermodynamics states the following:

It is impossible to construct a heat engine that, operating in a cycle, produces 
no effect other than the input of energy by heat from a reservoir and the per-
formance of an equal amount of work.

This statement of the second law means that during the operation of a heat engine, 
Weng can never be equal to |Q h | or, alternatively, that some energy |Q c | must be 
rejected to the environment. Figure 22.3 is a schematic diagram of the impossible 
“perfect” heat engine.

Q uick Quiz 22.1  The energy input to an engine is 4.00 times greater than the 
work it performs. (i) What is its thermal efficiency? (a) 4.00 (b) 1.00 (c) 0.250 
(d) impossible to determine (ii) What fraction of the energy input is expelled to 
the cold reservoir? (a) 0.250 (b) 0.750 (c) 1.00 (d) impossible to determine

e ;
WengWW

0Q h 0 5
0Q h 0 2 0Q c 0

0Q h 0 5 1 2
0Q c 0
0Q h 0  Thermal efficiency of  

a heat engine

It is impossible to construct a heat engine that, operating in a cycle, produces 
no effect other than the input of energy by heat from a reservoir and the per-
formance of an equal amount of work.

Q

Pitfall Prevention 22.1

The First and Second Laws Notice 
the distinction between the first 
and second laws of thermodynam-
ics. If a gas undergoes a one-time 

isothermal process, then DE int 5 Q 1 
W 5 0 and W 5 2Q. Therefore, 
the first law allows all energy input 
by heat to be expelled by work. In 
a heat engine, however, in which a 
substance undergoes a cyclic pro-
cess, only a portion of the energy 
input by heat can be expelled by 
work according to the second law.

Qh

Q c

Hot reservoir
at Th

Cold reservoir
at Tc

Heat
engine

t 

Weng

Energy |Qh| 
enters the 
engine. 

Energy |Q c| 
leaves the 
engine. 

The engine does 
work Weng.

Figure 22.2 Schematic repre-
sentation of a heat engine.

Q h

Hot reservoir
at Th

Cold reservoir
at Tc

Heat
engine

t 

Weng

An impossible heat engine
Figure 22.3  Schematic diagram 
of a heat engine that takes in energy 
from a hot reservoir and does an 
equivalent amount of work. It is 
impossible to construct such a per-
fect engine.
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Example 22.1   The Efficiency of an Engine

An engine transfers 2.00 3 103 J of energy from a hot reservoir during a cycle and transfers 1.50 3 103 J as exhaust to 
a cold reservoir.

(A)  Find the efficiency of the engine.

Conceptualize  Review Figure 22.2; think about energy going into the engine from the hot reservoir and splitting, with 
part coming out by work and part by heat into the cold reservoir.

Categorize  This example involves evaluation of quantities from the equations introduced in this section, so we catego-
rize it as a substitution problem.

S O L U T I O N

Find the efficiency of the engine from Equation 22.2: e 5 1 2
0Q c 0
0Q h 0 5 1 2

1.50 3 103 J

2.00 3 103 J
5  0.250, or 25.0%

Find the work done by the engine by taking the differ-
ence between the input and output energies:

Weng 5 |Q h| 2 |Q c| 5 2.00 3 103 J 2 1.50 3 103 J

5   5.0 3 102 J

(B)  How much work does this engine do in one cycle?

S O L U T I O N

Suppose you were asked for the power output of this engine. Do you have sufficient information to answer 
this question?

Answer  No, you do not have enough information. The power of an engine is the rate at which work is done by the 
engine. You know how much work is done per cycle, but you have no information about the time interval associated 
with one cycle. If you were told that the engine operates at 2 000 rpm (revolutions per minute), however, you could 
relate this rate to the period of rotation T of the mechanism of the engine. Assuming there is one thermodynamic 
cycle per revolution, the power is

P 5
Weng

T
5

5.0 3 102 J

1 1
2 000 min 2 a

1 min

60 s
b 5 1.7 3 104 W

WHAT IF ?

22.2 Heat Pumps and Refrigerators

In a heat engine, the direction of energy transfer is from the hot reservoir to the 
cold reservoir, which is the natural direction. The role of the heat engine is to pro-
cess the energy from the hot reservoir so as to do useful work. What if we wanted to 
transfer energy from the cold reservoir to the hot reservoir? Because that is not the 
natural direction of energy transfer, we must put some energy into a device to be 
successful. Devices that perform this task are called heat pumps and refrigerators. 
For example, homes in summer are cooled using heat pumps called air conditioners. 
The air conditioner transfers energy from the cool room in the home to the warm 
air outside.

In a refrigerator or a heat pump, the engine takes in energy |Q c | from a cold 
reservoir and expels energy |Q h | to a hot reservoir (Fig. 22.4), which can be accom-
plished only if work is done on the engine. From the first law, we know that the 
energy given up to the hot reservoir must equal the sum of the work done and the 
energy taken in from the cold reservoir. Therefore, the refrigerator or heat pump 
transfers energy from a colder body (for example, the contents of a kitchen refrig-
erator or the winter air outside a building) to a hotter body (the air in the kitchen 
or a room in the building). In practice, it is desirable to carry out this process with 

22.2
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a minimum of work. If the process could be accomplished without doing any work, 
the refrigerator or heat pump would be “perfect” (Fig. 22.5). Again, the existence 
of such a device would be in violation of the second law of thermodynamics, which 
in the form of the Clausius statement3 states:

It is impossible to construct a cyclical machine whose sole effect is to transfer 
energy continuously by heat from one object to another object at a higher 
temperature without the input of energy by work.

In simpler terms, energy does not transfer spontaneously by heat from a cold object 
to a hot object. Work input is required to run a refrigerator.
 The Clausius and Kelvin–Planck statements of the second law of thermodynam-
ics appear at first sight to be unrelated, but in fact they are equivalent in all respects. 
Although we do not prove so here, if either statement is false, so is the other.4

In practice, a heat pump includes a circulating fluid that passes through two sets 
of metal coils that can exchange energy with the surroundings. The fluid is cold 
and at low pressure when it is in the coils located in a cool environment, where it 
absorbs energy by heat. The resulting warm fluid is then compressed and enters 
the other coils as a hot, high-pressure fluid. There it releases its stored energy to 
the warm surroundings. In an air conditioner, energy is absorbed into the fluid in 
coils located in a building’s interior; after the fluid is compressed, energy leaves the 
fluid through coils located outdoors. In a refrigerator, the external coils are behind 
the unit (Fig. 22.6) or underneath the unit. The internal coils are in the walls of the 
refrigerator and absorb energy from the food.

The effectiveness of a heat pump is described in terms of a number called the 
coefficient of performance (COP). The COP is similar to the thermal efficiency for 
a heat engine in that it is a ratio of what you gain (energy transferred to or from a 
reservoir) to what you give (work input). For a heat pump operating in the cooling 
mode, “what you gain” is energy removed from the cold reservoir. The most effective 
refrigerator or air conditioner is one that removes the greatest amount of energy 

It is impossible to construct a cyclical machine whose sole effect is to transfer 
energy continuously by heat from one object to another object at a higher 
temperature without the input of energy by work.

3First expressed by Rudolf Clausius (1822–1888).

4See an advanced textbook on thermodynamics for this proof.

Q h

Q c

Hot reservoir
at Th

Cold reservoir
at Tc

Heat
pump

W

Energy |Q h| 
is expelled 
to the hot 
reservoir.

Energy |Q c| 
is drawn 
from the 
cold 
reservoir.

Work W is done on 
the heat pump.

Figure 22.4 Schematic repre-
sentation of a heat pump.

Q h 5 Q c

Q c

Hot reservoir
at Th

Cold reservoir
at Tc

Heat
pump

An impossible heat pump

Figure 22.5  Schematic diagram 
of an impossible heat pump or 
refrigerator, that is, one that takes 
in energy from a cold reservoir 
and expels an equivalent amount 
of energy to a hot reservoir with-
out the input of energy by work.

The coils on the back of
a refrigerator transfer 
energy by heat to the air.

Figure 22.6  The back of a 
household refrigerator. The air 
surrounding the coils is the hot 
reservoir.
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from the cold reservoir in exchange for the least amount of work. Therefore, for 
these devices operating in the cooling mode, we define the COP in terms of |Q c |:

 COP 1cooling mode 2 5 energy transferred at low temperature

work done on heat pump
5
0Q c 0
W

 (22.3)

A good refrigerator should have a high COP, typically 5 or 6.
 In addition to cooling applications, heat pumps are becoming increasingly pop-
ular for heating purposes. The energy-absorbing coils for a heat pump are located 
outside a building, in contact with the air or buried in the ground. The other set of 
coils are in the building’s interior. The circulating fluid flowing through the coils 
absorbs energy from the outside and releases it to the interior of the building from 
the interior coils.
 In the heating mode, the COP of a heat pump is defined as the ratio of the 
energy transferred to the hot reservoir to the work required to transfer that energy:

 COP 1heating mode 2 5 energy transferred at high temperature

work done on heat pump
5
0Q h 0
W

 (22.4)

 If the outside temperature is 25°F (24°C) or higher, a typical value of the COP 
for a heat pump is about 4. That is, the amount of energy transferred to the build-
ing is about four times greater than the work done by the motor in the heat pump. 
As the outside temperature decreases, however, it becomes more difficult for the 
heat pump to extract sufficient energy from the air and so the COP decreases. 
Therefore, the use of heat pumps that extract energy from the air, although satisfac-
tory in moderate climates, is not appropriate in areas where winter temperatures 
are very low. It is possible to use heat pumps in colder areas by burying the external 
coils deep in the ground. In that case, the energy is extracted from the ground, 
which tends to be warmer than the air in the winter.

Q uick Quiz 22.2  The energy entering an electric heater by electrical transmission 
can be converted to internal energy with an efficiency of 100%. By what factor 
does the cost of heating your home change when you replace your electric heat-
ing system with an electric heat pump that has a COP of 4.00? Assume the motor 
running the heat pump is 100% efficient. (a) 4.00 (b) 2.00 (c) 0.500 (d) 0.250

Q

Example 22.2   Freezing Water

A certain refrigerator has a COP of 5.00. When the refrigerator is running, its power input is 500 W. A sample of water 
of mass 500 g and temperature 20.0°C is placed in the freezer compartment. How long does it take to freeze the water 
to ice at 0°C? Assume all other parts of the refrigerator stay at the same temperature and there is no leakage of energy 
from the exterior, so the operation of the refrigerator results only in energy being extracted from the water.

Conceptualize  Energy leaves the water, reducing its temperature and then freezing it into ice. The time interval 
required for this entire process is related to the rate at which energy is withdrawn from the water, which, in turn, is 
related to the power input of the refrigerator.

Categorize  We categorize this example as one that combines our understanding of temperature changes and phase 
changes from Chapter 20 and our understanding of heat pumps from this chapter.

S O L U T I O N

Analyze  Use the power rating of the refrigera-
tor to find the time interval Dt required for the 
freezing process to occur:

P 5
W

Dt
   S   Dt 5

W

P
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Use Equation 22.3 to relate the work W done 
on the heat pump to the energy |Q c| extracted 
from the water:

Dt 5
0Q c 0

P 1COP 2

Use Equations 20.4 and 20.7 to substitute the 
amount of energy |Q c| that must be extracted 
from the water of mass m:

Dt 5
0mc DT 1 Lf Dm 0

P 1COP 2

Recognize that the amount of water that 
freezes is Dm 5 2m because all the water 
freezes:

Dt 5
0m 1c DT 2 Lf 2 0

P 1COP 2

Substitute numerical values: Dt 5
0 10.500 kg 2 3 14 186 J/kg # 8C 2 1220.08C 2 2 3.333 105 J/kg 4 0

1500 W 2 15.00 2
5 83.3 s

Finalize  In reality, the time interval for the water to freeze in a refrigerator is much longer than 83.3 s, which sug-
gests that the assumptions of our model are not valid. Only a small part of the energy extracted from the refrigerator 
interior in a given time interval comes from the water. Energy must also be extracted from the container in which the 
water is placed, and energy that continuously leaks into the interior from the exterior must be extracted.

 

▸ 22.2 c o n t i n u e d

22.3 Reversible and Irreversible Processes

In the next section, we will discuss a theoretical heat engine that is the most effi-
cient possible. To understand its nature, we must first examine the meaning of 
reversible and irreversible processes. In a reversible process, the system undergo-
ing the process can be returned to its initial conditions along the same path on a 
PV diagram, and every point along this path is an equilibrium state. A process that 
does not satisfy these requirements is irreversible.

All natural processes are known to be irreversible. Let’s examine the adiabatic 
free expansion of a gas, which was already discussed in Section 20.6, and show 
that it cannot be reversible. Consider a gas in a thermally insulated container as 
shown in Figure 22.7. A membrane separates the gas from a vacuum. When the 
membrane is punctured, the gas expands freely into the vacuum. As a result of 
the puncture, the system has changed because it occupies a greater volume after 
the expansion. Because the gas does not exert a force through a displacement, it 
does no work on the surroundings as it expands. In addition, no energy is trans-
ferred to or from the gas by heat because the container is insulated from its sur-
roundings. Therefore, in this adiabatic process, the system has changed but the 
surroundings have not.

For this process to be reversible, we must return the gas to its original volume 
and temperature without changing the surroundings. Imagine trying to reverse 
the process by compressing the gas to its original volume. To do so, we fit the 
container with a piston and use an engine to force the piston inward. During 
this process, the surroundings change because work is being done by an outside 
agent on the system. In addition, the system changes because the compression 
increases the temperature of the gas. The temperature of the gas can be lowered 
by allowing it to come into contact with an external energy reservoir. Although 
this step returns the gas to its original conditions, the surroundings are again 
affected because energy is being added to the surroundings from the gas. If this 

22.3

Vacuum

Gas at Ti

Insulating
wall

Membrane

Figure 22.7  Adiabatic free 
expansion of a gas.

Pitfall Prevention 22.2

All Real Processes Are Irreversible 
The reversible process is an ideal-
ization; all real processes on the 
Earth are irreversible.
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energy could be used to drive the engine that compressed the gas, the net energy 
transfer to the surroundings would be zero. In this way, the system and its sur-
roundings could be returned to their initial conditions and we could identify the 
process as reversible. The  Kelvin–Planck statement of the second law, however, 
specifies that the energy removed from the gas to return the temperature to its 
original value cannot be completely converted to mechanical energy by the pro-
cess of work done by the engine in compressing the gas. Therefore, we must con-
clude that the process is irreversible.

We could also argue that the adiabatic free expansion is irreversible by relying 
on the portion of the definition of a reversible process that refers to equilibrium 
states. For example, during the sudden expansion, significant variations in pres-
sure occur throughout the gas. Therefore, there is no well-defined value of the 
pressure for the entire system at any time between the initial and final states. In 
fact, the process cannot even be represented as a path on a PV diagram. The PV 
diagram for an adiabatic free expansion would show the initial and final conditions 
as points, but these points would not be connected by a path. Therefore, because 
the intermediate conditions between the initial and final states are not equilibrium 
states, the process is irreversible.

Although all real processes are irreversible, some are almost reversible. If a real 
process occurs very slowly such that the system is always very nearly in an equilib-
rium state, the process can be approximated as being reversible. Suppose a gas is 
compressed isothermally in a piston–cylinder arrangement in which the gas is in 
thermal contact with an energy reservoir and we continuously transfer just enough 
energy from the gas to the reservoir to keep the temperature constant. For exam-
ple, imagine that the gas is compressed very slowly by dropping grains of sand onto 
a frictionless piston as shown in Figure 22.8. As each grain lands on the piston and 
compresses the gas a small amount, the system deviates from an equilibrium state, 
but it is so close to one that it achieves a new equilibrium state in a relatively short 
time interval. Each grain added represents a change to a new equilibrium state, but 
the differences between states are so small that the entire process can be approx-
imated as occurring through continuous equilibrium states. The process can be 
reversed by slowly removing grains from the piston.

A general characteristic of a reversible process is that no nonconservative effects 
(such as turbulence or friction) that transform mechanical energy to internal 
energy can be present. Such effects can be impossible to eliminate completely. 
Hence, it is not surprising that real processes in nature are irreversible.

22.4 The Carnot Engine

In 1824, a French engineer named Sadi Carnot described a theoretical engine, now 
called a Carnot engine, that is of great importance from both practical and theo-
retical viewpoints. He showed that a heat engine operating in an ideal, reversible 
cycle—called a Carnot cycle—between two energy reservoirs is the most efficient 
engine possible. Such an ideal engine establishes an upper limit on the efficien-
cies of all other engines. That is, the net work done by a working substance taken 
through the Carnot cycle is the greatest amount of work possible for a given amount 
of energy supplied to the substance at the higher temperature. Carnot’s theorem
can be stated as follows:

No real heat engine operating between two energy reservoirs can be more 
efficient than a Carnot engine operating between the same two reservoirs.

In this section, we will show that the efficiency of a Carnot engine depends 
only on the temperatures of the reservoirs. In turn, that efficiency represents the 

22.4

No real heat engine operating between two energy reservoirs can be more 
efficient than a Carnot engine operating between the same two reservoirs.

Energy reservoir

The gas is compressed 
slowly as individual 
grains of sand drop 
onto the piston.

Figure 22.8  A method for com-
pressing a gas in an almost revers-
ible isothermal process.

Pitfall Prevention 22.3

Don’t Shop for a Carnot Engine  
The Carnot engine is an ideal-
ization; do not expect a Carnot 
engine to be developed for com-
mercial use. We explore the Car-
not engine only for theoretical 
considerations.
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maximum possible efficiency for real engines. Let us confirm that the Carnot 
engine is the most efficient. We imagine a hypothetical engine with an efficiency 
greater than that of the Carnot engine. Consider Figure 22.9, which shows the 
hypothetical engine with e 7 eC on the left connected between hot and cold res-
ervoirs. In addition, let us attach a Carnot engine between the same reservoirs.  
Because the Carnot cycle is reversible, the Carnot engine can be run in reverse as 
a Carnot heat pump as shown on the right in Figure 22.9. We match the output 
work of the engine to the input work of the heat pump, W 5 WC, so there is no 
exchange of energy by work between the surroundings and the engine–heat pump 
combination.
 Because of the proposed relation between the efficiencies, we must have

e . e C   S   
0W 0
0Q h 0 .

0WC 0
0Q hC 0

The numerators of these two fractions cancel because the works have been 
matched. This expression requires that

 0Q hC 0 . 0Q h 0  (22.5)

From Equation 22.1, the equality of the works gives us

0W 0 5 0WC 0    S   0Q h 0 2 0Q c 0 5 0Q hC 0 2 0Q c C 0
which can be rewritten to put the energies exchanged with the cold reservoir on 
the left and those with the hot reservoir on the right:

 0Q hC 0 2 0Q h 0 5 0Q c C 0 2 0Q c 0  (22.6)

Note that the left side of Equation 22.6 is positive, so the right side must be positive 
also. We see that the net energy exchange with the hot reservoir is equal to the net 
energy exchange with the cold reservoir. As a result, for the combination of the 
heat engine and the heat pump, energy is transferring from the cold reservoir to 
the hot reservoir by heat with no input of energy by work.
 This result is in violation of the Clausius statement of the second law. Therefore, 
our original assumption that e 7 eC must be incorrect, and we must conclude that 
the Carnot engine represents the highest possible efficiency for an engine. The key 
feature of the Carnot engine that makes it the most efficient is its reversibility; it can 
be run in reverse as a heat pump. All real engines are less efficient than the Carnot 
engine because they do not operate through a reversible cycle. The efficiency of a 
real engine is further reduced by such practical difficulties as friction and energy 
losses by conduction.
 To describe the Carnot cycle taking place between temperatures Tc and Th, let’s 
assume the working substance is an ideal gas contained in a cylinder fitted with a 
movable piston at one end. The cylinder’s walls and the piston are thermally non-
conducting. Four stages of the Carnot cycle are shown in Figure 22.10(page 662), 

Hot reservoir
at Th

Q hC

Q c C

Carnot 
heat

pump

rn

Qh

Q c

Cold reservoir
at Tc

Heat
engine

WCW

Figure 22.9  A Carnot engine 
operated as a heat pump and 
another engine with a proposed 
higher efficiency operate between 
two energy reservoirs. The work 
output and input are matched.

Sadi Carnot

French engineer (1796–1832)
Carnot was the first to show the quan-

titative relationship between work and 

heat. In 1824, he published his only 

work, Reflections on the Motive Power 

of Heat, which reviewed the industrial, 

political, and economic importance of 

the steam engine. In it, he defined work 

as “weight lifted through a height.”
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a

c

bd

CycleQ 5 0 Q 5 0

Energy reservoir at Th

Q h

Energy reservoir at Tc

Q c

AS B

The gas undergoes an 
isothermal expansion.

CS D

The gas undergoes 
an isothermal 
compression.

BS C

The gas undergoes 
an adiabatic 
expansion.

DS A

The gas undergoes 
an adiabatic 

compression.

Thermal insulationThermal insulation

Figure 22.10 The Carnot cycle. 
The letters A, B, C, and D refer 
to the states of the gas shown in 
Figure 22.11. The arrows on the 
piston indicate the direction of its 
motion during each process.

and the PV diagram for the cycle is shown in Figure 22.11. The Carnot cycle consists 
of two adiabatic processes and two isothermal processes, all reversible:

 1. Process A S B (Fig. 22.10a) is an isothermal expansion at temperature Th. 
The gas is placed in thermal contact with an energy reservoir at tempera-
ture Th. During the expansion, the gas absorbs energy |Q h| from the res-
ervoir through the base of the cylinder and does work WAB in raising the 
piston.

 2. In process B S C (Fig. 22.10b), the base of the cylinder is replaced by a 
thermally nonconducting wall and the gas expands adiabatically; that is, no 
energy enters or leaves the system by heat. During the expansion, the tem-
perature of the gas decreases from Th to Tc and the gas does work WBC in 
raising the piston.

 3. In process C S D (Fig. 22.10c), the gas is placed in thermal contact with an 
energy reservoir at temperature Tc and is compressed isothermally at tem-
perature Tc. During this time, the gas expels energy |Q c| to the reservoir 
and the work done by the piston on the gas is WCD.

 4. In the final process D S A (Fig. 22.10d), the base of the cylinder is replaced 
by a nonconducting wall and the gas is compressed adiabatically. The tem-
perature of the gas increases to Th, and the work done by the piston on the 
gas is WDA.

Figure 22.11 PV diagram for the 
Carnot cycle. The net work done 
Weng equals the net energy trans-
ferred into the Carnot engine in 
one cycle, |Q h | 2 |Q c |.

V

P

Weng

D

B

Qh

Th

TcQ c

C

A

The work done 
during the cycle 
equals the area 
enclosed by the path 
on the PV diagram.
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The thermal efficiency of the engine is given by Equation 22.2:

e 5 1 2
0Q c 0
0Q h 0  

In Example 22.3, we show that for a Carnot cycle,

 
0Q c 0
0Q h 0 5

Tc

Th

 (22.7)

Hence, the thermal efficiency of a Carnot engine is

 eC 5 1 2
Tc

Th

 (22.8)

This result indicates that all Carnot engines operating between the same two tem-
peratures have the same efficiency.5

Equation 22.8 can be applied to any working substance operating in a Carnot 
cycle between two energy reservoirs. According to this equation, the efficiency is 
zero if Tc 5 Th , as one would expect. The efficiency increases as Tc is lowered and 
Th is raised. The efficiency can be unity (100%), however, only if Tc 5 0 K. Such 
reservoirs are not available; therefore, the maximum efficiency is always less than 
100%. In most practical cases, Tc is near room temperature, which is about 300 K. 
Therefore, one usually strives to increase the efficiency by raising Th. 
 Theoretically, a Carnot-cycle heat engine run in reverse constitutes the most 
effective heat pump possible, and it determines the maximum COP for a given com-
bination of hot and cold reservoir temperatures. Using Equations 22.1 and 22.4, we 
see that the maximum COP for a heat pump in its heating mode is

COPC 1heating mode 2 5 0Q h 0
W

 

 5
0Q h 0

0Q h 0 2 0Q c 0 5
1

1 2
0Q c 0
0Q h 0

5
1

1 2
Tc

Th

5
Th

Th 2 Tc

The Carnot COP for a heat pump in the cooling mode is

COPC 1cooling mode 2 5 Tc

Th 2 Tc

 

As the difference between the temperatures of the two reservoirs approaches zero 
in this expression, the theoretical COP approaches infinity. In practice, the low 
temperature of the cooling coils and the high temperature at the compressor limit 
the COP to values below 10.

Q uick Quiz 22.3  Three engines operate between reservoirs separated in tem- 
perature by 300 K. The reservoir temperatures are as follows: Engine A: Th 5  
1 000 K, Tc 5 700 K; Engine B: Th 5 800 K, Tc 5 500 K; Engine C: Th 5 600 K,  
Tc 5 300 K. Rank the engines in order of theoretically possible efficiency from 
highest to lowest.

eC 5 1 2
TcTT

ThTT
Efficiency of a Carnot engine

Q

5For the processes in the Carnot cycle to be reversible, they must be carried out infinitesimally slowly. Therefore, 

although the Carnot engine is the most efficient engine possible, it has zero power output because it takes an infinite 

time interval to complete one cycle! For a real engine, the short time interval for each cycle results in the working 

substance reaching a high temperature lower than that of the hot reservoir and a low temperature higher than that 

of the cold reservoir. An engine undergoing a Carnot cycle between this narrower temperature range was analyzed 

by F. L. Curzon and B. Ahlborn (“Efficiency of a Carnot engine at maximum power output,” Am. J. Phys. 43(1), 22, 

1975), who found that the efficiency at maximum power output depends only on the reservoir temperatures Tc and 

Th and is given by e C-A 5 1 2 (Tc /Th)1/2. The Curzon–Ahlborn efficiency eC-A provides a closer approximation to the 

efficiencies of real engines than does the Carnot efficiency.
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Finalize  This last equation is Equation 22.7, the one we set out to prove.

Example 22.3   Efficiency of the Carnot Engine

Show that the ratio of energy transfers by heat in a Carnot engine is equal to the ratio of reservoir temperatures, as 
given by Equation 22.7.

Conceptualize  Make use of Figures 22.10 and 22.11 to help you visualize the processes in the Carnot cycle.

Categorize  Because of our understanding of the Carnot cycle, we can categorize the processes in the cycle as isother-
mal and adiabatic.

S O L U T I O N

Analyze  For the isothermal expansion (process A S B 
in Fig. 22.10), find the energy transfer by heat from the 
hot reservoir using Equation 20.14 and the first law of 
thermodynamics:

0Q h 0 5 0DE int 2 WAB 0 5 0 0 2 WAB 0 5 nRTh ln 
VB

VA

In a similar manner, find the energy transfer to the cold 
reservoir during the isothermal compression C S D :

0Q c 0 5 0DE int 2 WCD 0 5 0 0 2 WCD 0 5 nRTc ln 
VC

VD

Divide the second expression by the first: (1)    
0Q c 0
0Q h 0 5

Tc

Th

  
ln 1VC /VD 2
ln 1VB /VA 2

Apply Equation 21.39 to the adiabatic processes B S C 
and D S A:

ThVB
g21 5 TcVC

g21

ThVA
g21 5 TcVD

g21

Divide the first equation by the second: aVB

VA

bg21

5 aVC

VD

bg21

(2)    
VB

VA

5
VC

VD

Substitute Equation (2) into Equation (1):
0Q c 0
0Q h 0 5

Tc

Th

 
ln 1VC /VD 2
ln 1VB /VA 2 5

Tc

Th

 
ln 1VC /VD 2
ln 1VC /VD 2 5

Tc

Th

Example 22.4   The Steam Engine

A steam engine has a boiler that operates at 500 K. The energy from the burning fuel changes water to steam, and this 
steam then drives a piston. The cold reservoir’s temperature is that of the outside air, approximately 300 K. What is the 
maximum thermal efficiency of this steam engine?

Conceptualize  In a steam engine, the gas pushing on the piston in Figure 22.10 is steam. A real steam engine does not 
operate in a Carnot cycle, but, to find the maximum possible efficiency, imagine a Carnot steam engine.

Categorize  We calculate an efficiency using Equation 22.8, so we categorize this example as a substitution problem.

S O L U T I O N

Substitute the reservoir temperatures into Equation 22.8: eC 5 1 2
Tc

Th

5 1 2
300 K

500 K
5  0.400  or  40.0%

This result is the highest theoretical efficiency of the engine. In practice, the efficiency is considerably lower.
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22.5 Gasoline and Diesel Engines

In a gasoline engine, six processes occur in each cycle; they are illustrated in Figure 
22.12. In this discussion, let’s consider the interior of the cylinder above the piston 
to be the system that is taken through repeated cycles in the engine’s operation. For 
a given cycle, the piston moves up and down twice, which represents a four-stroke 
cycle consisting of two upstrokes and two downstrokes. The processes in the cycle 
can be approximated by the Otto cycle shown in the PV diagram in Figure 22.13 
(page 666). In the following discussion, refer to Figure 22.12 for the pictorial repre-
sentation of the strokes and Figure 22.13 for the significance on the PV diagram of 
the letter designations below:

1. During the intake stroke (Fig. 22.12a and O S A in Figure 22.13), the piston 
moves downward and a gaseous mixture of air and fuel is drawn into the 

22.5

Suppose we wished to increase the theoretical efficiency of this engine. This increase can be achieved by 
raising Th by DT or by decreasing Tc by the same DT. Which would be more effective?

Answer  A given DT would have a larger fractional effect on a smaller temperature, so you would expect a larger 
change in efficiency if you alter Tc by DT. Let’s test that numerically. Raising Th by 50 K, corresponding to Th 5 550 K, 
would give a maximum efficiency of

eC 5 1 2
Tc

Th

5 1 2
300 K

550 K
5 0.455

Decreasing Tc by 50 K, corresponding to Tc 5 250 K, would give a maximum efficiency of

eC 5 1 2
Tc

Th

5 1 2
250 K

500 K
5 0.500

Although changing Tc is mathematically more effective, often changing Th is practically more feasible.

WHAT IF ?

 

▸ 22.4 c o n t i n u e d

The intake valve 
opens, and the air–
fuel mixture enters 
as the piston moves 
down.

The piston moves 
up and compresses 
the mixture.

The piston moves 
up and pushes the 
remaining gas out.

The spark plug 
fires and ignites 
the mixture.

The hot gas 
pushes the piston 
downward.

Intake Compression Spark Power Release Exhaust

Air
and
fuel

Exhaust

Spark plug

Piston

a b c d e f

The exhaust valve 
opens, and the 
residual gas escapes.

Figure 22.12 The four-stroke cycle of a conventional gasoline engine. The arrows on the piston 
indicate the direction of its motion during each process.
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Figure 22.13 PV diagram for 
the Otto cycle, which approxi-
mately represents the processes 
occurring in an internal combus-
tion engine.

V

P

C

Qh

B D

TC

Q c

Adiabatic
processes

V2 V1

O A

TA

cylinder at atmospheric pressure. That is the energy input part of the cycle: 
energy enters the system (the interior of the cylinder) by matter transfer 
as potential energy stored in the fuel. In this process, the volume increases 
from V2 to V1. This apparent backward numbering is based on the compres-
sion stroke (process 2 below), in which the air–fuel mixture is compressed 
from V1 to V2.

 2. During the compression stroke (Fig. 22.12b and A S B in Fig. 22.13), the pis-
ton moves upward, the air–fuel mixture is compressed adiabatically from 
volume V1 to volume V2, and the temperature increases from TA to TB . The 
work done on the gas is positive, and its value is equal to the negative of the 
area under the curve AB in Figure 22.13.

 3. Combustion occurs when the spark plug fires (Fig. 22.12c and B S C in Fig. 
22.13). That is not one of the strokes of the cycle because it occurs in a very 
short time interval while the piston is at its highest position. The combus-
tion represents a rapid energy transformation from potential energy stored 
in chemical bonds in the fuel to internal energy associated with molecular 
motion, which is related to temperature. During this time interval, the 
mixture’s pressure and temperature increase rapidly, with the temperature 
rising from TB to TC . The volume, however, remains approximately constant 
because of the short time interval. As a result, approximately no work is 
done on or by the gas. We can model this process in the PV diagram (Fig. 
22.13) as that process in which the energy |Q h | enters the system. (In real-
ity, however, this process is a transformation of energy already in the cylinder 
from process O S A.)

 4. In the power stroke (Fig. 22.12d and C S D in Fig. 22.13), the gas expands 
adiabatically from V2 to V1. This expansion causes the temperature to drop 
from TC to TD . Work is done by the gas in pushing the piston downward, 
and the value of this work is equal to the area under the curve CD.

 5. Release of the residual gases occurs when an exhaust valve is opened (Fig. 
22.12e and D S A in Fig. 22.13). The pressure suddenly drops for a short 
time interval. During this time interval, the piston is almost stationary and 
the volume is approximately constant. Energy is expelled from the interior 
of the cylinder and continues to be expelled during the next process.

 6. In the final process, the exhaust stroke (Fig. 22.12e and A S O in Fig. 22.13), 
the piston moves upward while the exhaust valve remains open. Residual 
gases are exhausted at atmospheric pressure, and the volume decreases 
from V1 to V2. The cycle then repeats.

 If the air–fuel mixture is assumed to be an ideal gas, the efficiency of the Otto 
cycle is

 e 5 1 2
1

1V1/V2 2g21
 1Otto cycle 2  (22.9)

where V1/V2 is the compression ratio and g is the ratio of the molar specific heats 
CP/CV for the air–fuel mixture. Equation 22.9, which is derived in Example 22.5, 
shows that the efficiency increases as the compression ratio increases. For a typi-
cal compression ratio of 8 and with g 5 1.4, Equation 22.9 predicts a theoretical 
efficiency of 56% for an engine operating in the idealized Otto cycle. This value 
is much greater than that achieved in real engines (15% to 20%) because of such 
effects as friction, energy transfer by conduction through the cylinder walls, and 
incomplete combustion of the air–fuel mixture.
 Diesel engines operate on a cycle similar to the Otto cycle, but they do not employ 
a spark plug. The compression ratio for a diesel engine is much greater than that 
for a gasoline engine. Air in the cylinder is compressed to a very small volume, and, 
as a consequence, the cylinder temperature at the end of the compression stroke is 
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Example 22.5   Efficiency of the Otto Cycle

Show that the thermal efficiency of an engine operating in an idealized Otto cycle (see Figs. 22.12 and 22.13) is given 
by Equation 22.9. Treat the working substance as an ideal gas.

Conceptualize  Study Figures 22.12 and 22.13 to make sure you understand the working of the Otto cycle.

Categorize  As seen in Figure 22.13, we categorize the processes in the Otto cycle as isovolumetric and adiabatic.

S O L U T I O N

Analyze  Model the energy input and output as occur-
ring by heat in processes B S C and D S A. (In reality, 
most of the energy enters and leaves by matter transfer 
as the air–fuel mixture enters and leaves the cylinder.) 
Use Equation 21.23 to find the energy transfers by heat 
for these processes, which take place at constant volume:

B S C  |Q h | 5 nCV (TC 2 TB)

D S A  |Q c | 5 nCV (TD 2 TA)

Substitute these expressions into Equation 22.2: (1)   e 5 1 2
0Q c 0
0Q h 0 5 1 2

TD 2 TA

TC 2 TB

Apply Equation 21.39 to the adiabatic processes A S B 
and C S D:

A S B TAVA
g21 5 TBVB

g21

C S D TCVC
g21 5 TDVD

g21

Solve these equations for the temperatures TA and TD, 
noting that VA 5 VD 5 V1 and VB 5 VC 5 V2:

(2)   TA 5 TB aVB

VA

bg21

5 TB aV2

V1

bg21

(3)   TD 5 TC aVC

VD

bg21

5 TC aV2

V1

bg21

Subtract Equation (2) from Equation (3) and rearrange: (4)   
TD 2 TA

TC 2 TB

5 aV2

V1

bg21

Substitute Equation (4) into Equation (1): e 5 1 2
1

1V1/V2 2g21

Finalize  This final expression is Equation 22.9.

very high. At this point, fuel is injected into the cylinder. The temperature is high 
enough for the air–fuel mixture to ignite without the assistance of a spark plug. 
Diesel engines are more efficient than gasoline engines because of their greater 
compression ratios and resulting higher combustion temperatures.

22.6 Entropy

The zeroth law of thermodynamics involves the concept of temperature, and the 
first law involves the concept of internal energy. Temperature and internal energy 
are both state variables; that is, the value of each depends only on the thermody-
namic state of a system, not on the process that brought it to that state. Another 
state variable—this one related to the second law of thermodynamics—is entropy. 

Entropy was originally formulated as a useful concept in thermodynamics. Its 
importance grew, however, as the field of statistical mechanics developed because 
the analytical techniques of statistical mechanics provide an alternative means of 
interpreting entropy and a more global significance to the concept. In statistical 

22.6 Pitfall Prevention 22.4

Entropy Is Abstract Entropy is 
one of the most abstract notions 
in physics, so follow the discus-
sion in this and the subsequent 
sections very carefully. Do not 
confuse energy with entropy. Even 
though the names sound similar, 
they are very different concepts. 
On the other hand, energy and 
entropy are intimately related, as 
we shall see in this discussion.
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mechanics, the behavior of a substance is described in terms of the statistical behav-
ior of its atoms and molecules. 
 We will develop our understanding of entropy by first considering some non-
thermodynamic systems, such as a pair of dice and poker hands. We will then 
expand on these ideas and use them to understand the concept of entropy as 
applied to thermodynamic systems.
 We begin this process by distinguishing between microstates and macrostates of a 
system. A microstate is a particular configuration of the individual constituents of 
the system. A macrostate is a description of the system’s conditions from a macro-
scopic point of view. 
 For any given macrostate of the system, a number of microstates are possible. 
For example, the macrostate of a 4 on a pair of dice can be formed from the pos-
sible microstates 1–3, 2–2, and 3–1. The macrostate of 2 has only one microstate, 
1–1. It is assumed all microstates are equally probable. We can compare these two 
macrostates in three ways: (1) Uncertainty: If we know that a macrostate of 4 exists, 
there is some uncertainty as to the microstate that exists, because there are mul-
tiple microstates that will result in a 4. In comparison, there is lower uncertainty 
(in fact, zero uncertainty) for a macrostate of 2 because there is only one microstate.  
(2) Choice: There are more choices of microstates for a 4 than for a 2. (3) Probability: 
The macrostate of 4 has a higher probability than a macrostate of 2 because there 
are more ways (microstates) of achieving a 4. The notions of uncertainty, choice, 
and probability are central to the concept of entropy, as we discuss below.
 Let’s look at another example related to a poker hand. There is only one micro-
state associated with the macrostate of a royal flush of five spades, laid out in 
order from ten to ace (Fig. 22.14a). Figure 22.14b shows another poker hand. The 
macrostate here is “worthless hand.” The particular hand (the microstate) in Fig-
ure 22.14b and the hand in Figure 22.14a are equally probable. There are, how-
ever, many other hands similar to that in Figure 22.14b; that is, there are many 
microstates that also qualify as worthless hands. If you, as a poker player, are told 
your opponent holds a macrostate of a royal flush in spades, there is zero uncer-
tainty as to what five cards are in the hand, only one choice of what those cards are, 
and low probability that the hand actually occurred. In contrast, if you are told that 
your opponent has the macrostate of “worthless hand,” there is high uncertainty as 
to what the five cards are, many choices of what they could be, and a high probability 
that a worthless hand occurred. Another variable in poker, of course, is the value 
of the hand, related to the probability: the higher the probability, the lower the 
value. The important point to take away from this discussion is that uncertainty, 
choice, and probability are related in these situations: if one is high, the others are 
high, and vice versa.
 Another way of describing macrostates is by means of “missing information.” 
For high-probability macrostates with many microstates, there is a large amount 

Figure 22.14  (a) A royal flush 
has low probability of occurring. 
(b) A worthless poker hand, one 
of many. a
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of missing information, meaning we have very little information about what micro-
state actually exists. For a macrostate of a 2 on a pair of dice, we have no missing 
information; we know the microstate is 1–1. For a macrostate of a worthless poker 
hand, however, we have lots of missing information, related to the large number of 
choices we could make as to the actual hand that is held.

Q uick Quiz 22.4  (a) Suppose you select four cards at random from a standard 
deck of playing cards and end up with a macrostate of four deuces. How many 
microstates are associated with this macrostate? (b) Suppose you pick up two 
cards and end up with a macrostate of two aces. How many microstates are asso-
ciated with this macrostate?

For thermodynamic systems, the variable entropy S is used to represent the level 
of uncertainty, choice, probability, or missing information in the system. Consider 
a configuration (a macrostate) in which all the oxygen molecules in your room 
are located in the west half of the room and the nitrogen molecules in the east 
half. Compare that macrostate to the more common configuration of the air mole-
cules distributed uniformly throughout the room. The latter configuration has the 
higher uncertainty and more missing information as to where the molecules are 
located because they could be anywhere, not just in one half of the room according 
to the type of molecule. The configuration with a uniform distribution also repre-
sents more choices as to where to locate molecules. It also has a much higher prob-
ability of occurring; have you ever noticed your half of the room suddenly being 
empty of oxygen? Therefore, the latter configuration represents a higher entropy.
     For systems of dice and poker hands, the comparisons between probabilities 
for various macrostates involve relatively small numbers. For example, a macrostate 
of a 4 on a pair of dice is only three times as probable as a macrostate of 2. The 
ratio of probabilities of a worthless hand and a royal flush is significantly larger. 
When we are talking about a macroscopic thermodynamic system containing on 
the order of Avogadro’s number of molecules, however, the ratios of probabilities 
can be astronomical.

Let’s explore this concept by considering 100 molecules in a container. Half of 
the molecules are oxygen and the other half are nitrogen. At any given moment, 
the probability of one molecule being in the left part of the container shown in Fig-
ure 22.15a as a result of random motion is 12. If there are two molecules as shown in 
Figure 22.15b, the probability of both being in the left part is 112 22, or 1 in 4. If there 
are three molecules (Fig. 22.15c), the probability of them all being in the left por-
tion at the same moment is 112 23, or 1 in 8. For 100 independently moving molecules, 
the probability that the 50 oxygen molecules will be found in the left part at any 
moment is 112 250. Likewise, the probability that the remaining 50 nitrogen molecules 
will be found in the right part at any moment is 112 250. Therefore, the probability of 

Q

Pitfall Prevention 22.5 

Entropy Is for Thermodynamic 
Systems We are not applying the 
word entropy to describe systems 
of dice or cards. We are only 
discussing dice and cards to set 
up the notions of microstates, 
macrostates, uncertainty, choice, 
probability, and missing informa-
tion. Entropy can only be used to 
describe thermodynamic systems 
that contain many particles, allow-
ing the system to store energy as 
internal energy.

Pitfall Prevention 22.6 

Entropy and Disorder Some 
textbook treatments of entropy 
relate entropy to the disorder of a 
system. While this approach has 
some merit, it is not entirely suc-
cessful. For example, consider 
two samples of the same solid 
material at the same temperature. 
One sample has volume V and 
the other volume 2V. The larger 
sample has higher entropy than 
the smaller one simply because 
there are more molecules in it. 
But there is no sense in which it is 
more disordered than the smaller 
sample. We will not use the dis-
order approach in this text, but 
watch for it in other sources.

b

c

a

Figure 22.15 Possible distribu-
tions of identical molecules in a 
container. The colors used here 
exist only to allow us to distin-
guish among the molecules.  
(a) One molecule in a container 
has a 1-in-2 chance of being on 
the left side. (b) Two molecules 
have a 1-in-4 chance of being on 
the left side at the same time.  
(c) Three molecules have a 1-in-8 
chance of being on the left side  
at the same time.
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Conceptual Example 22.6   Let’s Play Marbles!

Suppose you have a bag of 100 marbles of which 50 are red and 50 are green. You are allowed to draw four marbles 
from the bag according to the following rules. Draw one marble, record its color, and return it to the bag. Shake 
the bag and then draw another marble. Continue this process until you have drawn and returned four marbles. 
What are the possible macrostates for this set of events? What is the most likely macrostate? What is the least likely 
macrostate?

Because each marble is returned 
to the bag before the next one 
is drawn and the bag is then 
shaken, the probability of draw-
ing a red marble is always the 
same as the probability of draw-
ing a green one. All the possible 
microstates and macrostates are 
shown in Table 22.1. As this table 
indicates, there is only one way 
to draw a macrostate of four red marbles, so there is only one microstate for that macrostate. There are, however, four 
possible microstates that correspond to the macrostate of one green marble and three red marbles, six microstates 
that correspond to two green marbles and two red marbles, four microstates that correspond to three green marbles 
and one red marble, and one microstate that corresponds to four green marbles. The most likely macrostate—two red 
marbles and two green marbles—corresponds to the largest number of choices of microstates, and, therefore, the most 
uncertainty as to what the exact microstate is. The least likely macrostates—four red marbles or four green marbles—
correspond to only one choice of microstate and, therefore, zero uncertainty. There is no missing information for the 
least likely states: we know the colors of all four marbles.

S O L U T I O N

Table 22.1 Possible Results of Drawing Four Marbles from a Bag
  Total Number
Macrostate Possible Microstates of Microstates

All R RRRR 1
1G, 3R RRRG, RRGR, RGRR, GRRR 4
2G, 2R RRGG, RGRG, GRRG, 6
 RGGR, GRGR, GGRR 
3G, 1R GGGR, GGRG, GRGG, RGGG 4
All G GGGG 1

 We have investigated the notions of uncertainty, number of choices, probability, 
and missing information for some non-thermodynamic systems and have argued 
that the concept of entropy can be related to these notions for thermodynamic sys-
tems. We have not yet indicated how to evaluate entropy numerically for a thermo-
dynamic system. This evaluation was done through statistical means by Boltzmann 
in the 1870s and appears in its currently accepted form as

 S 5 kB ln W (22.10)

where kB is Boltzmann’s constant. Boltzmann intended W, standing for Wahrschein-
lichkeit, the German word for probability, to be proportional to the probability that 
a given macrostate exists. It is equivalent to let W be the number of microstates 
associated with the macrostate, so we can interpret W as representing the number 
of “ways” of achieving the macrostate. Therefore, macrostates with larger numbers 
of microstates have higher probability and, equivalently, higher entropy.
 In the kinetic theory of gases, gas molecules are represented as particles mov-
ing randomly. Suppose the gas is confined to a volume V. For a uniform distribu-
tion of gas in the volume, there are a large number of equivalent microstates, and 
the entropy of the gas can be related to the number of microstates corresponding 
to a given macrostate. Let us count the number of microstates by considering the 

finding this oxygen–nitrogen separation as a result of random motion is the prod-
uct 112 250 112 250 5 112 2100, which corresponds to about 1 in 1030. When this calculation 
is extrapolated from 100 molecules to the number in 1 mol of gas (6.02 3 1023),  
the separated arrangement is found to be extremely improbable!
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variety of molecular locations available to the molecules. Let us assume each mol-
ecule occupies some microscopic volume Vm . The total number of possible loca-
tions of a single molecule in a macroscopic volume V is the ratio w = V/Vm , which is 
a huge number. We use lowercase w here to represent the number of ways a single 
molecule can be placed in the volume or the number of microstates for a single 
molecule, which is equivalent to the number of available locations. We assume the 
probabilities of a molecule occupying any of these locations are equal. As more mol-
ecules are added to the system, the number of possible ways the molecules can be 
positioned in the volume multiplies, as we saw in Figure 22.15. For example, if you 
consider two molecules, for every possible placement of the first, all possible place-
ments of the second are available. Therefore, there are w ways of locating the first 
molecule, and for each way, there are w ways of locating the second molecule. The 
total number of ways of locating the two molecules is W 5 w 3 w 5 w 2 5 (V/Vm)2.  
(Uppercase W represents the number of ways of putting multiple molecules into 
the volume and is not to be confused with work.)
 Now consider placing N molecules of gas in the volume V. Neglecting the very 
small probability of having two molecules occupy the same location, each molecule 
may go into any of the V/Vm locations, and so the number of ways of locating N mol-
ecules in the volume becomes W 5 w N 5 (V/Vm)N. Therefore, the spatial part of the 
entropy of the gas, from Equation 22.10, is

 S 5 kB ln W 5 kB ln aV

Vm

bN

5 NkB ln aV

Vm

b 5 nR ln aV

Vm

b (22.11)

We will use this expression in the next section as we investigate changes in entropy 
for processes occurring in thermodynamic systems.

Notice that we have indicated Equation 22.11 as representing only the spatial
portion of the entropy of the gas. There is also a temperature-dependent portion 
of the entropy that the discussion above does not address. For example, imagine 
an isovolumetric process in which the temperature of the gas increases. Equation 
22.11 above shows no change in the spatial portion of the entropy for this situation. 
There is a change in entropy, however, associated with the increase in temperature. 
We can understand this by appealing again to a bit of quantum physics. Recall 
from Section 21.3 that the energies of the gas molecules are quantized. When the 
temperature of a gas changes, the distribution of energies of the gas molecules 
changes according to the Boltzmann distribution law, discussed in Section 21.5. 
Therefore, as the temperature of the gas increases, there is more uncertainty about 
the particular microstate that exists as gas molecules distribute themselves into 
higher available quantum states. We will see the entropy change associated with an 
isovolumetric process in Example 22.8.

22.7 Changes in Entropy  
for Thermodynamic Systems

Thermodynamic systems are constantly in flux, changing continuously from one 
microstate to another. If the system is in equilibrium, a given macrostate exists, 
and the system fluctuates from one microstate associated with that macrostate to 
another. This change is unobservable because we are only able to detect the mac-
rostate. Equilibrium states have tremendously higher probability than nonequi-
librium states, so it is highly unlikely that an equilibrium state will spontaneously 
change to a nonequilibrium state. For example, we do not observe a spontaneous 
split into the oxygen–nitrogen separation discussed in Section 22.6.

What if the system begins in a low-probability macrostate, however? What if 
the room begins with an oxygen–nitrogen separation? In this case, the system will 
progress from this low-probability macrostate to the much-higher probability 

22.7



672 Chapter 22 Heat Engines, Entropy, and the Second Law of Thermodynamics

state: the gases will disperse and mix throughout the room. Because entropy is 
related to probability, a spontaneous increase in entropy, such as in the latter situ-
ation, is natural. If the oxygen and nitrogen molecules were initially spread evenly 
throughout the room, a decrease in entropy would occur if the spontaneous split-
ting of molecules occurred.

One way of conceptualizing a change in entropy is to relate it to energy spreading. 
A natural tendency is for energy to undergo spatial spreading in time, representing 
an increase in entropy. If a basketball is dropped onto a floor, it bounces several 
times and eventually comes to rest. The initial gravitational potential energy in the 
basketball–Earth system has been transformed to internal energy in the ball and 
the floor. That energy is spreading outward by heat into the air and into regions of 
the floor farther from the drop point. In addition, some of the energy has spread 
throughout the room by sound. It would be unnatural for energy in the room and 
floor to reverse this motion and concentrate into the stationary ball so that it spon-
taneously begins to bounce again.

In the adiabatic free expansion of Section 22.3, the spreading of energy accom-
panies the spreading of the molecules as the gas rushes into the evacuated half 
of the container. If a warm object is placed in thermal contact with a cool object, 
energy transfers from the warm object to the cool one by heat, representing a 
spread of energy until it is distributed more evenly between the two objects.

Now consider a mathematical representation of this spreading of energy or, 
equivalently, the change in entropy. The original formulation of entropy in ther-
modynamics involves the transfer of energy by heat during a reversible process. 
Consider any infinitesimal process in which a system changes from one equilibrium 
state to another. If dQ r is the amount of energy transferred by heat when the system 
follows a reversible path between the states, the change in entropy dS is equal to 
this amount of energy divided by the absolute temperature of the system:

 dS 5
dQ r

T
 (22.12)

We have assumed the temperature is constant because the process is infinitesimal. 
Because entropy is a state variable, the change in entropy during a process depends 
only on the endpoints and therefore is independent of the actual path followed. 
Consequently, the entropy change for an irreversible process can be determined by 
calculating the entropy change for a reversible process that connects the same initial 
and final states.
 The subscript r on the quantity dQ r is a reminder that the transferred energy is 
to be measured along a reversible path even though the system may actually have 
followed some irreversible path. When energy is absorbed by the system, dQ r is posi-
tive and the entropy of the system increases. When energy is expelled by the system, 
dQ r is negative and the entropy of the system decreases. Notice that Equation 22.12 
does not define entropy but rather the change in entropy. Hence, the meaningful 
quantity in describing a process is the change in entropy.
 To calculate the change in entropy for a finite process, first recognize that 
T is generally not constant during the process. Therefore, we must integrate 
Equa tion 22.12:

 DS 5 3
f

i

 dS 5 3
f

i

dQ r

T
 (22.13)

 As with an infinitesimal process, the change in entropy DS of a system going 
from one state to another has the same value for all paths connecting the two states. 
That is, the finite change in entropy DS of a system depends only on the properties 
of the initial and final equilibrium states. Therefore, we are free to choose any 
convenient reversible path over which to evaluate the entropy in place of the actual 
path as long as the initial and final states are the same for both paths. This point is 
explored further on in this section.

dS 5
dQ r

T
Change in entropy for  

an infinitesimal process

Change in entropy for  
a finite process
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From Equation 22.10, we see that a change in entropy is represented in the 
Boltzmann formulation as

DS 5 kB ln aWf

Wi

b (22.14)

where Wi and Wf represent the inital and final numbers of microstates, respectively, 
for the initial and final configurations of the system. If Wf > Wi , the final state is 
more probable than the the initial state (there are more choices of microstates), 
and the entropy increases.

Q uick Quiz 22.5  An ideal gas is taken from an initial temperature Ti to a higher 
final temperature Tf along two different reversible paths. Path A is at constant 
pressure, and path B is at constant volume. What is the relation between the 
entropy changes of the gas for these paths? (a) DSA . DS B  (b) DSA 5 DS B  
(c) DSA , DSB

Q uick Quiz 22.6 True or False: The entropy change in an adiabatic process must 
be zero because Q 5 0.

Q

Q

Example 22.7   Change in Entropy: Melting

A solid that has a latent heat of fusion L f melts at a temperature Tm . Calculate the change in entropy of this substance 
when a mass m of the substance melts.

Conceptualize  We can choose any convenient reversible path to follow that connects the initial and final states. It is 
not necessary to identify the process or the path because, whatever it is, the effect is the same: energy enters the sub-
stance by heat and the substance melts. The mass m of the substance that melts is equal to Dm, the change in mass of 
the higher-phase (liquid) substance.

Categorize  Because the melting takes place at a fixed temperature, we categorize the process as isothermal.

S O L U T I O N

Analyze  Use Equation 20.7 in Equation 22.13, noting 
that the temperature remains fixed:

DS 5 3dQ r

T
5

1

Tm

 3 dQ r 5
Q r

Tm

5
Lf Dm

Tm

 5 
Lf m

Tm

Finalize  Notice that Dm is positive so that DS is positive, representing that energy is added to the substance.

Entropy Change in a Carnot Cycle

Let’s consider the changes in entropy that occur in a Carnot heat engine that oper-
ates between the temperatures Tc and Th. In one cycle, the engine takes in energy 
|Q h | from the hot reservoir and expels energy |Q c | to the cold reservoir. These 
energy transfers occur only during the isothermal portions of the Carnot cycle; 
therefore, the constant temperature can be brought out in front of the integral sign 
in Equation 22.13. The integral then simply has the value of the total amount of 
energy transferred by heat. Therefore, the total change in entropy for one cycle is

 DS 5
0Q h 0
Th

2
0Q c 0
Tc

 (22.15)

where the minus sign represents that energy is leaving the engine at temperature 
Tc . In Example 22.3, we showed that for a Carnot engine,

 
0Q c 0
0Q h 0 5

Tc

Th
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Using this result in Equation 22.15, we find that the total change in entropy for a 
Carnot engine operating in a cycle is zero:

 DS 5 0 

 Now consider a system taken through an arbitrary (non-Carnot) reversible cycle. 
Because entropy is a state variable—and hence depends only on the properties of 
a given equilibrium state—we conclude that DS 5 0 for any reversible cycle. In gen-
eral, we can write this condition as

 C 
dQ r

T
5 0 1reversible cycle 2  (22.16)

where the symbol r indicates that the integration is over a closed path.

Entropy Change in a Free Expansion

Let’s again consider the adiabatic free expansion of a gas occupying an initial vol-
ume Vi (Fig. 22.16). In this situation, a membrane separating the gas from an evacu-
ated region is broken and the gas expands to a volume Vf . This process is irreversible; 
the gas would not spontaneously crowd into half the volume after filling the entire 
volume. What is the change in entropy of the gas during this process? The process 
is neither reversible nor quasi-static. As shown in Section 20.6, the initial and final 
temperatures of the gas are the same.
 To apply Equation 22.13, we cannot take Q 5 0, the value for the irreversible 
process, but must instead find Q r ; that is, we must find an equivalent reversible 
path that shares the same initial and final states. A simple choice is an isothermal, 
reversible expansion in which the gas pushes slowly against a piston while energy 
enters the gas by heat from a reservoir to hold the temperature constant. Because T 
is constant in this process, Equation 22.13 gives

 DS 5 3
f

i

 
dQ r

T
5

1

T
 3

f

i

 dQ r  

For an isothermal process, the first law of thermodynamics specifies that e
f

i
 dQ r 

is equal to the negative of the work done on the gas during the expansion from Vi 
to Vf , which is given by Equation 20.14. Using this result, we find that the entropy 
change for the gas is

 DS 5 nR ln aVf

Vi

b  (22.17)

Because Vf . Vi , we conclude that DS is positive. This positive result indicates that 
the entropy of the gas increases as a result of the irreversible, adiabatic expansion.
 It is easy to see that the energy has spread after the expansion. Instead of being 
concentrated in a relatively small space, the molecules and the energy associated 
with them are scattered over a larger region.

Entropy Change in Thermal Conduction

Let us now consider a system consisting of a hot reservoir and a cold reservoir that 
are in thermal contact with each other and isolated from the rest of the Universe.  
A process occurs during which energy Q is transferred by heat from the hot res-
ervoir at temperature Th to the cold reservoir at temperature Tc . The process as 
described is irreversible (energy would not spontaneously flow from cold to hot), so 
we must find an equivalent reversible process. The overall process is a combination 
of two processes: energy leaving the hot reservoir and energy entering the cold res-
ervoir. We will calculate the entropy change for the reservoir in each process and 
add to obtain the overall entropy change.

Vacuum

Gas at Ti in
volume Vi

Insulating
wall

Membrane

When the membrane 
is ruptured, the gas 
will expand freely and 
irreversibly into the 
full volume.

Figure 22.16  Adiabatic free 
expansion of a gas. The container 
is thermally insulated from its sur-
roundings; therefore, Q 5 0.
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Example 22.8   Adiabatic Free Expansion: Revisited

Let’s verify that the macroscopic and microscopic approaches to the calculation of entropy lead to the same conclusion 
for the adiabatic free expansion of an ideal gas. Suppose the ideal gas in Figure 22.16 expands to four times its initial 
volume. As we have seen for this process, the initial and final temperatures are the same.

(A)  Using a macroscopic approach, calculate the entropy change for the gas.

Conceptualize  Look back at Figure 22.16, which is a diagram of the system before the adiabatic free expansion. Imag-
ine breaking the membrane so that the gas moves into the evacuated area. The expansion is irreversible.

Categorize  We can replace the irreversible process with a reversible isothermal process between the same initial and 
final states. This approach is macroscopic, so we use a thermodynamic variable, in particular, the volume V.

S O L U T I O N

Analyze  Use Equation 22.17 to evaluate the entropy 
change:

DS 5 nR ln aVf

Vi

b 5 nR ln a4Vi

Vi

b 5  nR ln 4

(B)  Using statistical considerations, calculate the change in entropy for the gas and show that it agrees with the answer 
you obtained in part (A).

Categorize  This approach is microscopic, so we use variables related to the individual molecules.

S O L U T I O N

 Consider first the process of energy entering the cold reservoir. Although the 
reservoir has absorbed some energy, the temperature of the reservoir has not 
changed. The energy that has entered the reservoir is the same as that which would 
enter by means of a reversible, isothermal process. The same is true for energy leav-
ing the hot reservoir.
 Because the cold reservoir absorbs energy Q , its entropy increases by Q /Tc . At 
the same time, the hot reservoir loses energy Q , so its entropy change is 2Q /Th. 
Therefore, the change in entropy of the system is 

 DS 5
Q

Tc

1
2Q

Th

5 Q a 1

Tc

2
1

Th

b . 0 (22.18)

 This increase is consistent with our interpretation of entropy changes as rep-
resenting the spreading of energy. In the initial configuration, the hot reservoir 
has excess internal energy relative to the cold reservoir. The process that occurs 
spreads the energy into a more equitable distribution between the two reservoirs.

Analyze  As in the discussion leading to Equation 22.11, 
the number of microstates available to a single molecule 
in the initial volume Vi is wi 5 Vi /Vm , where Vi is the ini-
tial volume of the gas and Vm is the microscopic volume 
occupied by the molecule. Use this number to find the 
number of available microstates for N molecules:

Wi 5 wi
N 5 a Vi

Vm

bN

Find the number of available microstates for N mol-
ecules in the final volume Vf 5 4Vi :

Wf 5 a Vf

Vm

bN

5 a4Vi

Vm

bN

continued
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Use Equation 22.14 to find the entropy change: DS 5 kB ln aWf

Wi

b 

 5 kB ln a4Vi

Vi

bN

5 kB ln 14N 2 5 NkB ln 4 5  nR ln 4

Finalize  The answer is the same as that for part (A), which 
dealt with macroscopic parameters.

 In part (A), we used Equation 22.17, which was 
based on a reversible isothermal process connecting the ini-
tial and final states. Would you arrive at the same result if 
you chose a different reversible process?

Answer  You must arrive at the same result because entropy 
is a state variable. For example, consider the two-step pro-
cess in Figure 22.17: a reversible adiabatic expansion from 
Vi to 4Vi (A S B) during which the temperature drops from 
T1 to T2 and a reversible isovolumetric process (B S C) that 
takes the gas back to the initial temperature T1. During the 
reversible adiabatic process, DS 5 0 because Q r 5 0.

WHAT IF ?

V

P

Vi 4Vi

B

C

A

T1

T2

Figure 22.17  (Example 
22.8) A gas expands to  
four times its initial volume 
and back to the initial 
temperature by means of a 
two-step process.
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For the reversible isovolumetric process (B S C), use 
Equation 22.13:

DS 5 3
f

i

 
dQ r

T
5 3

T1

T2

 
nCVdT

T
5 nCV ln aT1

T2

b

Find the ratio of temperature T1 to T2 from Equation 
21.39 for the adiabatic process:

T1

T2

5 a4Vi

Vi

bg21

5 14 2g21

Substitute to find DS: DS 5 nCV  ln 14 2g21 5 nCV 1g 2 1 2 ln 4

 5 nCV aCP

CV

2 1b ln 4 5 n 1CP 2 CV 2  ln 4 5 nR ln 4

We do indeed obtain the exact same result for the entropy change.

22.8 Entropy and the Second Law

If we consider a system and its surroundings to include the entire Universe, the 
Universe is always moving toward a higher-probability macrostate, corresponding 
to the continuous spreading of energy. An alternative way of stating this behavior 
is as follows:

The entropy of the Universe increases in all real processes.

This statement is yet another wording of the second law of thermodynamics that 
can be shown to be equivalent to the Kelvin-Planck and Clausius statements.

Let us show this equivalence first for the Clausius statement. Looking at Figure 
22.5, we see that, if the heat pump operates in this manner, energy is spontaneously 
flowing from the cold reservoir to the hot reservoir without an input of energy by 
work. As a result, the energy in the system is not spreading evenly between the two 
reservoirs, but is concentrating in the hot reservoir. Consequently, if the Clausius 
statement of the second law is not true, then the entropy statement is also not true, 
demonstrating their equivalence.

22.8

The entropy of the Universe increases in all real processes.Entropy statement of 
the second law of 
thermodynamics
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 For the equivalence of the Kelvin–Planck statement, consider Figure 22.18, which 
shows the impossible engine of Figure 22.3 connected to a heat pump operating 
between the same reservoirs. The output work of the engine is used to drive the 
heat pump. The net effect of this combination is that energy leaves the cold reser-
voir and is delivered to the hot reservoir without the input of work. (The work done 
by the engine on the heat pump is internal to the system of both devices.) This is 
forbidden by the Clausius statement of the second law, which we have shown to be 
equivalent to the entropy statement. Therefore, the Kelvin–Planck statement of the 
second law is also equivalent to the entropy statement.
 When dealing with a system that is not isolated from its surroundings, remember 
that the increase in entropy described in the second law is that of the system and its 
surroundings. When a system and its surroundings interact in an irreversible pro-
cess, the increase in entropy of one is greater than the decrease in entropy of the 
other. Hence, the change in entropy of the Universe must be greater than zero for 
an irreversible process and equal to zero for a reversible process. 
 We can check this statement of the second law for the calculations of entropy 
change that we made in Section 22.7. Consider first the entropy change in a free 
expansion, described by Equation 22.17. Because the free expansion takes place 
in an insulated container, no energy is transferred by heat from the surroundings. 
Therefore, Equation 22.17 represents the entropy change of the entire Universe. 
Because Vf . Vi , the entropy change of the Universe is positive, consistent with the 
second law.
 Now consider the entropy change in thermal conduction, described by Equation 
22.18. Let each reservoir be half the Universe. (The larger the reservoir, the better 
is the assumption that its temperature remains constant!) Then the entropy change 
of the Universe is represented by Equation 22.18. Because Th . Tc , this entropy 
change is positive, again consistent with the second law. The positive entropy 
change is also consistent with the notion of energy spreading. The warm portion 
of the Universe has excess internal energy relative to the cool portion. Thermal 
conduction represents a spreading of the energy more equitably throughout the 
Universe.
 Finally, let us look at the entropy change in a Carnot cycle, given by Equation 
22.15. The entropy change of the engine itself is zero. The entropy change of the 
reservoirs is

 DS 5
0Q c 0
Tc

2
0Q h 0
Th

 

In light of Equation 22.7, this entropy change is also zero. Therefore, the entropy 
change of the Universe is only that associated with the work done by the engine. 
A portion of that work will be used to change the mechanical energy of a system 
external to the engine: speed up the shaft of a machine, raise a weight, and so on. 
There is no change in internal energy of the external system due to this portion 

Hot reservoir
at Th

Q c

Heat
pump

Qh

Cold reservoir
at Tc

Heat
engine

Weng

Q c 1Weng

Figure 22.18 The impossible 
engine of Figure 22.3 transfers 
energy by work to a heat pump 
operating between two energy res-
ervoirs. This situation is forbidden 
by the Clausius statement of the 
second law of thermodynamics.
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of the work, or, equivalently, no energy spreading, so the entropy change is again 
zero. The other portion of the work will be used to overcome various friction forces 
or other nonconservative forces in the external system. This process will cause an 
increase in internal energy of that system. That same increase in internal energy 
could have happened via a reversible thermodynamic process in which energy Q r is 
transferred by heat, so the entropy change associated with that part of the work is 
positive. As a result, the overall entropy change of the Universe for the operation of 
the Carnot engine is positive, again consistent with the second law.
 Ultimately, because real processes are irreversible, the entropy of the Universe 
should increase steadily and eventually reach a maximum value. At this value, 
assuming that the second law of thermodynamics, as formulated here on Earth, 
applies to the entire expanding Universe, the Universe will be in a state of uniform 
temperature and density. The total energy of the Universe will have spread more 
evenly throughout the Universe. All physical, chemical, and biological processes 
will have ceased at this time. This gloomy state of affairs is sometimes referred to as 
the heat death of the Universe.

Summary

 From a microscopic viewpoint, the entropy of a given macro-
state is defined as

 S ; k B ln W (22.10)

where kB is Boltzmann’s constant and W is the number of micro-
states of the system corresponding to the macrostate.

 In a reversible process, the system can be 
returned to its initial conditions along the 
same path on a PV diagram, and every point 
along this path is an equilibrium state. A pro-
cess that does not satisfy these requirements is 
irreversible.

 The thermal efficiency e of a heat engine is

 e ;
Weng

0Q h 0 5
0Q h 0 2 0Q c 0

0Q h 0 5 1 2
0Q c 0
0Q h 0  (22.2)

 The microstate of a system is the description of its indi-
vidual components. The macrostate is a description of the 
system from a macroscopic point of view. A given macro-
state can have many microstates.

Definitions 

 A heat engine is a device that takes in energy 
by heat and, operating in a cyclic process, expels a 
fraction of that energy by means of work. The net 
work done by a heat engine in carrying a working 
substance through a cyclic process (DE int 5 0) is

 Weng 5 |Q h | 2 |Q c | (22.1)

where |Q h | is the energy taken in from a hot res-
ervoir and |Q c | is the energy expelled to a cold 
reservoir.

 Two ways the second law of thermodynamics can be 
stated are as follows:

-
ing in a cycle, produces no effect other than the input of 
energy by heat from a reservoir and the performance of an 
equal amount of work (the Kelvin–Planck statement).

effect is to transfer energy continuously by heat from one 
object to another object at a higher temperature without 
the input of energy by work (the Clausius statement).

Concepts and Principles
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 The macroscopic state of a system that has a large number of 
microstates has four qualities that are all related: (1) uncertainty: 
because of the large number of microstates, there is a large uncer-
tainty as to which one actually exists; (2) choice: again because of the 
large number of microstates, there is a large number of choices from 
which to select as to which one exists; (3) probability: a macrostate with 
a large number of microstates is more likely to exist than one with a 
small number of microstates; (4) missing information: because of the 
large number of microstates, there is a high amount of missing infor-
mation as to which one exists. For a thermodynamic system, all four 
of these can be related to the state variable of entropy.

 Carnot’s theorem states that no real heat 
engine operating (irreversibly) between the tem-
peratures Tc and Th can be more efficient than 
an engine operating reversibly in a Carnot cycle 
between the same two temperatures.

 The change in entropy dS of a system dur-
ing a process between two infinitesimally sepa-
rated equilibrium states is

 dS 5
dQ r

T
 (22.12)

where dQ r is the energy transfer by heat for the 
system for a reversible process that connects 
the initial and final states.

 The second law of thermodynamics 
states that when real (irreversible) pro-
cesses occur, there is a spatial spreading 
of energy. This spreading of energy is 
related to a thermodynamic state vari-
able called entropy S. Therefore, yet 
another way the second law can be stated 
is as follows:

in all real processes.

 The thermal efficiency of a heat engine operating in the 
Carnot cycle is

 eC 5 1 2
Tc

Th

 (22.8)

 The change in entropy of a system during an arbitrary finite 
process between an initial state and a final state is

 DS 5 3
f

i

 
dQ r

T
 (22.13)

The value of DS for the system is the same for all paths connect-
ing the initial and final states. The change in entropy for a sys-
tem undergoing any reversible, cyclic process is zero.

than a Carnot engine operating between the same two 
reservoirs. (c) When a system undergoes a change in 
state, the change in the internal energy of the system 
is the sum of the energy transferred to the system by 
heat and the work done on the system. (d) The entropy 
of the Universe increases in all natural processes.  
(e) Energy will not spontaneously transfer by heat from 
a cold object to a hot object.

 5. Consider cyclic processes completely characterized by 
each of the following net energy inputs and outputs. 
In each case, the energy transfers listed are the only 
ones occurring. Classify each process as (a) possible, 
(b) impossible according to the first law of thermody-
namics, (c) impossible according to the second law of 
thermodynamics, or (d) impossible according to both 
the first and second laws. (i) Input is 5 J of work, and 
output is 4 J of work. (ii) Input is 5 J of work, and out-
put is 5 J of energy transferred by heat. (iii) Input is  
5 J of energy transferred by electrical transmission, and 
output is 6 J of work. (iv) Input is 5 J of energy trans-
ferred by heat, and output is 5 J of energy transferred 

 1. The second law of thermodynamics implies that the 
coefficient of performance of a refrigerator must be 
what? (a) less than 1 (b) less than or equal to 1 (c) great-
er than or equal to 1 (d) finite (e) greater than 0

 2. Assume a sample of an ideal gas is at room tempera-
ture. What action will necessarily make the entropy of 
the sample increase? (a) Transfer energy into it by 
heat. (b) Transfer energy into it irreversibly by heat.  
(c) Do work on it. (d) Increase either its temperature or 
its volume, without letting the other variable decrease. 
(e) None of those choices is correct.

 3. A refrigerator has 18.0 kJ of work done on it while 115 kJ  
of energy is transferred from inside its interior. What 
is its coefficient of performance? (a) 3.40 (b) 2.80  
(c) 8.90 (d) 6.40 (e) 5.20

 4. Of the following, which is not a statement of the second 
law of thermodynamics? (a) No heat engine operating 
in a cycle can absorb energy from a reservoir and use 
it entirely to do work. (b) No real engine operating 
between two energy reservoirs can be more efficient 

Objective Questions 1. denotes answer available in Student Solutions Manual/Study Guide
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largest-magnitude negative value. In your rankings, 
display any cases of equality.

 10. An engine does 15.0 kJ of work while exhausting 37.0 kJ  
to a cold reservoir. What is the efficiency of the engine? 
(a) 0.150 (b) 0.288 (c) 0.333 (d) 0.450 (e) 1.20

 11. The arrow OA in the PV 
diagram shown in Fig-
ure OQ22.11 represents a 
reversible adiabatic expan-
sion of an ideal gas. The 
same sample of gas, start-
ing from the same state O, 
now undergoes an adia-
batic free expansion to the 
same final volume. What 
point on the diagram could represent the final state 
of the gas? (a) the same point A as for the reversible 
expansion (b) point B (c) point C (d) any of those 
choices (e) none of those choices

P

V

O

B
A
C

Figure OQ22.11

by heat. (v) Input is 5 J of energy transferred by heat, 
and output is 5 J of work. (vi) Input is 5 J of energy 
transferred by heat, and output is 3 J of work plus 2 J of 
energy transferred by heat.

 6. A compact air-conditioning unit is placed on a table 
inside a well-insulated apartment and is plugged in 
and turned on. What happens to the average tem-
perature of the apartment? (a) It increases. (b) It 
decreases. (c) It remains constant. (d) It increases 
until the unit warms up and then decreases. (e) The 
answer depends on the initial temperature of the 
apartment.

 7. A steam turbine operates at a boiler temperature of 
450 K and an exhaust temperature of 300 K. What is 
the maximum theoretical efficiency of this system?  
(a) 0.240 (b) 0.500 (c) 0.333 (d) 0.667 (e) 0.150

 8. A thermodynamic process occurs in which the entropy 
of a system changes by 28 J/K. According to the sec-
ond law of thermodynamics, what can you conclude 
about the entropy change of the environment? (a) It 
must be 18 J/K or less. (b) It must be between 18 J/K 
and 0. (c) It must be equal to 18 J/K. (d) It must be  
18 J/K or more. (e) It must be zero.

 9. A sample of a monatomic ideal gas is contained in 
a cylinder with a piston. Its state is represented by 
the dot in the PV diagram shown in Figure OQ22.9. 
Arrows A through E represent isobaric, isothermal, 
adiabatic, and isovolumetric processes that the sample 
can undergo. In each process except D, the volume 
changes by a factor of 2. All five processes are revers-
ible. Rank the processes according to the change in 
entropy of the gas from the largest positive value to the 
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Figure OQ22.9

Conceptual Questions 1. denotes answer available in Student Solutions Manual/Study Guide

 1. The energy exhaust from a certain coal-fired electric 
generating station is carried by “cooling water” into Lake 
Ontario. The water is warm from the viewpoint of living 
things in the lake. Some of them congregate around the 
outlet port and can impede the water flow. (a) Use the 
theory of heat engines to explain why this action can 
reduce the electric power output of the station. (b) An 
engineer says that the electric output is reduced because 
of “higher back pressure on the turbine blades.” Com-
ment on the accuracy of this statement.

 2. Discuss three different common examples of natu-
ral processes that involve an increase in entropy. Be 
sure to account for all parts of each system under 
consideration.

 3. Does the second law of thermodynamics contradict or 
correct the first law? Argue for your answer.

 4. “The first law of thermodynamics says you can’t really 
win, and the second law says you can’t even break even.” 
Explain how this statement applies to a particular device 
or process; alternatively, argue against the statement.

 5. “Energy is the mistress of the Universe, and entropy is 
her shadow.” Writing for an audience of general read-
ers, argue for this statement with at least two examples. 
Alternatively, argue for the view that entropy is like an 
executive who instantly determines what will happen, 
whereas energy is like a bookkeeper telling us how lit-
tle we can afford. (Arnold Sommerfeld suggested the 
idea for this question.)

 6. (a) Give an example of an irreversible process that 
occurs in nature. (b) Give an example of a process in 
nature that is nearly reversible.

 7. The device shown in Figure CQ22.7, called a ther-
moelectric converter, uses a series of semiconductor 
cells to transform internal energy to electric potential 
energy, which we will study in Chapter 25. In the pho-
tograph on the left, both legs of the device are at the 
same temperature and no electric potential energy is 
produced. When one leg is at a higher temperature 
than the other as shown in the photograph on the 
right, however, electric potential energy is produced as 
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 8. A steam-driven turbine is one major component of an 
electric power plant. Why is it advantageous to have 
the temperature of the steam as high as possible?

 9. Discuss the change in entropy of a gas that expands  
(a) at constant temperature and (b) adiabatically.

 10. Suppose your roommate cleans and tidies up your 
messy room after a big party. Because she is creating 
more order, does this process represent a violation of 
the second law of thermodynamics?

 11. Is it possible to construct a heat engine that creates no 
thermal pollution? Explain.

 12. (a) If you shake a jar full of jelly beans of differ-
ent sizes, the larger beans tend to appear near the 
top and the smaller ones tend to fall to the bottom. 
Why? (b) Does this process violate the second law of 
thermodynamics?

 13. What are some factors that affect the efficiency of auto-
mobile engines?

the device extracts energy from the hot reservoir and 
drives a small electric motor. (a) Why is the difference 
in temperature necessary to produce electric potential 
energy in this demonstration? (b) In what sense does 
this intriguing experiment demonstrate the second 
law of thermodynamics?

it loses any energy by heat into the environment. Find 
its temperature increase.

 5. An engine absorbs 1.70 kJ from a hot reservoir at 277°C 
and expels 1.20 kJ to a cold reservoir at 27°C in each 
cycle. (a) What is the engine’s efficiency? (b) How much 
work is done by the engine in each cycle? (c) What  
is the power output of the engine if each cycle lasts 
0.300 s?

 6. A multicylinder gasoline engine in an airplane, operat-
ing at 2.50 3 103 rev/min, takes in energy 7.89 3 103 J  
and exhausts 4.58 3 103 J for each revolution of the 
crankshaft. (a) How many liters of fuel does it con-
sume in 1.00 h of operation if the heat of combustion 
of the fuel is equal to 4.03 3 107 J/L? (b) What is the 
mechanical power output of the engine? Ignore fric-
tion and express the answer in horsepower. (c) What 
is the torque exerted by the crankshaft on the load?  
(d) What power must the exhaust and cooling system 
transfer out of the engine?

 7. Suppose a heat engine is connected to two energy res-
ervoirs, one a pool of molten aluminum (660°C) and 
the other a block of solid mercury (238.9°C). The 
engine runs by freezing 1.00 g of aluminum and melt-
ing 15.0 g of mercury during each cycle. The heat of 

W

Section 22.1  Heat Engines and the Second Law  

of Thermodynamics

 1. A particular heat engine has a mechanical power out-
put of 5.00 kW and an efficiency of 25.0%. The engine 
expels 8.00 3 103 J of exhaust energy in each cycle. 
Find (a) the energy taken in during each cycle and  
(b) the time interval for each cycle.

 2. The work done by an engine equals one-fourth the 
energy it absorbs from a reservoir. (a) What is its 
thermal efficiency? (b) What fraction of the energy 
absorbed is expelled to the cold reservoir?

 3. A heat engine takes in 360 J of energy from a hot res-
ervoir and performs 25.0 J of work in each cycle. Find 
(a) the efficiency of the engine and (b) the energy 
expelled to the cold reservoir in each cycle.

 4. A gun is a heat engine. In particular, it is an internal 
combustion piston engine that does not operate in a 
cycle, but comes apart during its adiabatic expansion 
process. A certain gun consists of 1.80 kg of iron. It fires 
one 2.40-g bullet at 320 m/s with an energy efficiency 
of 1.10%. Assume the body of the gun absorbs all the 
energy exhaust—the other 98.9%—and increases uni-
formly in temperature for a short time interval before 
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has a thermodynamic efficiency of 0.110. Although 
this efficiency is low compared with typical automo-
bile engines, she explains that her engine operates 
between an energy reservoir at room temperature and 
a water–ice mixture at atmospheric pressure and there-
fore requires no fuel other than that to make the ice. 
The patent is approved, and working prototypes of the 
engine prove the inventor’s efficiency claim.

 17. A Carnot engine has a power output of 150 kW. The 
engine operates between two reservoirs at 20.0°C and 
500°C. (a) How much energy enters the engine by heat 
per hour? (b) How much energy is exhausted by heat 
per hour?

 18. A Carnot engine has a power output P. The engine 
operates between two reservoirs at temperature Tc and 
Th. (a) How much energy enters the engine by heat in a 
time interval Dt? (b) How much energy is exhausted by 
heat in the time interval Dt?

 19. What is the coefficient of performance of a refrigera-
tor that operates with Carnot efficiency between tem-
peratures 23.00°C and 127.0°C?

 20. An ideal refrigerator or ideal heat pump is equivalent 
to a Carnot engine running in reverse. That is, energy 
|Q c| is taken in from a cold reservoir and energy |Q h | 
is rejected to a hot reservoir. (a) Show that the work 
that must be supplied to run the refrigerator or heat 
pump is

W 5
Th 2 Tc

Tc

0Q c 0
  (b) Show that the coefficient of performance (COP) of 

the ideal refrigerator is

COP 5
Tc

Th 2 Tc

 21. What is the maximum possible coefficient of perfor-
mance of a heat pump that brings energy from outdoors 
at 23.00°C into a 22.0°C house? Note: The work done to 
run the heat pump is also available to warm the house.

 22. How much work does an ideal Carnot refrigerator 
require to remove 1.00 J of energy from liquid helium 
at 4.00 K and expel this energy to a room-temperature 
(293-K) environment?

 23. If a 35.0%-efficient Carnot heat engine (Fig. 22.2) is run 
in reverse so as to form a refrigerator (Fig. 22.4), what 
would be this refrigerator’s coefficient of performance?

 24. A power plant operates at a 32.0% efficiency during 
the summer when the seawater used for cooling is at 
20.0°C. The plant uses 350°C steam to drive turbines. 
If the plant’s efficiency changes in the same propor-
tion as the ideal efficiency, what would be the plant’s 
efficiency in the winter, when the seawater is at 10.0°C?

 25. A heat engine is being designed to have a Carnot effi-
ciency of 65.0% when operating between two energy 
reservoirs. (a) If the temperature of the cold reservoir 
is 20.0°C, what must be the temperature of the hot res-
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fusion of aluminum is 3.97 3 105 J/kg; the heat of 
fusion of mercury is 1.18 3 104 J/kg. What is the effi-
ciency of this engine?

Section 22.2  Heat Pumps and Refrigerators

 8. A refrigerator has a coefficient of performance equal 
to 5.00. The refrigerator takes in 120 J of energy from a 
cold reservoir in each cycle. Find (a) the work required 
in each cycle and (b) the energy expelled to the hot 
reservoir.

 9. During each cycle, a refrigerator ejects 625 kJ of energy 
to a high-temperature reservoir and takes in 550 kJ of 
energy from a low-temperature reservoir. Determine 
(a) the work done on the refrigerant in each cycle and 
(b) the coefficient of performance of the refrigerator.

 10. A heat pump has a coefficient of performance of 3.80 
and operates with a power consumption of 7.03 3 103 W.  
(a) How much energy does it deliver into a home dur-
ing 8.00 h of continuous operation? (b) How much 
energy does it extract from the outside air?

 11. A refrigerator has a coefficient of performance of 3.00. 
The ice tray compartment is at 220.0°C, and the room 
temperature is 22.0°C. The refrigerator can convert 
30.0 g of water at 22.0°C to 30.0 g of ice at 220.0°C 
each minute. What input power is required? Give your 
answer in watts.

 12. A heat pump has a coefficient of performance equal to 
4.20 and requires a power of 1.75 kW to operate. (a) How  
much energy does the heat pump add to a home in one 
hour? (b) If the heat pump is reversed so that it acts 
as an air conditioner in the summer, what would be its 
coefficient of performance?

 13. A freezer has a coefficient of performance of 6.30. It is 
advertised as using electricity at a rate of 457 kWh/yr. 
(a) On average, how much energy does it use in a single 
day? (b) On average, how much energy does it remove 
from the refrigerator in a single day? (c) What maximum 
mass of water at 20.0°C could the freezer freeze in a sin-
gle day? Note: One kilowatt-hour (kWh) is an amount of 
energy equal to running a 1-kW appliance for one hour.

Section 22.3  Reversible and Irreversible Processes

Section 22.4  The Carnot Engine

 14. A heat engine operates between a reservoir at 25.0°C 
and one at 375°C. What is the maximum efficiency 
possible for this engine?

 15. One of the most efficient heat engines ever built is a 
coal-fired steam turbine in the Ohio River valley, oper-
ating between 1 870°C and 430°C. (a) What is its maxi-
mum theoretical efficiency? (b) The actual efficiency 
of the engine is 42.0%. How much mechanical power 
does the engine deliver if it absorbs 1.40 3 105 J of 
energy each second from its hot reservoir?

 16. Why is the following situation impossible? An inventor 
comes to a patent office with the claim that her heat 
engine, which employs water as a working substance, 

W

M
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perature at exit. (b) Calculate the (maximum) power 
output of the turning turbine. (c) The turbine is one 
component of a model closed-cycle gas turbine engine. 
Calculate the maximum efficiency of the engine.

 32. At point A in a Carnot cycle, 2.34 mol of a monatomic 
ideal gas has a pressure of 1 400 kPa, a volume of  
10.0 L, and a temperature of 720 K. The gas expands 
isothermally to point B and then expands adiabatically 
to point C, where its volume is 24.0 L. An isothermal 
compression brings it to point D, where its volume is 
15.0 L. An adiabatic process returns the gas to point A.  
(a) Determine all the unknown pressures, volumes, 
and temperatures as you fill in the following table:

 P V T

A 1 400 kPa 10.0 L 720 K
B 
C  24.0 L 
D  15.0 L 

  (b) Find the energy added by heat, the work done by the 
engine, and the change in internal energy for each of  
the steps A S B, B S C, C S D, and D S A. (c) Cal-
culate the efficiency Wnet /|Q h |. (d) Show that the effi-
ciency is equal to 1 2 TC /TA, the Carnot efficiency.

 33. An electric generating station is designed to have 
an electric output power of 1.40 MW using a turbine 
with two-thirds the efficiency of a Carnot engine. The 
exhaust energy is transferred by heat into a cooling 
tower at 110°C. (a) Find the rate at which the station 
exhausts energy by heat as a function of the fuel com-
bustion temperature Th. (b) If the firebox is modified to 
run hotter by using more advanced combustion technol-
ogy, how does the amount of energy exhaust change? 
(c) Find the exhaust power for Th 5 800°C. (d) Find the 
value of Th for which the exhaust power would be only 
half as large as in part (c). (e) Find the value of Th for 
which the exhaust power would be one-fourth as large 
as in part (c).

 34. An ideal (Carnot) freezer in a kitchen has a constant 
temperature of 260 K, whereas the air in the kitchen 
has a constant temperature of 300 K. Suppose the insu-
lation for the freezer is not perfect but rather conducts 
energy into the freezer at a rate of 0.150 W. Determine 
the average power required for the freezer’s motor to 
maintain the constant temperature in the freezer.

 35. A heat pump used for heating shown in Figure P22.35 
is essentially an air conditioner installed backward. It 

Q/C

ervoir? (b) Can the actual efficiency of the engine be 
equal to 65.0%? Explain.

 26. A Carnot heat engine operates between temperatures 
Th and Tc . (a) If Th 5 500 K and Tc 5 350 K, what is 
the efficiency of the engine? (b) What is the change 
in its efficiency for each degree of increase in Th above 
500 K? (c) What is the change in its efficiency for each 
degree of change in Tc? (d) Does the answer to part  
(c) depend on Tc? Explain.

 27. An ideal gas is taken through a Carnot cycle. The iso-
thermal expansion occurs at 250°C, and the isother-
mal compression takes place at 50.0°C. The gas takes 
in 1.20 3 103 J of energy from the hot reservoir during 
the isothermal expansion. Find (a) the energy expelled 
to the cold reservoir in each cycle and (b) the net work 
done by the gas in each cycle.

 28. An electric power plant that would make use of the 
temperature gradient in the ocean has been proposed. 
The system is to operate between 20.0°C (surface-
water temperature) and 5.00°C (water temperature 
at a depth of about 1 km). (a) What is the maximum 
efficiency of such a system? (b) If the electric power 
output of the plant is 75.0  MW, how much energy is 
taken in from the warm reservoir per hour? (c) In view 
of your answer to part (a), explain whether you think 
such a system is worthwhile. Note that the “fuel” is free.

 29. A heat engine operates in a Carnot cycle between 
80.0°C and 350°C. It absorbs 21 000 J of energy per 
cycle from the hot reservoir. The duration of each 
cycle is 1.00 s. (a)  What is the mechanical power out-
put of this engine? (b) How much energy does it expel 
in each cycle by heat?

 30. Suppose you build a two-engine device with the exhaust 
energy output from one heat engine supplying the input 
energy for a second heat engine. We say that the two 
engines are running in series. Let e1 and e2 represent the 
efficiencies of the two engines. (a) The overall efficiency 
of the two-engine device is defined as the total work out-
put divided by the energy put into the first engine by 
heat. Show that the overall efficiency e is given by

e 5 e1 1 e2 2 e1e2

  What If? For parts (b) through (e) that follow, assume 
the two engines are Carnot engines. Engine 1 operates 
between temperatures Th and Ti . The gas in engine 
2 varies in temperature between Ti and Tc . In terms 
of the temperatures, (b) what is the efficiency of the 
combination engine? (c) Does an improvement in net 
efficiency result from the use of two engines instead of 
one? (d) What value of the intermediate temperature 
Ti results in equal work being done by each of the two 
engines in series? (e) What value of Ti results in each of 
the two engines in series having the same efficiency?

 31. Argon enters a turbine at a rate of 80.0 kg/min, a 
temperature of 800°C, and a pressure of 1.50 MPa. It 
expands adiabatically as it pushes on the turbine blades 
and exits at pressure 300 kPa. (a) Calculate its tem-
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neously and then record the results of your tosses in 
terms of the numbers of heads (H) and tails (T) that 
result. For example, HHTH and HTHH are two pos-
sible ways in which three heads and one tail can be 
achieved. (b) On the basis of your table, what is the 
most probable result recorded for a toss?

 41. If you roll two dice, what is the total number of ways in 
which you can obtain (a) a 12 and (b) a 7?

Section 22.7  Changes in Entropy for Thermodynamic Systems

Section 22.8  Entropy and the Second Law

 42. An ice tray contains 500 g of liquid water at 0°C. Cal-
culate the change in entropy of the water as it freezes 
slowly and completely at 0°C.

 43. A Styrofoam cup holding 125 g of hot water at 100°C 
cools to room temperature, 20.0°C. What is the change 
in entropy of the room? Neglect the specific heat of the 
cup and any change in temperature of the room.

 44. A 1.00-kg iron horseshoe is taken from a forge at 900°C 
and dropped into 4.00 kg of water at 10.0°C. Assum-
ing that no energy is lost by heat to the surroundings, 
determine the total entropy change of the horseshoe-
plus-water system. (Suggestion: Note that dQ 5 mc dT.)

 45. A 1 500-kg car is moving at 20.0 m/s. The driver brakes 
to a stop. The brakes cool off to the temperature of 
the surrounding air, which is nearly constant at 20.0°C. 
What is the total entropy change?

 46. Two 2.00 3 103-kg cars both traveling at 20.0 m/s 
undergo a head-on collision and stick together. Find 
the change in entropy of the surrounding air result-
ing from the collision if the air temperature is 23.0°C. 
Ignore the energy carried away from the collision by 
sound.

 47. A 70.0-kg log falls from a height of 25.0 m into a lake. If 
the log, the lake, and the air are all at 300 K, find the 
change in entropy of the air during this process.

 48. A 1.00-mol sample of H2 gas is contained in the left 
side of the container shown in Figure P22.48, which 
has equal volumes on the left and right. The right side 
is evacuated. When the valve is opened, the gas streams 
into the right side. (a) What is the entropy change of 
the gas? (b) Does the temperature of the gas change? 
Assume the container is so large that the hydrogen 
behaves as an ideal gas.

Valve

VacuumH2

Figure P22.48

 49. A 2.00-L container has a center partition that divides it 
into two equal parts as shown in Figure P22.49. The 
left side contains 0.044 0 mol of H2 gas, and the right 
side contains 0.044 0 mol of O2 gas. Both gases are at 
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extracts energy from colder air outside and deposits it in 
a warmer room. Suppose the ratio of the actual energy 
entering the room to the work done by the device’s 
motor is 10.0% of the theoretical maximum ratio. 
Determine the energy entering the room per joule of 
work done by the motor given that the inside tempera-
ture is 20.0°C and the outside temperature is 25.00°C.

Section 22.5  Gasoline and Diesel Engines

Note: For problems in this section, assume the gas in 
the engine is diatomic with g 5 1.40.

 36. A gasoline engine has a compression ratio of 6.00.  
(a) What is the efficiency of the engine if it operates 
in an idealized Otto cycle? (b) What If? If the actual 
efficiency is 15.0%, what fraction of the fuel is wasted 
as a result of friction and energy transfers by heat that 
could be avoided in a reversible engine? Assume com-
plete combustion of the air–fuel mixture.

 37. In a cylinder of an automobile engine, immediately 
after combustion the gas is confined to a volume of 
50.0 cm3 and has an initial pressure of 3.00 3 106 Pa. 
The piston moves outward to a final volume of 300 cm3,  
and the gas expands without energy transfer by heat. 
(a) What is the final pressure of the gas? (b) How much 
work is done by the gas in expanding?

 38. An idealized diesel engine operates in a cycle known as 
the air-standard diesel cycle shown in Figure P22.38. Fuel 
is sprayed into the cylinder at the point of maximum 
compression, B. Combustion occurs during the expan-
sion B S C, which is modeled as an isobaric process. 
Show that the efficiency of an engine operating in this 
idealized diesel cycle is

e 5 1 2
1

g
 aTD 2 TA

TC 2 TB

b

Adiabatic
processes

A

B C

D

P

V

Qh

Q c

V2 5 VB V1 5 VAVC

Q

Figure P22.38

Section 22.6 Entropy

 39. Prepare a table like Table 22.1 by using the same proce-
dure (a) for the case in which you draw three marbles 
from your bag rather than four and (b) for the case in 
which you draw five marbles rather than four.

 40. (a) Prepare a table like Table 22.1 for the following 
occurrence. You toss four coins into the air simulta-
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 59. The energy absorbed by an engine is three times 
greater than the work it performs. (a) What is its 
thermal efficiency? (b) What fraction of the energy 
absorbed is expelled to the cold reservoir?

 60. Every second at Niagara Falls, some 5.00 3 103 m3 of 
water falls a distance of 50.0 m. What is the increase in 
entropy of the Universe per second due to the falling 
water? Assume the mass of the surroundings is so great 
that its temperature and that of the water stay nearly 
constant at 20.0°C. Also assume a negligible amount of 
water evaporates.

 61. Find the maximum (Carnot) efficiency of an engine 
that absorbs energy from a hot reservoir at 545°C and 
exhausts energy to a cold reservoir at 185°C.

 62. In 1993, the U.S. government instituted a requirement 
that all room air conditioners sold in the United States 
must have an energy efficiency ratio (EER) of 10 or 
higher. The EER is defined as the ratio of the cooling 
capacity of the air conditioner, measured in British 
thermal units per hour, or Btu/h, to its electrical power 
requirement in watts. (a) Convert the EER of 10.0 to 
dimensionless form, using the conversion 1 Btu 5 1 055 J.  
(b) What is the appropriate name for this dimension-
less quantity? (c) In the 1970s, it was common to find 
room air conditioners with EERs of 5 or lower. State 
how the operating costs compare for 10 000-Btu/h air 
conditioners with EERs of 5.00 and 10.0. Assume each 
air conditioner operates for 1 500 h during the summer 
in a city where electricity costs 17.0¢ per kWh.

 63. Energy transfers by heat through the exterior walls and 
roof of a house at a rate of 5.00 3 103 J/s 5 5.00 kW  
when the interior temperature is 22.0°C and the out-
side temperature is 25.00°C. (a) Calculate the electric 
power required to maintain the interior temperature 
at 22.0°C if the power is used in electric resistance 
heaters that convert all the energy transferred in by 
electrical transmission into internal energy. (b) What 
If? Calculate the electric power required to maintain 
the interior temperature at 22.0°C if the power is used 
to drive an electric motor that operates the compressor 
of a heat pump that has a coefficient of performance 
equal to 60.0% of the Carnot-cycle value.

 64. One mole of neon gas is heated from 300 K to 420 K 
at constant pressure. Calculate (a) the energy Q trans-
ferred to the gas, (b) the change in the internal energy 
of the gas, and (c) the work done on the gas. Note that 
neon has a molar specific heat of CP 5 20.79 J/mol ? K 
for a constant-pressure process.

 65. An airtight freezer holds n moles of air at 25.0°C and 
1.00 atm. The air is then cooled to 218.0°C. (a) What 
is the change in entropy of the air if the volume is held 
constant? (b) What would the entropy change be if 
the pressure were maintained at 1.00 atm during the 
cooling?

 66. Suppose an ideal (Carnot) heat pump could be con-
structed for use as an air conditioner. (a) Obtain an 
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room temperature and at atmospheric pressure. The 
partition is removed, and the gases are allowed to mix. 
What is the entropy increase of the system?

0.044 0 mol
O2

0.044 0 mol
H2

Figure P22.49

 50. What change in entropy occurs when a 27.9-g ice cube 
at 212°C is transformed into steam at 115°C?

 51. Calculate the change in entropy of 250 g of water 
warmed slowly from 20.0°C to 80.0°C. 

 52. How fast are you personally making the entropy of the 
Universe increase right now? Compute an order-of-
magnitude estimate, stating what quantities you take as 
data and the values you measure or estimate for them.

 53. When an aluminum bar is connected between a hot 
reservoir at 725 K and a cold reservoir at 310 K, 2.50 kJ 
of energy is transferred by heat from the hot reservoir 
to the cold reservoir. In this irreversible process, cal-
culate the change in entropy of (a) the hot reservoir,  
(b) the cold reservoir, and (c) the Universe, neglecting 
any change in entropy of the aluminum rod.

 54. When a metal bar is connected between a hot reservoir 
at Th and a cold reservoir at Tc , the energy transferred 
by heat from the hot reservoir to the cold reservoir is 
Q. In this irreversible process, find expressions for the 
change in entropy of (a) the hot reservoir, (b) the cold 
reservoir, and (c) the Universe, neglecting any change 
in entropy of the metal rod.

 55. The temperature at the surface of the Sun is approxi-
mately 5 800 K, and the temperature at the surface of 
the Earth is approximately 290 K. What entropy change 
of the Universe occurs when 1.00 3 103 J of energy is 
transferred by radiation from the Sun to the Earth?

Additional Problems

 56. Calculate the increase in entropy of the Universe when 
you add 20.0 g of 5.00°C cream to 200 g of 60.0°C cof-
fee. Assume that the specific heats of cream and coffee 
are both 4.20 J/g ? °C.

 57. How much work is required, using an ideal Carnot 
refrigerator, to change 0.500 kg of tap water at 10.0°C 
into ice at 220.0°C? Assume that the freezer com-
partment is held at 220.0°C and that the refrigerator 
exhausts energy into a room at 20.0°C.

 58. A steam engine is operated in a cold climate where the 
exhaust temperature is 0°C. (a) Calculate the theoreti-
cal maximum efficiency of the engine using an intake 
steam temperature of 100°C. (b) If, instead, super-
heated steam at 200°C is used, find the maximum pos-
sible efficiency.
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environment. To follow Carnot’s reasoning, suppose 
some other heat engine S could have an efficiency of 
70.0%. (a) Find the energy input and exhaust energy 
output of engine S as it does 150 J of work. (b) Let  
engine S operate as in part (a) and run the Carnot 
engine in reverse between the same reservoirs. The 
output work of engine S is the input work for the Car-
not refrigerator. Find the total energy transferred to 
or from the firebox and the total energy transferred 
to or from the environment as both engines oper-
ate together. (c) Explain how the results of parts  
(a) and (b) show that the Clausius statement of the sec-
ond law of thermodynamics is violated. (d)  Find the 
energy input and work output of engine S as it puts out 
exhaust energy of 100 J. Let engine S operate as in part 
(c) and contribute 150 J of its work output to running 
the Carnot engine in reverse. Find (e) the total energy 
the firebox puts out as both engines operate together, 
(f) the total work output, and (g) the total energy 
transferred to the environment. (h) Explain how the 
results show that the Kelvin–Planck statement of the 
second law is violated. Therefore, our assumption 
about the efficiency of engine S must be false. (i) Let  
the engines operate together through one cycle as in 
part (d). Find the change in entropy of the Universe. 
(j) Explain how the result of part (i) shows that the 
entropy statement of the second law is violated.

 69. Review. This problem complements Problem 88 in 
Chapter 10. In the operation of a single-cylinder inter-
nal combustion piston engine, one charge of fuel 
explodes to drive the piston outward in the power stroke. 
Part of its energy output is stored in a turning flywheel. 
This energy is then used to push the piston inward 
to compress the next charge of fuel and air. In this 
compression process, assume an original volume of  
0.120 L of a diatomic ideal gas at atmospheric pressure 
is compressed adiabatically to one-eighth of its original 
volume. (a) Find the work input required to compress 
the gas. (b) Assume the flywheel is a solid disk of mass  
5.10 kg and radius 8.50 cm, turning freely without fric-
tion between the power stroke and the compression 
stroke. How fast must the flywheel turn immediately 
after the power stroke? This situation represents the 
minimum angular speed at which the engine can oper-
ate without stalling. (c) When the engine’s operation is 
well above the point of stalling, assume the flywheel 
puts 5.00% of its maximum energy into compressing 
the next charge of fuel and air. Find its maximum 
angular speed in this case.

 70. A biology laboratory is maintained at a constant tem-
perature of 7.00°C by an air conditioner, which is vented 
to the air outside. On a typical hot summer day, the 
outside temperature is 27.0°C and the air-conditioning  
unit emits energy to the outside at a rate of 10.0 kW. 
Model the unit as having a coefficient of performance 
(COP) equal to 40.0% of the COP of an ideal Car-
not device. (a) At what rate does the air conditioner 
remove energy from the laboratory? (b) Calculate the 
power required for the work input. (c) Find the change 

expression for the coefficient of performance (COP) 
for such an air conditioner in terms of Th and Tc .  
(b) Would such an air conditioner operate on a smaller 
energy input if the difference in the operating temper-
atures were greater or smaller? (c) Compute the COP 
for such an air conditioner if the indoor temperature is 
20.0°C and the outdoor temperature is 40.0°C.

 67. In 1816, Robert Stirling, a Scottish clergyman, pat-
ented the Stirling engine, which has found a wide vari-
ety of applications ever since, including current use 
in solar energy collectors to transform sunlight into 
electricity. Fuel is burned externally to warm one of 
the engine’s two cylinders. A fixed quantity of inert 
gas moves cyclically between the cylinders, expanding 
in the hot one and contracting in the cold one. Fig-
ure P22.67 represents a model for its thermodynamic 
cycle. Consider n moles of an ideal mon atomic gas 
being taken once through the cycle, consisting of two 
isothermal processes at temperatures 3Ti and Ti and 
two constant- volume processes. Let us find the effi-
ciency of this engine. (a) Find the energy transferred 
by heat into the gas during the isovolumetric process 
AB. (b) Find the energy transferred by heat into the gas  
during the isothermal process BC. (c) Find the energy 
transferred by heat into the gas during the isovolu-
metric process CD. (d) Find the energy transferred 
by heat into the gas during the isothermal pro-
cess DA. (e) Identify which of the results from parts  
(a) through (d) are positive and evaluate the energy 
input to the engine by heat. (f) From the first law of 
thermodynamics, find the work done by the engine. 
(g) From the results of parts (e) and (f), evaluate the 
efficiency of the engine. A Stirling engine is easier to 
manufacture than an internal combustion engine or 
a turbine. It can run on burning garbage. It can run 
on the energy transferred by sunlight and produce no 
material exhaust. Stirling engines are not currently 
used in automobiles due to long startup times and 
poor acceleration response.

Isothermal
processes
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Figure P22.67

 68. A firebox is at 750 K, and the ambient temperature is 
300 K. The efficiency of a Carnot engine doing 150 J 
of work as it transports energy between these constant- 
temperature baths is 60.0%. The Carnot engine must 
take in energy 150 J/0.600 5 250 J from the hot reser-
voir and must put out 100 J of energy by heat into the 
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 76. A 1.00-mol sample of a monatomic ideal gas is taken 
through the cycle shown in Figure P22.76. At point A, 
the pressure, volume, and temperature are Pi, Vi, and 
Ti , respectively. In terms of R and Ti , find (a) the total 
energy entering the system by heat per cycle, (b) the 
total energy leaving the system by heat per cycle, and 
(c) the efficiency of an engine operating in this cycle. 
(d) Explain how the efficiency compares with that of 
an engine operating in a Carnot cycle between the 
same temperature extremes.

D
A

B C
P

Pi

3Pi

Vi 2Vi

V

Q2

Q4

Q3Q1
2Pi

Q

Figure P22.76

 77. A sample consisting of n moles of an ideal gas under-
goes a reversible isobaric expansion from volume Vi to 
volume 3Vi . Find the change in entropy of the gas by 
calculating e f

i  dQ /T, where dQ 5 nCP dT.

 78. An athlete whose mass is 70.0 kg drinks 16.0 ounces 
(454 g) of refrigerated water. The water is at a tempera-
ture of 35.0°F. (a) Ignoring the temperature change of 
the body that results from the water intake (so that the 
body is regarded as a reservoir always at 98.6°F), find 
the entropy increase of the entire system. (b) What If? 
Assume the entire body is cooled by the drink and the 
average specific heat of a person is equal to the specific 
heat of liquid water. Ignoring any other energy trans-
fers by heat and any metabolic energy release, find the 
athlete’s temperature after she drinks the cold water 
given an initial body temperature of 98.6°F. (c) Under 
these assumptions, what is the entropy increase of the 
entire system? (d) State how this result compares with 
the one you obtained in part (a).

 79. A sample of an ideal gas expands isothermally, dou-
bling in volume. (a) Show that the work done on the 
gas in expanding is W 5 2nRT ln 2. (b) Because the 
internal energy E int of an ideal gas depends solely on 
its temperature, the change in internal energy is zero 
during the expansion. It follows from the first law that 
the energy input to the gas by heat during the expan-
sion is equal to the energy output by work. Does this 
process have 100% efficiency in converting energy 
input by heat into work output? (c) Does this conver-
sion violate the second law? Explain.

 80. Why is the following situation impossible? Two samples of 
water are mixed at constant pressure inside an insulated 
container: 1.00 kg of water at 10.0°C and 1.00 kg of water 
at 30.0°C. Because the container is insulated, there is no 
exchange of energy by heat between the water and the 
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in entropy of the Universe produced by the air condi-
tioner in 1.00 h. (d) What If? The outside temperature 
increases to 32.0°C. Find the fractional change in the 
COP of the air conditioner.

 71. A power plant, having a Carnot efficiency, produces 
1.00 GW of electrical power from turbines that take in 
steam at 500 K and reject water at 300 K into a flowing 
river. The water downstream is 6.00 K warmer due to 
the output of the power plant. Determine the flow rate 
of the river.

 72. A power plant, having a Carnot efficiency, produces 
electric power P from turbines that take in energy 
from steam at temperature Th and discharge energy at 
temperature Tc through a heat exchanger into a flow-
ing river. The water downstream is warmer by DT due 
to the output of the power plant. Determine the flow 
rate of the river.

 73. A 1.00-mol sample of an ideal monatomic gas is taken 
through the cycle shown in Figure P22.73. The process  
A S B is a reversible isothermal expansion. Calculate 
(a) the net work done by the gas, (b) the energy added to 
the gas by heat, (c) the energy exhausted from the gas by 
heat, and (d) the efficiency of the cycle. (e) Explain how 
the efficiency compares with that of a Carnot engine 
operating between the same temperature extremes.

5
Isothermal
process

1

10 50
V (liters)

B
C

A

P (atm)

Figure P22.73

 74. A system consisting of n moles of an ideal gas with 
molar specific heat at constant pressure CP undergoes 
two reversible processes. It starts with pressure Pi and 
volume Vi , expands isothermally, and then contracts 
adiabatically to reach a final state with pressure Pi 
and volume 3Vi . (a) Find its change in entropy in the 
isothermal process. (The entropy does not change in 
the adiabatic process.) (b) What If? Explain why the 
answer to part (a) must be the same as the answer to 
Problem 77. (You do not need to solve Problem 77 to 
answer this question.)

 75. A heat engine operates between two reservoirs at T2 5  
600 K and T1 5 350 K. It takes in 1.00 3 103 J of energy 
from the higher-temperature reservoir and performs 
250 J of work. Find (a) the entropy change of the Uni-
verse DSU for this process and (b) the work W that 
could have been done by an ideal Carnot engine oper-
ating between these two reservoirs. (c) Show that the 
difference between the amounts of work done in parts 
(a) and (b) is T1 DSU .
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 T (K) P (kPa) V (cm3)

A 293 100 500
B 
C 1 023 
D 

  (b) Fill in this table to follow the processes:

 Q W DE int

A S B 
B S C 
C S D 
D S A 
ABCDA 

  (c) Identify the energy input |Q h |, (d) the energy 
exhaust |Q c |, and (e) the net output work Weng. (f) Cal-
culate the thermal efficiency. (g) Find the number of 
crankshaft revolutions per minute required for a one-
cylinder engine to have an output power of 1.00 kW 5 
1.34 hp. Note: The thermodynamic cycle involves four 
piston strokes.

environment. Furthermore, the amount of energy that 
leaves the warm water by heat is equal to the amount 
that enters the cool water by heat. Therefore, the 
entropy change of the Universe is zero for this process.

Challenge Problems

 81. A 1.00-mol sample of an ideal gas (g 5 1.40) is carried 
through the Carnot cycle described in Figure 22.11. At 
point A, the pressure is 25.0 atm and the temperature 
is 600 K. At point C, the pressure is 1.00 atm and the 
temperature is 400 K. (a) Determine the pressures and 
volumes at points A, B, C, and D. (b) Calculate the net 
work done per cycle.

 82. The compression ratio of an Otto cycle as shown in Fig-
ure 22.13 is VA/VB 5 8.00. At the beginning A of the 
compression process, 500 cm3 of gas is at 100 kPa and 
20.0°C. At the beginning of the adiabatic expansion, 
the temperature is TC 5 750°C. Model the working 
fluid as an ideal gas with g 5 1.40. (a) Fill in this table 
to follow the states of the gas:


