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Electricity and 
Magnetism

A Transrapid maglev train pulls 

into a station in Shanghai, 

China. The word maglev is an 

abbreviated form of magnetic 
levitation. This train makes no 

physical contact with its rails; 

its weight is totally supported 

by electromagnetic forces. In 

this part of the book, we will 

study these forces. (OTHK/Asia 

Images/Jupiterimages)
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We now study the branch of physics concerned with electric and magnetic phe-
nomena. The laws of electricity and magnetism play a central role in the operation of such 

devices as smartphones, televisions, electric motors, computers, high-energy accelerators, and 

other electronic devices. More fundamentally, the interatomic and intermolecular forces responsible 

for the formation of solids and liquids are electric in origin.

  Evidence in Chinese documents suggests magnetism was observed as early as 2000 BC. The 

ancient Greeks observed electric and magnetic phenomena possibly as early as 700 BC. The Greeks 

knew about magnetic forces from observations that the naturally occurring stone magnetite (Fe3O4) 

is attracted to iron. (The word electric comes from elecktron, the Greek word for “amber.” The word 

magnetic comes from Magnesia, the name of the district of Greece where magnetite was first found.)

  Not until the early part of the nineteenth century did scientists establish that electricity and 

magnetism are related phenomena. In 1819, Hans Oersted discovered that a compass needle is 

deflected when placed near a circuit carrying an electric current. In 1831, Michael Faraday and, 

almost simultaneously, Joseph Henry showed that when a wire is moved near a magnet (or, equiva-

lently, when a magnet is moved near a wire), an electric current is established in the wire. In 1873, 

James Clerk Maxwell used these observations and other experimental facts as a basis for formulat-

ing the laws of electromagnetism as we know them today. (Electromagnetism is a name given to the 

combined study of electricity and magnetism.)

 Maxwell’s contributions to the field of electromagnetism were especially significant because the 

laws he formulated are basic to all forms of electromagnetic phenomena. His work is as impor-

tant as Newton’s work on the laws of motion and the theory of gravitation. ■



In this chapter, we begin the study of electromagnetism. The first link that we will 
make to our previous study is through the concept of force. The electromagnetic force 

between charged particles is one of the fundamental forces of nature. We begin by describ-

ing some basic properties of one manifestation of the electromagnetic force, the electric 

force. We then discuss Coulomb’s law, which is the fundamental law governing the electric 

force between any two charged particles. Next, we introduce the concept of an electric 

field associated with a charge distribution and describe its effect on other charged particles. 

We then show how to use Coulomb’s law to calculate the electric field for a given charge 

distribution. The chapter concludes with a discussion of the motion of a charged particle in 

a uniform electric field.

The second link between electromagnetism and our previous study is through the con-

cept of energy. We will discuss that connection in Chapter 25.

23.1 Properties of Electric Charges
A number of simple experiments demonstrate the existence of electric forces. For 
example, after rubbing a balloon on your hair on a dry day, you will find that the 
balloon attracts bits of paper. The attractive force is often strong enough to sus-
pend the paper from the balloon.
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23 Electric Fields

This young woman is enjoying the 

effects of electrically charging her 

body. Each individual hair on her 

head becomes charged and exerts 

a repulsive force on the other 

hairs, resulting in the “stand-up” 

hairdo seen here. (Ted Kinsman / Photo 

Researchers, Inc.)
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 When materials behave in this way, they are said to be electrified or to have become 
electrically charged. You can easily electrify your body by vigorously rubbing your 
shoes on a wool rug. Evidence of the electric charge on your body can be detected 
by lightly touching (and startling) a friend. Under the right conditions, you will see 
a spark when you touch and both of you will feel a slight tingle. (Experiments such 
as these work best on a dry day because an excessive amount of moisture in the air 
can cause any charge you build up to “leak” from your body to the Earth.)
 In a series of simple experiments, it was found that there are two kinds of elec-
tric charges, which were given the names positive and negative by Benjamin Frank-
lin (1706–1790). Electrons are identified as having negative charge, and protons 
are positively charged. To verify that there are two types of charge, suppose a hard 
rubber rod that has been rubbed on fur is suspended by a string as shown in Figure 
23.1. When a glass rod that has been rubbed on silk is brought near the rubber rod, 
the two attract each other (Fig. 23.1a). On the other hand, if two charged rubber 
rods (or two charged glass rods) are brought near each other as shown in Figure 
23.1b, the two repel each other. This observation shows that the rubber and glass 
have two different types of charge on them. On the basis of these observations, we 
conclude that charges of the same sign repel one another and charges with oppo-

site signs attract one another.

 Using the convention suggested by Franklin, the electric charge on the glass 
rod is called positive and that on the rubber rod is called negative. Therefore, any 
charged object attracted to a charged rubber rod (or repelled by a charged glass 
rod) must have a positive charge, and any charged object repelled by a charged rub-
ber rod (or attracted to a charged glass rod) must have a negative charge.
 Another important aspect of electricity that arises from experimental observations 
is that electric charge is always conserved in an isolated system. That is, when one 
object is rubbed against another, charge is not created in the process. The electrified 
state is due to a transfer of charge from one object to the other. One object gains some 
amount of negative charge while the other gains an equal amount of positive charge. 
For example, when a glass rod is rubbed on silk as in Figure 23.2, the silk obtains a 
negative charge equal in magnitude to the positive charge on the glass rod. We now 
know from our understanding of atomic structure that electrons are transferred in 
the rubbing process from the glass to the silk. Similarly, when rubber is rubbed on 
fur, electrons are transferred from the fur to the rubber, giving the rubber a net neg-
ative charge and the fur a net positive charge. This process works because neutral, 
uncharged matter contains as many positive charges (protons within atomic nuclei) 

Electric charge is conserved
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A negatively charged rubber 
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Figure 23.1  The electric force 
between (a) oppositely charged 
objects and (b) like-charged 
objects.
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Figure 23.2  When a glass rod  
is rubbed with silk, electrons  
are transferred from the glass  
to the silk.
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as negative charges (electrons). Conservation of electric charge for an isolated system 
is like conservation of energy, momentum, and angular momentum, but we don’t 
identify an analysis model for this conservation principle because it is not used often 
enough in the mathematical solution to problems.

In 1909, Robert Millikan (1868–1953) discovered that electric charge always 
occurs as integral multiples of a fundamental amount of charge e (see Section 
25.7). In modern terms, the electric charge q is said to be quantized, where q is the 
standard symbol used for charge as a variable. That is, electric charge exists as dis-
crete “packets,” and we can write q 5 6Ne, where N is some integer. Other experi-
ments in the same period showed that the electron has a charge 2e and the proton 
has a charge of equal magnitude but opposite sign 1e. Some particles, such as the 
neutron, have no charge.

Q uick Quiz 23.1  Three objects are brought close to each other, two at a time. 
When objects A and B are brought together, they repel. When objects B and C 
are brought together, they also repel. Which of the following are true? (a) Objects 
A and C possess charges of the same sign. (b) Objects A and C possess charges 
of opposite sign. (c) All three objects possess charges of the same sign. (d) One 
object is neutral. (e) Additional experiments must be performed to determine 
the signs of the charges.

23.2 Charging Objects by Induction
It is convenient to classify materials in terms of the ability of electrons to move 
through the material:

Electrical conductors are materials in which some of the electrons are free 
electrons1 that are not bound to atoms and can move relatively freely through 
the material; electrical insulators are materials in which all electrons are 
bound to atoms and cannot move freely through the material.

Materials such as glass, rubber, and dry wood fall into the category of electrical 
insulators. When such materials are charged by rubbing, only the area rubbed 
becomes charged and the charged particles are unable to move to other regions of 
the material.
 In contrast, materials such as copper, aluminum, and silver are good electrical 
conductors. When such materials are charged in some small region, the charge 
readily distributes itself over the entire surface of the material.
 Semiconductors are a third class of materials, and their electrical properties are 
somewhere between those of insulators and those of conductors. Silicon and ger-
manium are well-known examples of semiconductors commonly used in the fabri-
cation of a variety of electronic chips used in computers, cellular telephones, and 
home theater systems. The electrical properties of semiconductors can be changed 
over many orders of magnitude by the addition of controlled amounts of certain 
atoms to the materials.
 To understand how to charge a conductor by a process known as induction, con-
sider a neutral (uncharged) conducting sphere insulated from the ground as shown 
in Figure 23.3a. There are an equal number of electrons and protons in the sphere 
if the charge on the sphere is exactly zero. When a negatively charged rubber rod 
is brought near the sphere, electrons in the region nearest the rod experience a 
repulsive force and migrate to the opposite side of the sphere. This migration leaves 
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23.2

Electrical conductors are materials in which some of the electrons are free 
electrons1 that are not bound to atoms and can move relatively freely through 
the material; electrical insulators are materials in which all electrons are 
bound to atoms and cannot move freely through the material.

1A metal atom contains one or more outer electrons, which are weakly bound to the nucleus. When many atoms 
combine to form a metal, the free electrons are these outer electrons, which are not bound to any one atom. These 
electrons move about the metal in a manner similar to that of gas molecules moving in a container.

Electrons redistribute when a 
charged rod is brought close.

The excess positive charge is 
nonuniformly distributed. 

Some electrons leave the 
grounded sphere through 
the ground wire.

The neutral sphere has 
equal numbers of positive 
and negative charges. 

The remaining electrons 
redistribute uniformly, and there 
is a net uniform distribution of 
positive charge on the sphere.
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Figure 23.3  Charging a metallic 
object by induction. (a) A neutral 
metallic sphere. (b) A charged rub-
ber rod is placed near the sphere. 
(c) The sphere is grounded. (d) The 
ground connection is removed. 
(e) The rod is removed.
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the side of the sphere near the rod with an effective positive charge because of the 
diminished number of electrons as in Figure 23.3b. (The left side of the sphere in 
Figure 23.3b is positively charged as if positive charges moved into this region, but 
remember that only electrons are free to move.) This process occurs even if the 
rod never actually touches the sphere. If the same experiment is performed with a 
conducting wire connected from the sphere to the Earth (Fig. 23.3c), some of the 
electrons in the conductor are so strongly repelled by the presence of the negative 
charge in the rod that they move out of the sphere through the wire and into the 
Earth. The symbol  at the end of the wire in Figure 23.3c indicates that the wire 
is connected to ground, which means a reservoir, such as the Earth, that can accept 
or provide electrons freely with negligible effect on its electrical characteristics. If 
the wire to ground is then removed (Fig. 23.3d), the conducting sphere contains an 
excess of induced positive charge because it has fewer electrons than it needs to can-
cel out the positive charge of the protons. When the rubber rod is removed from 
the vicinity of the sphere (Fig. 23.3e), this induced positive charge remains on the 
ungrounded sphere. Notice that the rubber rod loses none of its negative charge 
during this process.
 Charging an object by induction requires no contact with the object inducing 
the charge. That is in contrast to charging an object by rubbing (that is, by conduc-
tion), which does require contact between the two objects.
 A process similar to induction in conductors takes place in insulators. In most 
neutral molecules, the center of positive charge coincides with the center of nega-
tive charge. In the presence of a charged object, however, these centers inside each 
molecule in an insulator may shift slightly, resulting in more positive charge on one 
side of the molecule than on the other. This realignment of charge within individ-
ual molecules produces a layer of charge on the surface of the insulator as shown in 
Figure 23.4a. The proximity of the positive charges on the surface of the object and 
the negative charges on the surface of the insulator results in an attractive force 
between the object and the insulator. Your knowledge of induction in insulators 
should help you explain why a charged rod attracts bits of electrically neutral paper 
as shown in Figure 23.4b.

Q uick Quiz 23.2  Three objects are brought close to one another, two at a time. 
When objects A and B are brought together, they attract. When objects B and 
C are brought together, they repel. Which of the following are necessarily true? 
(a) Objects A and C possess charges of the same sign. (b) Objects A and C pos-
sess charges of opposite sign. (c) All three objects possess charges of the same 
sign. (d) One object is neutral. (e) Additional experiments must be performed 
to determine information about the charges on the objects.

Q

Figure 23.4   (a) A charged bal-
loon is brought near an insulating 
wall. (b) A charged rod is brought 
close to bits of paper.
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23.3 Coulomb’s Law
Charles Coulomb measured the magnitudes of the electric forces between charged 
objects using the torsion balance, which he invented (Fig. 23.5). The operating prin-
ciple of the torsion balance is the same as that of the apparatus used by Cavendish 
to measure the density of the Earth (see Section 13.1), with the electrically neutral 
spheres replaced by charged ones. The electric force between charged spheres A 
and B in Figure 23.5 causes the spheres to either attract or repel each other, and the 
resulting motion causes the suspended fiber to twist. Because the restoring torque 
of the twisted fiber is proportional to the angle through which the fiber rotates, a 
measurement of this angle provides a quantitative measure of the electric force of 
attraction or repulsion. Once the spheres are charged by rubbing, the electric force 
between them is very large compared with the gravitational attraction, and so the 
gravitational force can be neglected.

From Coulomb’s experiments, we can generalize the properties of the electric 

force (sometimes called the electrostatic force) between two stationary charged par-
ticles. We use the term point charge to refer to a charged particle of zero size. 
The electrical behavior of electrons and protons is very well described by modeling 
them as point charges. From experimental observations, we find that the magni-
tude of the electric force (sometimes called the Coulomb force) between two point 
charges is given by Coulomb’s law.

Fe 5 ke 
0 q1 0 0 q2 0

r 2  (23.1)

where ke is a constant called the Coulomb constant. In his experiments, Coulomb 
was able to show that the value of the exponent of r was 2 to within an uncertainty 
of a few percent. Modern experiments have shown that the exponent is 2 to within 
an uncertainty of a few parts in 1016. Experiments also show that the electric force, 
like the gravitational force, is conservative.
 The value of the Coulomb constant depends on the choice of units. The SI unit 
of charge is the coulomb (C). The Coulomb constant ke in SI units has the value

 ke 5 8.987 6 3 109 N ? m2/C2 (23.2)

This constant is also written in the form

 ke 5
1

4pP0
 (23.3)

where the constant P0 (Greek letter epsilon) is known as the permittivity of free 

space and has the value

 P0 5 8.854 2 3 10212 C2/N ? m2 (23.4)

 The smallest unit of free charge e known in nature,2 the charge on an electron 
(2e) or a proton (1e), has a magnitude

 e 5 1.602 18 3 10219 C (23.5)

Therefore, 1 C of charge is approximately equal to the charge of 6.24 3 1018 elec-
trons or protons. This number is very small when compared with the number of 
free electrons in 1 cm3 of copper, which is on the order of 1023. Nevertheless, 1 C  
is a substantial amount of charge. In typical experiments in which a rubber or glass 
rod is charged by friction, a net charge on the order of 1026 C is obtained. In other 

23.3

FeFF 5 ke

0 q1 0 0 q2qq 0
r 2Coulomb’s law 

Coulomb constant 

2No unit of charge smaller than e has been detected on a free particle; current theories, however, propose the exis-
tence of particles called quarks having charges 2e/3 and 2e/3. Although there is considerable experimental evidence 
for such particles inside nuclear matter, free quarks have never been detected. We discuss other properties of quarks 
in Chapter 46.

Charles Coulomb
French physicist (1736–1806)
Coulomb’s major contributions to sci-
ence were in the areas of electrostatics 
and magnetism. During his lifetime, 
he also investigated the strengths 
of materials, thereby contributing to 
the field of structural mechanics. In 
ergonomics, his research provided an 
understanding of the ways in which 
people and animals can best do work.
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Figure 23.5  Coulomb’s balance, 
used to establish the inverse-
square law for the electric force.
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Table 23.1 Charge and Mass of the Electron, Proton, and Neutron

Particle Charge (C) Mass (kg)

Electron (e) 21.602 176 5 3 10219 9.109 4 3 10231

Proton (p) 11.602 176 5 3 10219 1.672 62 3 10227

Neutron (n) 0 1.674 93 3 10227

Example 23.1   The Hydrogen Atom

The electron and proton of a hydrogen atom are separated (on the average) by a distance of approximately  
5.3 3 10211 m. Find the magnitudes of the electric force and the gravitational force between the two particles.

Conceptualize  Think about the two particles separated by the very small distance given in the problem statement. In 
Chapter 13, we mentioned that the gravitational force between an electron and a proton is very small compared to the 
electric force between them, so we expect this to be the case with the results of this example.

Categorize  The electric and gravitational forces will be evaluated from universal force laws, so we categorize this 
example as a substitution problem.

S O L U T I O N

Use Coulomb’s law to find the magnitude of 
the electric force:

Fe 5 k e 
0 e 0 02e 0

r 2 5 18.988 3 109 N # m2/C2 2  11.60 3 10219 C 2215.3 3 10211 m 22
5   8.2 3 1028 N

Use Newton’s law of universal gravitation  
and Table 23.1 (for the particle masses) to 
find the magnitude of the gravitational force:

Fg 5 G 
memp

r 2  

 5 16.674 3 10211 N # m2/kg2 2  19.11 3 10231 kg 2 11.67 3 10227 kg 215.3 3 10211 m 22
5   3.6 3 10247 N

The ratio Fe /Fg < 2 3 1039. Therefore, the gravitational force between charged atomic particles is negligible when com-
pared with the electric force. Notice the similar forms of Newton’s law of universal gravitation and Coulomb’s law of 
electric forces. Other than the magnitude of the forces between elementary particles, what is a fundamental difference 
between the two forces?

 When dealing with Coulomb’s law, remember that force is a vector quantity and 
must be treated accordingly. Coulomb’s law expressed in vector form for the elec-
tric force exerted by a charge q1 on a second charge q2, written F

S
12, is

 F
S

12 5 ke 
q1q2

r 2  r̂12  (23.6)

where  r̂12 is a unit vector directed from q1 toward q2 as shown in Figure 23.6a (page 
696). Because the electric force obeys Newton’s third law, the electric force exerted 
by q2 on q1 is equal in magnitude to the force exerted by q1 on q2 and in the opposite 
direction; that is, F

S
21 5 2 F

S
12.  Finally, Equation 23.6 shows that if q1 and q2 have the 

Vector form of Coulomb’s law

words, only a very small fraction of the total available charge is transferred between 
the rod and the rubbing material.
 The charges and masses of the electron, proton, and neutron are given in Table 
23.1. Notice that the electron and proton are identical in the magnitude of their 
charge but vastly different in mass. On the other hand, the proton and neutron are 
similar in mass but vastly different in charge. Chapter 46 will help us understand 
these interesting properties.
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same sign as in Figure 23.6a, the product q1q2 is positive and the electric force on one 
particle is directed away from the other particle. If q1 and q2 are of opposite sign as 
shown in Figure 23.6b, the product q1q2 is negative and the electric force on one par-
ticle is directed toward the other particle. These signs describe the relative direction 
of the force but not the absolute direction. A negative product indicates an attractive 
force, and a positive product indicates a repulsive force. The absolute direction of the 
force on a charge depends on the location of the other charge. For example, if an x 
axis lies along the two charges in Figure 23.6a, the product q1q2 is positive, but F

S
12  

points in the positive x direction and F
S

21  points in the negative x direction.
 When more than two charges are present, the force between any pair of them is 
given by Equation 23.6. Therefore, the resultant force on any one of them equals the 
vector sum of the forces exerted by the other individual charges. For example, if four 
charges are present, the resultant force exerted by particles 2, 3, and 4 on particle 1 is

F
S

1 5 F
S

21 1 F
S

31 1 F
S

41

Q uick Quiz 23.3  Object A has a charge of 12 mC, and object B has a charge  
of 16 mC. Which statement is true about the electric forces on the objects?  
(a) F

S
AB 5 23 F

S
BA  (b) F

S
AB 5 2 F

S
BA  (c) 3 F

S
AB 5 2 F

S
BA  (d) F

S
AB 5 3 F

S
BA  

(e)  F
S

AB 5 F
S

BA   (f) 3 F
S

AB 5 F
S

BA

Q

Example 23.2   Find the Resultant Force

Consider three point charges located at the corners of a right triangle as shown in 
Figure 23.7, where q1 5 q3 5 5.00 mC, q2 5 22.00 mC, and a 5 0.100 m. Find the 
resultant force exerted on q3.

Conceptualize  Think about the net force on q3. Because charge q3 is near two 
other charges, it will experience two electric forces. These forces are exerted in dif-
ferent directions as shown in Figure 23.7. Based on the forces shown in the figure, 
estimate the direction of the net force vector.

Categorize  Because two forces are exerted on charge q3, we categorize this exam-
ple as a vector addition problem.

Analyze  The directions of the individual forces exerted by q1 and q2 on q3 are 
shown in Figure 23.7. The force F

S
23  exerted by q2 on q3 is attractive because q2  

and q3 have opposite signs. In the coordinate system shown in Figure 23.7, the 
attractive force F

S
23  is to the left (in the negative x direction).

 The force F
S

13  exerted by q1 on q3 is repulsive because both charges are positive. The repulsive force F
S

13  makes an 
angle of 45.08 with the x axis.

S O L U T I O N

Figure 23.6 Two point charges 
separated by a distance r exert a 
force on each other that is given 
by Coulomb’s law. The force F

S
21 

exerted by q2 on q1 is equal in mag-
nitude and opposite in direction to 
the force F

S
12 exerted by q1 on q2.

r
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r12ˆ

When the charges are of the 
same sign, the force is repulsive.

a b
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S
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When the charges are of opposite 
signs, the force is attractive.
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Figure 23.7  (Example 23.2) The 
force exerted by q1 on q3 is F

S
13. The 

force exerted by q2 on q3 is F
S

23.  
The resultant force F

S
3 exerted on q3 

is the vector sum F
S

13 1 F
S

23.



 23.3 Coulomb's Law 697

Finalize  The net force on q3 is upward and toward the left in Figure 23.7. If q3 moves in response to the net force, the 
distances between q3 and the other charges change, so the net force changes. Therefore, if q3 is free to move, it can 
be modeled as a particle under a net force as long as it is recognized that the force exerted on q3 is not constant. As a 
reminder, we display most numerical values to three significant figures, which leads to operations such as 7.94 N 1  
(28.99 N) 5 21.04 N above. If you carry all intermediate results to more significant figures, you will see that this 
operation is correct.

What if the signs of all three charges were changed to the opposite signs? How would that affect the result 

for F
S

3 ?

Answer  The charge q3 would still be attracted toward q2 and repelled from q1 with forces of the same magnitude. 
Therefore, the final result for F

S
3  would be the same.

WHAT IF ?

Use Equation 23.1 to find the magni-

tude of F
S

23 :

F23 5 ke 
0 q2 0 0 q3 0

a 2   

 5 18.988 3 109 N # m2/C2 2  12.00 3 1026 C 2 15.00 3 1026 C 210.100 m 22 5 8.99 N

Find the magnitude of the force F
S

13 : F13 5 ke 
0 q1 0 0 q3 01"2 a 22 

 5 18.988 3 109 N # m2/C2 2  15.00 3 1026 C 2 15.00 3 1026 C 2
2 10.100 m 22 5 11.2 N

Find the x and y components of the force F
S

13 : F13x 5 (11.2 N) cos 45.08 5 7.94 N

F13y 5 (11.2 N) sin 45.08 5 7.94 N

Find the components of the resultant force acting on q3: F3x 5 F13x 1 F23x 5 7.94 N 1 (28.99 N) 5 21.04 N

F3y 5 F13y 1 F23y 5 7.94 N 1 0 5 7.94 N
Express the resultant force acting on q3 in unit-vector 
form:

F
S

3 5 121.04 î 1 7.94 ĵ 2  N

Example 23.3   Where Is the Net Force Zero? 

Three point charges lie along the x axis as shown in Figure 23.8. The positive 
charge q1 5 15.0 mC is at x 5 2.00 m, the positive charge q2 5 6.00 mC is at the ori-
gin, and the net force acting on q3 is zero. What is the x coordinate of q3?

Conceptualize  Because q3 is near two other charges, it experiences two electric 
forces. Unlike the preceding example, however, the forces lie along the same line 
in this problem as indicated in Figure 23.8. Because q3 is negative and q1 and q2 
are positive, the forces F

S
13  and F

S
23  are both attractive. Because q2 is the smaller 

charge, the position of q3 at which the force is zero should be closer to q2 than to q1.

Categorize  Because the net force on q3 is zero, we model the point charge as a 
particle in equilibrium.

AM
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2.00 m

x

q1

x

y

q3q2

2.00 � x 

�� �

F13
S

F23
S

Figure 23.8  (Example 23.3) Three 
point charges are placed along the x 
axis. If the resultant force acting on 
q3 is zero, the force F

S
13  exerted by 

q1 on q3 must be equal in magnitude 
and opposite in direction to the force  
F
S

23  exerted by q2 on q3.

Analyze  Write an expression for the net force on 
charge q3 when it is in equilibrium:

F
S

3 5 F
S

23 1 F
S

13 5 2ke 
0 q 2 0 0 q 3 0

x2  î 1 ke 
0 q1 0 0 q3 012.00 2 x 22  î 5 0

▸ 23.2 c o n t i n u e d

 

continued
Move the second term to the right side of the equation 
and set the coefficients of the unit vector  î  equal:

ke 
0 q 2 0 0 q3 0

x 2 5 ke 
0 q1 0 0 q3 012.00 2 x 22
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Example 23.4   Find the Charge on the Spheres 

Two identical small charged spheres, each having a mass 
of 3.00 3 1022 kg, hang in equilibrium as shown in Figure 
23.9a. The length L of each string is 0.150 m, and the angle 
u is 5.008. Find the magnitude of the charge on each sphere.

Conceptualize  Figure 23.9a helps us conceptualize this 
example. The two spheres exert repulsive forces on each 
other. If they are held close to each other and released, they 
move outward from the center and settle into the configura-
tion in Figure 23.9a after the oscillations have vanished due 
to air resistance.

Categorize  The key phrase “in equilibrium” helps us model 
each sphere as a particle in equilibrium. This example is sim-
ilar to the particle in equilibrium problems in Chapter 5 
with the added feature that one of the forces on a sphere is 
an electric force.

Analyze  The force diagram for the left-hand sphere is shown in Figure 23.9b. The sphere is in equilibrium under the 
application of the force T

S
 from the string, the electric force F

S
e  from the other sphere, and the gravitational force m gS.
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mg

T cos 

T sin u 

u

�
Fe
S

T
S

a b

u

u
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q
a

q��

u
u

Figure 23.9 (Example 23.4) (a) Two identical spheres, 
each carrying the same charge q, suspended in equilibrium. 
(b) Diagram of the forces acting on the sphere on the left 
part of (a).

From the particle in equilibrium model, set the net force 
on the left-hand sphere equal to zero for each component:

(1)   o Fx 5 T sin u 2 Fe 5 0   S   T sin u 5 Fe

(2)   o Fy 5 T cos u 2 mg 5 0   S   T cos u 5 mg

Divide Equation (1) by Equation (2) to find Fe : (3)   tan u 5
Fe

mg
   S   Fe 5 mg tan u

Eliminate ke and uq3u and rearrange the equation: (2.00 2 x)2uq2u 5 x 2uq1u

Solve for x : x 5
2.00 " 0 q2 0" 0 q2 0 6 " 0 q 1 0

Substitute numerical values, choosing the plus sign: x 5
2.00 "6.00 3 1026 C

"6.00 3 1026 C 1 "15.0 3 1026 C
 5 0.775 m

Finalize  Notice that the movable charge is indeed closer to q2 as we predicted in the Conceptualize step. The second 
solution to the equation (if we choose the negative sign) is x 5 23.44 m. That is another location where the magnitudes 
of the forces on q3 are equal, but both forces are in the same direction, so they do not cancel.

Suppose q3 is constrained to move only along the x axis. From its initial position at x 5 0.775 m, it is pulled 
a small distance along the x axis. When released, does it return to equilibrium, or is it pulled farther from equilib-
rium? That is, is the equilibrium stable or unstable?

Answer  If q3 is moved to the right, F
S

13  becomes larger and F
S

23  becomes smaller. The result is a net force to the right, 
in the same direction as the displacement. Therefore, the charge q3 would continue to move to the right and the equi-
librium is unstable. (See Section 7.9 for a review of stable and unstable equilibria.)
 If q3 is constrained to stay at a fixed x coordinate but allowed to move up and down in Figure 23.8, the equilibrium is 
stable. In this case, if the charge is pulled upward (or downward) and released, it moves back toward the equilibrium 
position and oscillates about this point.

WHAT IF ?

 

▸ 23.3 c o n t i n u e d

Take the square root of both sides of the equation: (2.00 2 x)" 0 q2 0  5 6x" 0 q 1 0
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Finalize If the sign of the charges were not given in Figure 23.9, we could not determine them. In fact, the sign of the 
charge is not important. The situation is the same whether both spheres are positively charged or negatively charged.

Suppose your roommate proposes solving this problem without the assumption that the charges are of 
equal magnitude. She claims the symmetry of the problem is destroyed if the charges are not equal, so the strings would 
make two different angles with the vertical and the problem would be much more complicated. How would you respond?

Answer The symmetry is not destroyed and the angles are not different. Newton’s third law requires the magnitudes of 
the electric forces on the two spheres to be the same, regardless of the equality or nonequality of the charges. The solu
tion to the example remains the same with one change: the value of  in the solution is replaced by  in 
the new situation, where  and  are the values of the charges on the two spheres. The symmetry of the problem 
would be destroyed if the masses of the spheres were not the same. In this case, the strings would make different angles 
with the vertical and the problem would be more complicated.

WHAT IF ?

Use the geometry of the right triangle in Figure 23.9a to 
find a relationship between , and 

(4)   sin u 5  sin 

Solve Coulomb’s law (Eq. 23.1) for the charge  on each 
sphere and substitute from Equations (3) and (4):

mg tan  sin 

Substitute numerical values:
3.00 10  kg 2 19.80 m  tan 5.00 2 3 0.150 m  sin 5.00 2 4

8.988 10  N

4.42 10  C

23.4 Analysis Model: Particle in a Field (Electric)
In Section 5.1, we discussed the differences between contact forces and field forces. 
Two field forces—the gravitational force in Chapter 13 and the electric force here—
have been introduced into our discussions so far. As pointed out earlier, field forces 
can act through space, producing an effect even when no physical contact occurs 
between interacting objects. Such an interaction can be modeled as a two-step pro
cess: a source particle establishes a field, and then a charged particle interacts with 
the field and experiences a force. The gravitational field  at a point in space due to 
a source particle was defined in Section 13.4 to be equal to the gravitational force 

 acting on a test particle of mass  divided by that mass:  Then the 
force exerted by the field is  (Eq. 5.5). 

The concept of a field was developed by Michael Faraday (1791–1867) in the con
text of electric forces and is of such practical value that we shall devote much atten
tion to it in the next several chapters. In this approach, an electric field is said to exist 
in the region of space around a charged object, the source charge. The presence of 
the electric field can be detected by placing a test charge in the field and noting the 
electric force on it. As an example, consider Figure 23.10, which shows a small positive 
test charge  placed near a second object carrying a much greater positive charge 
We define the electric field due to the source charge at the location of the test charge 
to be the electric force on the test charge per unit charge, or, to be more specific, 
the electric field vector  at a point in space is defined as the electric force  act
ing on a positive test charge  placed at that point divided by the test charge:

(23.7)

23.4

Definition of electric field

When using Equation 23.7, we must assume the test charge  is small enough that it does not disturb the charge distri
bution responsible for the electric field. If the test charge is great enough, the charge on the metallic sphere is redistrib
uted and the electric field it sets up is different from the field it sets up in the presence of the much smaller test charge.

igure 23.10 A small positive 
test charge  placed at point 
near an object carrying a much 
larger positive charge  expe
riences an electric field  at 
point  established by the source 
charge Q. We will always assume 
that the test charge is so small 
that the field of the source charge 
is unaffected by its presence.
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The vector E
S

 has the SI units of newtons per coulomb (N/C). The direction of E
S

as shown in Figure 23.10 is the direction of the force a positive test charge experi-
ences when placed in the field. Note that E

S
 is the field produced by some charge or 

charge distribution separate from the test charge; it is not the field produced by the 
test charge itself. Also note that the existence of an electric field is a property of its 
source; the presence of the test charge is not necessary for the field to exist. The 
test charge serves as a detector of the electric field: an electric field exists at a point if 
a test charge at that point experiences an electric force. 
 If an arbitrary charge q is placed in an electric field E

S
, it experiences an electric 

force given by

F
S

e 5 q E
S

 (23.8)

This equation is the mathematical representation of the electric version of the par-

ticle in a field analysis model. If q is positive, the force is in the same direction as the 
field. If q is negative, the force and the field are in opposite directions. Notice the  
similarity between Equation 23.8 and the corresponding equation from the gravita-
tional version of the particle in a field model, F

S
g 5 m gS  (Section 5.5). Once the 

magnitude and direction of the electric field are known at some point, the electric 
force exerted on any charged particle placed at that point can be calculated from 
Equation 23.8.
 To determine the direction of an electric field, consider a point charge q as a 
source charge. This charge creates an electric field at all points in space surround-
ing it. A test charge q0 is placed at point P, a distance r from the source charge, as in 
Figure 23.11a. We imagine using the test charge to determine the direction of the 
electric force and therefore that of the electric field. According to Coulomb’s law, 
the force exerted by q on the test charge is

F
S

e 5 ke 
qq0

r 2  r̂

where  r̂ is a unit vector directed from q toward q0. This force in Figure 23.11a is 
directed away from the source charge q. Because the electric field at P, the position  
of the test charge, is defined by E

S
5 F

S
e /q0,  the electric field at P created by q is

 E
S

5 ke 
q

r 2 r̂  (23.9)

If the source charge q is positive, Figure 23.11b shows the situation with the test charge 
removed: the source charge sets up an electric field at P, directed away from q. If q is 

F
S

e 5 q E
S

E
S

5 ke

q

r 2 r̂

Pitfall Prevention 23.1
Particles Only Equation 23.8 is 
valid only for a particle of charge q, 
that is, an object of zero size. For 
a charged object of finite size in an 
electric field, the field may vary 
in magnitude and direction over 
the size of the object, so the cor-
responding force equation may be 
more complicated.

q

P

r̂

q

q0

r
P

r̂

P

q

q0

P

r̂

q

r̂

Fe
S

Fe
S

E
S

 

E
S

 

If q is negative, 
the force on 
the test charge 
q0 is directed 
toward q. 

For a negative 
source charge, 
the electric 
field at P points 
radially inward 
toward q.

�

�

�

�

If q is positive, 
the force on 
the test charge 
q0 is directed 
away from q. 

For a positive 
source charge, 
the electric 
field at P points 
radially outward 
from q. 

a

b

c

d

Figure 23.11 (a), (c) When a test 
charge q0 is placed near a source 
charge q, the test charge experi-
ences a force. (b), (d) At a point P 
near a source charge q, there exists 
an electric field.

This dramatic photograph cap-
tures a lightning bolt striking a 
tree near some rural homes. Light-
ning is associated with very strong 
electric fields in the atmosphere.
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negative as in Figure 23.11c, the force on the test charge is toward the source charge, 
so the electric field at P is directed toward the source charge as in Figure 23.11d.

To calculate the electric field at a point P due to a small number of point charges, 
we first calculate the electric field vectors at P individually using Equation 23.9 and 
then add them vectorially. In other words, at any point P, the total electric field due 
to a group of source charges equals the vector sum of the electric fields of all the 
charges. This superposition principle applied to fields follows directly from the vec-
tor addition of electric forces. Therefore, the electric field at point P due to a group 
of source charges can be expressed as the vector sum

E
S

5 ke a
i

 
qi

ri
2 r̂i  (23.10)

where ri is the distance from the ith source charge qi to the point P and r̂i is a unit 
vector directed from qi toward P.
 In Example 23.6, we explore the electric field due to two charges using the super-
position principle. Part (B) of the example focuses on an electric dipole, which is 
defined as a positive charge q and a negative charge 2q separated by a distance 2a. 
The electric dipole is a good model of many molecules, such as hydrochloric acid 
(HCl). Neutral atoms and molecules behave as dipoles when placed in an external 
electric field. Furthermore, many molecules, such as HCl, are permanent dipoles. 
The effect of such dipoles on the behavior of materials subjected to electric fields is 
discussed in Chapter 26.

Q uick Quiz 23.4  A test charge of 13 mC is at a point P where an external electric 
field is directed to the right and has a magnitude of 4 3 106 N/C. If the test 
charge is replaced with another test charge of 23 mC, what happens to the exter-
nal electric field at P ? (a) It is unaffected. (b) It reverses direction. (c) It changes 
in a way that cannot be determined.

 Electric field due to a finite 
number of point charges

Q

Imagine an object with 
charge that we call a 
source charge. The source 
charge establishes an 
electric field E

S
 through-

out space. Now imagine 
a particle with charge q is placed in that 
field. The particle interacts with the elec-
tric field so that the particle experiences 
an electric force given by

 F
S

e 5 q E
S

 (23.8)

Analysis Model   Particle in a Field (Electric)

Examples:

oscilloscope and is deflected from its original path

velocity selector before entering a mass spectrometer (Chapter 29)
-

lished by the proton in a hydrogen atom as modeled by the Bohr 
theory (Chapter 42)

-
tric field established by applying a voltage to the material (Chap-
ter 43)

qE
S

 

Fe � qE
S S

Example 23.5   A Suspended Water Droplet 

A water droplet of mass 3.00 3 10212 kg is located in the air near the ground during a stormy day. An atmospheric 
electric field of magnitude 6.00 3 103 N/C points vertically downward in the vicinity of the water droplet. The droplet 
remains suspended at rest in the air.  What is the electric charge on the droplet?

Conceptualize Imagine the water droplet hovering at rest in the air. This situation is not what is normally observed, so 
something must be holding the water droplet up.

AM
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continued
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Analyze  Find the magnitude of the electric field at 
P due to charge q1:

E 1 5 ke 
0 q1 0
r1 

2 5 ke 
0 q1 0

a 2 1 y 2 

Find the magnitude of the electric field at P due to 
charge q2:

 E 2 5 ke 
0 q2 0
r2 

2 5 ke 
0 q2 0

b 2 1 y 2

Write the electric field vectors for each charge in 
unit-vector form:

 E
S

1 5 ke 
0 q1 0

a 2 1 y 2  cos f î 1 ke 
0 q 1 0

a 2 1 y 2  sin f ĵ

 E
S

2 5 ke 
0 q 2 0

b 2 1 y 2  cos u î 2 ke 
0 q 2 0

b 2 1 y 2  sin u ĵ

Example 23.6   Electric Field Due to Two Charges

Charges q1 and q2 are located on the x axis, at distances a and b, respectively, from the 
origin as shown in Figure 23.12.

(A)  Find the components of the net electric field at the point P, which is at position (0, y).

Conceptualize  Compare this example with Exam-
ple 23.2. There, we add vector forces to find the net 
force on a charged particle. Here, we add electric 
field vectors to find the net electric field at a point 
in space. If a charged particle were placed at P, we 
could use the particle in a field model to find the 
electric force on the particle.

Categorize  We have two source charges and wish to find the resultant electric field, so we categorize this example as 
one in which we can use the superposition principle represented by Equation 23.10.

S O L U T I O N

 

▸ 23.5 c o n t i n u e d

Substitute numerical values:

Solve for the charge on the water droplet: q 5 2
mg

E

Using the two particle in a field models mentioned in the Catego-
rize step, substitute for the forces in Equation (1), recognizing 
that the vertical component of the electric field is negative: 

q 12E 2 2 mg 5 0

Write Newton’s second law from the particle in equilibrium model 
in the vertical direction:

(1)   a Fy 5 0   S   Fe 2 Fg 5 0

q 5 2
13.00 3  10212

 kg 2 19.80 m/s2 2
6.00 3  103

 N/C
5 24.90 3  10215

 C

Finalize Noting the smallest unit of free charge in Equation 23.5, the charge on the water droplet is a large number 
of these units. Notice that the electric force is upward to balance the downward gravitational force. The problem state-
ment claims that the electric field is in the downward direction. Therefore, the charge found above is negative so that 
the electric force is in the direction opposite to the electric field.

Categorize The droplet can be modeled as a particle and is described by two analysis models associated with fields: 
the particle in a field (gravitational) and the particle in a field (electric). Furthermore, because the droplet is subject to forces 
but remains at rest, it is also described by the particle in equilibrium model.

Analyze

f

f u

u

� �

E
S

 

E1
S

E2
S

P

y

x
ba q

r2
r1

2q1

Figure 23.12  (Example 23.6) The total 
electric field E

S
 at P equals the vector sum 

E
S

1 1 E
S

2, where E
S

1 is the field due to the 
positive charge q1 and E

S
2 is the field due 

to the negative charge q2.
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(B)  Evaluate the electric field at point P in the special case that uq1u 5 uq2u and a 5 b.

Conceptualize  Figure 23.13 shows the situation in 
this special case. Notice the symmetry in the situa-
tion and that the charge distribution is now an elec-
tric dipole.

Categorize  Because Figure 23.13 is a special case of 
the general case shown in Figure 23.12, we can cat-
egorize this example as one in which we can take the 
result of part (A) and substitute the appropriate val-
ues of the variables.

S O L U T I O N

P

y

r

a
q

a
–q

x

u

u

u u

� �

E
S

 

E2
S

E1
S

Figure 23.13  (Example 23.6) 
When the charges in Figure 
23.12 are of equal magnitude 
and equidistant from the origin, 
the situation becomes symmet-
ric as shown here.

Analyze  Based on the symmetry in Figure 
23.13, evaluate Equations (1) and (2) from 
part (A) with a 5 b, uq1u 5 uq2u 5 q, and f 5 u:

(3)    Ex 5 ke 
q

a 2 1 y 2  cos u 1 ke 
q

a 2 1 y 2  cos u 5 2ke 
q

a 2 1 y2  cos u

 Ey 5 ke 
q

a 2 1 y 2  sin u 2 ke 
q

a 2 1 y 2  sin u 5 0

From the geometry in Figure 23.13, evaluate 
cos u:

(4)   cos u 5
a
r

5
a1a 2 1 y 2 21/2

Substitute Equation (4) into Equation (3): Ex 5 2ke 
q

a 2 1 y 2 c a1a 2 1 y 2 21/2 d 5 ke 
2aq1a 2 1 y 2 23/2

(C)  Find the electric field due to the electric dipole when point P is a distance y .. a from the origin.

S O L U T I O N

In the solution to part (B), because y .. a, neglect a2 com-
pared with y 2 and write the expression for E in this case:

(5)   E < ke 
2aq

y 3

Write the components of the net electric field 
vector:

(1)   Ex 5 E1x 1 E 2x 5 ke 
0 q1 0

a 2 1 y 2  cos f 1 ke 
0 q 2 0

b 2 1 y 2  cos u

(2)   Ey 5 E 1y 1 E 2y 5 ke 
0 q1 0

a 2 1 y 2  sin f 2 ke 
0 q2 0

b 2 1 y 2  sin u

▸ 23.6 c o n t i n u e d

Finalize  From Equation (5), we see that at points far from a dipole but along the perpendicular bisector of the line 
joining the two charges, the magnitude of the electric field created by the dipole varies as 1/r 3, whereas the more 
slowly varying field of a point charge varies as 1/r 2 (see Eq. 23.9). That is because at distant points, the fields of the two 
charges of equal magnitude and opposite sign almost cancel each other. The 1/r 3 variation in E for the dipole also is 
obtained for a distant point along the x axis and for any general distant point.
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23.5 Electric Field of a Continuous  
Charge Distribution

Equation 23.10 is useful for calculating the electric field due to a small number of 
charges. In many cases, we have a continuous distribution of charge rather than a col-
lection of discrete charges. The charge in these situations can be described as contin-
uously distributed along some line, over some surface, or throughout some volume.

To set up the process for evaluating the electric field created by a continuous 
charge distribution, let’s use the following procedure. First, divide the charge dis-
tribution into small elements, each of which contains a small charge Dq as shown 
in Figure 23.14. Next, use Equation 23.9 to calculate the electric field due to one of 
these elements at a point P. Finally, evaluate the total electric field at P due to the 
charge distribution by summing the contributions of all the charge elements (that 
is, by applying the superposition principle).

The electric field at P due to one charge element carrying charge Dq is

D E
S

5 ke

Dq

r 2 r̂

where r is the distance from the charge element to point P and r̂ is a unit vector 
directed from the element toward P. The total electric field at P due to all elements 
in the charge distribution is approximately

E
S

< ke a
i

  
Dqi

ri
2  r̂i

where the index i refers to the ith element in the distribution. Because the number 
of elements is very large and the charge distribution is modeled as continuous, the 
total field at P in the limit Dqi S 0 is

 E
S

5 ke lim
Dqi

S 0

 a
i

  
Dqi

ri
2  r̂i 5 ke 3  

dq

r 2 r̂ (23.11)

where the integration is over the entire charge distribution. The integration in 
Equation 23.11 is a vector operation and must be treated appropriately.
 Let’s illustrate this type of calculation with several examples in which the charge 
is distributed on a line, on a surface, or throughout a volume. When performing 
such calculations, it is convenient to use the concept of a charge density along with 
the following notations:

If a charge Q is uniformly distributed throughout a volume V, the volume 

charge density r is defined by

r ;
Q

V

 where r has units of coulombs per cubic meter (C/m3).

If a charge Q is uniformly distributed on a surface of area A, the surface 

charge density s (Greek letter sigma) is defined by

s ;
Q

A

 where s has units of coulombs per square meter (C/m2).

If a charge Q is uniformly distributed along a line of length ,, the linear 

charge density l is defined by

l ;
Q

,

 where l has units of coulombs per meter (C/m).

23.5

Electric field due to 
a continuous charge 

distribution

Volume charge density 

Surface charge density 

Linear charge density 

r1r2 r3

ˆ

P

r1

r̂2

r̂3

�q1

�E1

�E3
�E2

S

S S

�q2

�q3

Figure 23.14  The electric field 
at P due to a continuous charge dis-
tribution is the vector sum of the 
fields D E

S
i due to all the elements 

Dqi of the charge distribution. 
Three sample elements are shown.
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If the charge is nonuniformly distributed over a volume, surface, or line, the 
amounts of charge dq in a small volume, surface, or length element are

dq 5 r dV   dq 5 s dA  dq 5 l d,

Problem-Solving Strategy   Calculating the Electric Field

The following procedure is recommended for solving problems that involve the 
determination of an electric field due to individual charges or a charge distribution.

1. Conceptualize. Establish a mental representation of the problem: think carefully 
about the individual charges or the charge distribution and imagine what type of 
electric field it would create. Appeal to any symmetry in the arrangement of charges 
to help you visualize the electric field.

2. Categorize. Are you analyzing a group of individual charges or a continuous charge 
distribution? The answer to this question tells you how to proceed in the Analyze step.

3. Analyze.

(a) If you are analyzing a group of individual charges, use the superposition prin-
ciple: when several point charges are present, the resultant field at a point in space 
is the vector sum of the individual fields due to the individual charges (Eq. 23.10). 
Be very careful in the manipulation of vector quantities. It may be useful to review 
the material on vector addition in Chapter 3. Example 23.6 demonstrated this 
procedure.

(b) If you are analyzing a continuous charge distribution, the superposition principle 
is applied by replacing the vector sums for evaluating the total electric field from 
individual charges by vector integrals. The charge distribution is divided into infini-
tesimal pieces, and the vector sum is carried out by integrating over the entire charge 
distribution (Eq. 23.11). Examples 23.7 through 23.9 demonstrate such procedures.

 Consider symmetry when dealing with either a distribution of point charges or a 
continuous charge distribution. Take advantage of any symmetry in the system you 
observed in the Conceptualize step to simplify your calculations. The cancellation 
of field components perpendicular to the axis in Example 23.8 is an example of the 
application of symmetry.

4. Finalize. Check to see if your electric field expression is consistent with the mental 
representation and if it reflects any symmetry that you noted previously. Imagine 
varying parameters such as the distance of the observation point from the charges or 
the radius of any circular objects to see if the mathematical result changes in a rea-
sonable way.

Example 23.7   The Electric Field Due to a Charged Rod

A rod of length , has a uniform positive charge per unit length l 
and a total charge Q. Calculate the electric field at a point P that 
is located along the long axis of the rod and a distance a from 
one end (Fig. 23.15).

Conceptualize  The field d E
S

 at P due to each segment of charge 
on the rod is in the negative x direction because every segment 
carries a positive charge. Figure 23.15 shows the appropriate 
geometry. In our result, we expect the electric field to become 
smaller as the distance a becomes larger because point P  is farther from the charge distribution.

S O L U T I O N

x

y

�
a

P
x

dx

E
S

 

Figure 23.15  (Example 23.7) The electric field at P 
due to a uniformly charged rod lying along the x axis.

continued
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Finalize  We see that our prediction is correct; if a becomes larger, the denominator of the fraction grows larger, and E 
becomes smaller. On the other hand, if a → 0, which corresponds to sliding the bar to the left until its left end is at the 
origin, then E → .̀  That represents the condition in which the observation point P is at zero distance from the charge 
at the end of the rod, so the field becomes infinite. We explore large values of a below.

Suppose point P is very far away from the rod. What is the nature of the electric field at such a point?

Answer   If P is far from the rod (a .. ,), then , in the denominator of Equation (1) can be neglected and E < keQ/a2. 
That is exactly the form you would expect for a point charge. Therefore, at large values of a/,, the charge distribution 
appears to be a point charge of magnitude Q ; the point P is so far away from the rod we cannot distinguish that it has 
a size. The use of the limiting technique (a/, S `) is often a good method for checking a mathematical expression.

WHAT IF ?

Find the magnitude of the electric field at P due to one 
segment of the rod having a charge dq :

dE 5 ke 
dq

x2 5 ke 
l dx
x2

Find the total field at P using4 Equation 23.11: E 5 3
,1a

a
 ke l 

dx
x2

Noting that ke and l 5 Q /, are constants and can be 
removed from the integral, evaluate the integral:

E 5 ke l 3
,1a

a
 
dx
x2 5 ke l c2 1

x
d ,1a

a

(1)   E 5 ke 
Q

,
a1

a
2

1
, 1 a

b 5
keQ

a 1, 1 a 2

4To carry out integrations such as this one, first express the charge element dq in terms of the other variables in the 
integral. (In this example, there is one variable, x, so we made the change dq 5 l dx.) The integral must be over sca-
lar quantities; therefore, express the electric field in terms of components, if necessary. (In this example, the field 
has only an x component, so this detail is of no concern.) Then, reduce your expression to an integral over a single 
variable (or to multiple integrals, each over a single variable). In examples that have spherical or cylindrical symme-
try, the single variable is a radial coordinate.

Example 23.8   The Electric Field of a Uniform Ring of Charge

A ring of radius a carries a uniformly dis-
tributed positive total charge Q. Calcu-
late the electric field due to the ring at a 
point P lying a distance x from its center 
along the central axis perpendicular to 
the plane of the ring (Fig. 23.16a).

Conceptualize  Figure 23.16a shows the 
electric field contribution d E

S
 at P due 

to a single segment of charge at the 
top of the ring. This field vector can be 
resolved into components dEx parallel to 

S O L U T I O N

Categorize  Because the rod is continuous, we are evaluating the field due to a continuous charge distribution rather 
than a group of individual charges. Because every segment of the rod produces an electric field in the negative x direc-
tion, the sum of their contributions can be handled without the need to add vectors.

Analyze  Let’s assume the rod is lying along the x axis, dx is the length of one small segment, and dq is the charge on 
that segment. Because the rod has a charge per unit length l, the charge dq on the small segment is dq 5 l dx.

▸ 23.7 c o n t i n u e d

a b

u P dEx

dE›

r

dq

a

x
x

x
x u

1

2
dE
S

dE2

dE1

S

S

Figure 23.16  (Example 23.8) A uniformly charged ring of radius a. (a) The field 
at P on the x axis due to an element of charge dq. (b) The total electric field at P is 
along the x axis. The perpendicular component of the field at P due to segment 1 is 
canceled by the perpendicular component due to segment 2.



 23.5 Electric Field of a Continuous Charge Distribution 707

the axis of the ring and dE� perpendicular to the axis. Figure 23.16b shows the electric field contributions from two 
segments on opposite sides of the ring. Because of the symmetry of the situation, the perpendicular components of the 
field cancel. That is true for all pairs of segments around the ring, so we can ignore the perpendicular component of 
the field and focus solely on the parallel components, which simply add.

Categorize  Because the ring is continuous, we are evaluating the field due to a continuous charge distribution rather 
than a group of individual charges.

continued
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 Suppose a negative charge is placed at the 
center of the ring in Figure 23.16 and displaced slightly 
by a distance x ,, a along the x axis. When the charge is 
released, what type of motion does it exhibit?

Answer  In the expression for the field due to a ring of 
charge, let x ,, a, which results in

Ex 5
keQ

a3  x

WHAT IF ? Therefore, from Equation 23.8, the force on a charge 2q 
placed near the center of the ring is

Fx 5 2
keqQ

a3  x

Because this force has the form of Hooke’s law (Eq. 15.1), 
the motion of the negative charge is described with the  
particle in simple harmonic motion model!

Analyze  Evaluate the parallel component of an electric 
field contribution from a segment of charge dq on the ring:

(1)   dEx 5 ke 
dq

r 2 cos u 5 ke 
dq

a 2 1 x2 cos u

From the geometry in Figure 23.16a, evaluate cos u: (2)   cos u 5
x
r

5
x1a 2 1 x 2 21/2

Substitute Equation (2) into Equation (1): dEx 5 ke 
dq

a 2 1 x 2  c x1a 2 1 x 2 21/2 d 5
kex1a 2 1 x2 23/2 dq

All segments of the ring make the same contribution to 
the field at P because they are all equidistant from this 
point. Integrate over the circumference of the ring to 
obtain the total field at P :

Ex 5 3 
kex1a 2 1 x2 23/2 dq 5

kex1a 2 1 x 2 23/2 3 dq

(3)   E 5 
kex1a 2 1 x2 23/2 Q

Finalize  This result shows that the field is zero at x 5 0. Is that consistent with the symmetry in the problem? Further-
more, notice that Equation (3) reduces to keQ /x 2 if x .. a, so the ring acts like a point charge for locations far away 
from the ring. From a faraway point, we cannot distinguish the ring shape of the charge.

Example 23.9   The Electric Field of a Uniformly Charged Disk

A disk of radius R has a uniform surface charge density s. Calculate the electric 
field at a point P that lies along the central perpendicular axis of the disk and a 
distance x from the center of the disk (Fig. 23.17).

Conceptualize  If the disk is considered to be 
a set of concentric rings, we can use our result 
from Example 23.8—which gives the field cre-
ated by a single ring of radius a—and sum the 
contributions of all rings making up the disk. By symmetry, the field at an axial point must be along the central axis.

S O L U T I O N
P

x

r

R

dq

dr

x
Figure 23.17  (Example 23.9) A 
uniformly charged disk of radius R. 
The electric field at an axial point P 
is directed along the central axis, per-
pendicular to the plane of the disk.
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Finalize  This result is valid for all values of x . 0. For large values of x, the result above can be evaluated by a series 
expansion and shown to be equivalent to the electric field of a point charge Q . We can calculate the field close to the 
disk along the axis by assuming x ,, R ; in this case, the expression in brackets reduces to unity to give us the near-
field approximation

E 5 2pke s 5
s

2P0

where P0 is the permittivity of free space. In Chapter 24, we obtain the same result for the field created by an infinite 
plane of charge with uniform surface charge density.

What if we let the radius of the disk grow so that the disk becomes an infinite plane of charge? 

Answer The result of letting R S ̀  in the final result of the example is that the magnitude of the electric field becomes

E 5 2pke s 5
s

2P0

This is the same expression that we obtained for x ,, R . If R S ,̀ everywhere is near-field—the result is independent 
of the position at which you measure the electric field. Therefore, the electric field due to an infinite plane of charge 
is uniform throughout space. 
     An infinite plane of charge is impossible in practice. If two planes of charge are placed close to each other, however, 
with one plane positively charged, and the other negatively, the electric field between the plates is very close to uni-
form at points far from the edges. Such a configuration will be investigated in Chapter 26.

WHAT IF ?

Categorize  Because the disk is continuous, we are evaluating the field due to a continuous charge distribution rather 
than a group of individual charges.

Analyze  Find the amount of charge dq on the surface area 
of a ring of radius r and width dr as shown in Figure 23.17:

dq 5 s dA 5 s 12pr dr 2 5 2psr dr

Use this result in the equation given for Ex in Exam-
ple 23.8 (with a replaced by r and Q replaced by dq) 
to find the field due to the ring:

dEx 5
kex1r 2 1 x 2 23/2

12psr dr 2

To obtain the total field at P, integrate this expres-
sion over the limits r 5 0 to r 5 R, noting that x is a 
constant in this situation:

 Ex 5 kex ps3
R

0
 

2r dr1r 2 1 x 2 23/2

 5 kex ps3
R

0

1r 2 1 x2 223/2d 1r 2 2
 5 kex ps c 1r 2 1 x2 221/2

21/2
d R

0
5 2pke s c1 2

x1R 2 1 x2 21/2 d

 

▸ 23.9 c o n t i n u e d

23.6 Electric Field Lines
We have defined the electric field in the mathematical representation with Equa-
tion 23.7. Let’s now explore a means of visualizing the electric field in a pictorial 
representation. A convenient way of visualizing electric field patterns is to draw 
lines, called electric field lines and first introduced by Faraday, that are related to 
the electric field in a region of space in the following manner:

The electric field vector E
S

 is tangent to the electric field line at each point. 
The line has a direction, indicated by an arrowhead, that is the same as that 

23.6
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of the electric field vector. The direction of the line is that of the force on a 
positive charge placed in the field according to the particle in a field model.
The number of lines per unit area through a surface perpendicular to the 
lines is proportional to the magnitude of the electric field in that region. 
Therefore, the field lines are close together where the electric field is strong 
and far apart where the field is weak.

 These properties are illustrated in Figure 23.18. The density of field lines 
through surface A is greater than the density of lines through surface B. Therefore, 
the magnitude of the electric field is larger on surface A than on surface B. Fur-
thermore, because the lines at different locations point in different directions, the 
field is nonuniform.
 Is this relationship between strength of the electric field and the density of field 
lines consistent with Equation 23.9, the expression we obtained for E using Coulomb’s 
law? To answer this question, consider an imaginary spherical surface of radius r con-
centric with a point charge. From symmetry, we see that the magnitude of the electric 
field is the same everywhere on the surface of the sphere. The number of lines N that 
emerge from the charge is equal to the number that penetrate the spherical surface. 
Hence, the number of lines per unit area on the sphere is N/4pr 2 (where the surface 
area of the sphere is 4pr 2). Because E is proportional to the number of lines per unit 
area, we see that E varies as 1/r 2; this finding is consistent with Equation 23.9.
 Representative electric field lines for the field due to a single positive point 
charge are shown in Figure 23.19a. This two-dimensional drawing shows only the 
field lines that lie in the plane containing the point charge. The lines are actually 
directed radially outward from the charge in all directions; therefore, instead of 
the flat “wheel” of lines shown, you should picture an entire spherical distribution 
of lines. Because a positive charge placed in this field would be repelled by the 
positive source charge, the lines are directed radially away from the source charge. 
The electric field lines representing the field due to a single negative point charge 
are directed toward the charge (Fig. 23.19b). In either case, the lines are along the 
radial direction and extend all the way to infinity. Notice that the lines become 
closer together as they approach the charge, indicating that the strength of the 
field increases as we move toward the source charge.
 The rules for drawing electric field lines are as follows:

The lines must begin on a positive charge and terminate on a negative 
charge. In the case of an excess of one type of charge, some lines will begin 
or end infinitely far away.

B
A

The magnitude of the 
field is greater on surface 
A than on surface B.

Figure 23.18  Electric field lines 
penetrating two surfaces. 

q –q

a b

For a positive point charge, 
the field lines are directed 
radially outward.

For a negative point charge, 
the field lines are directed 
radially inward. 

� �

Figure 23.19  The electric field 
lines for a point charge. Notice 
that the figures show only those 
field lines that lie in the plane of 
the page.

Pitfall Prevention 23.2
Electric Field Lines Are Not Paths  
of Particles! Electric field lines 
represent the field at various loca-
tions. Except in very special cases, 
they do not represent the path of 
a charged particle moving in an 
electric field.
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The number of lines drawn leaving a positive charge or approaching a nega-
tive charge is proportional to the magnitude of the charge.
No two field lines can cross.

We choose the number of field lines starting from any object with a positive 
charge q1 to be Cq1 and the number of lines ending on any object with a nega-
tive charge q2 to be C uq2u, where C is an arbitrary proportionality constant. Once  
C is chosen, the number of lines is fixed. For example, in a two-charge system, if 
object 1 has charge Q 1 and object 2 has charge Q 2, the ratio of number of lines in 
contact with the charges is N2/N1 5 uQ 2/Q 1u. The electric field lines for two point 
charges of equal magnitude but opposite signs (an electric dipole) are shown in 
Figure 23.20. Because the charges are of equal magnitude, the number of lines that 
begin at the positive charge must equal the number that terminate at the negative 
charge. At points very near the charges, the lines are nearly radial, as for a single 
isolated charge. The high density of lines between the charges indicates a region of 
strong electric field.
 Figure 23.21 shows the electric field lines in the vicinity of two equal positive 
point charges. Again, the lines are nearly radial at points close to either charge, 
and the same number of lines emerges from each charge because the charges are 
equal in magnitude. Because there are no negative charges available, the electric 
field lines end infinitely far away. At great distances from the charges, the field is 
approximately equal to that of a single point charge of magnitude 2q.
 Finally, in Figure 23.22, we sketch the electric field lines associated with a posi-
tive charge 12q and a negative charge 2q. In this case, the number of lines leaving 
12q is twice the number terminating at 2q. Hence, only half the lines that leave the 
positive charge reach the negative charge. The remaining half terminate on a nega-
tive charge we assume to be at infinity. At distances much greater than the charge 
separation, the electric field lines are equivalent to those of a single charge 1q.

Q uick Quiz 23.5  Rank the magnitudes of the electric field at points A, B, and C 
shown in Figure 23.21 (greatest magnitude first).

Q

Pitfall Prevention 23.3
Electric Field Lines Are Not Real  
Electric field lines are not mate-
rial objects. They are used only 
as a pictorial representation to 
provide a qualitative description 
of the electric field. Only a finite 
number of lines from each charge 
can be drawn, which makes it 
appear as if the field were quan-
tized and exists only in certain 
parts of space. The field, in fact, 
is continuous, existing at every 
point. You should avoid obtain-
ing the wrong impression from a 
two-dimensional drawing of field 
lines used to describe a three-
dimensional situation.

The number of field lines leaving 
the positive charge equals the 
number terminating at the 
negative charge.

� �

Figure 23.20  The electric field 
lines for two point charges of 
equal magnitude and opposite 
sign (an electric dipole). 

C

A

B

� �

Figure 23.21 The electric field 
lines for two positive point charges. 
(The locations A, B, and C are dis-
cussed in Quick Quiz 23.5.)

Figure 23.22 The electric field 
lines for a point charge +2q and a 
second point charge 2q.

�2q �q

Two field lines leave �2q for every 
one that terminates on �q.

� �

23.7 Motion of a Charged Particle in a Uniform 
Electric Field

When a particle of charge q and mass m is placed in an electric field E
S

,  the electric 
force exerted on the charge is q E

S
 according to Equation 23.8 in the particle in a 

23.7
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field model. If that is the only force exerted on the particle, it must be the net force, 
and it causes the particle to accelerate according to the particle under a net force 
model. Therefore,

F
S

e 5 q E
S

5 m aS

and the acceleration of the particle is

 aS 5
q E
S

m
 (23.12)

If E
S

 is uniform (that is, constant in magnitude and direction), and the particle 
is free to move, the electric force on the particle is constant and we can apply the 
particle under constant acceleration model to the motion of the particle. There-
fore, the particle in this situation is described by three analysis models: particle 
in a field, particle under a net force, and particle under constant acceleration! If 
the particle has a positive charge, its acceleration is in the direction of the elec-
tric field. If the particle has a negative charge, its acceleration is in the direction 
opposite the electric field.

Pitfall Prevention 23.4
Just Another Force Electric forces 
and fields may seem abstract to 
you. Once F

S
e  is evaluated, how-

ever, it causes a particle to move 
according to our well-established 
models of forces and motion from 
Chapters 2 through 6. Keeping 
this link with the past in mind 
should help you solve problems in 
this chapter.

Example 23.10   An Accelerating Positive Charge: Two Models 

A uniform electric field E
S

 is directed along the x axis between parallel plates of charge 
separated by a distance d as shown in Figure 23.23. A positive point charge q of mass m is 
released from rest at a point � next to the positive plate and accelerates to a point � next to 
the negative plate.

(A)  Find the speed of the particle at � by modeling it as a particle under constant 
acceleration.

Conceptualize  When the positive charge is placed at �, 
it experiences an electric force toward the right in Figure 
23.23 due to the electric field directed toward the right. As 
a result, it will accelerate to the right and arrive at � with 
some speed.

Categorize  Because the electric field is uniform, a constant 
electric force acts on the charge. Therefore, as suggested in 
the discussion preceding the example and in the problem statement, the point charge can be modeled as a charged 
particle under constant acceleration.

AM

S O L U T I O N

continued
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Figure 23.23  (Example 23.10) 
A positive point charge q in a uni-
form electric field E

S
 undergoes 

constant acceleration in the direc-
tion of the field.

Analyze  Use Equation 2.17 to express the velocity of the 
particle as a function of position:

vf
2 5 vi

2 1 2a(xf 2 xi) 5 0 1 2a(d 2 0) 5 2ad

Solve for vf and substitute for the magnitude of the accel-
eration from Equation 23.12:

vf 5 "2ad 5 Å2 aqE

m
bd 5 Å2qEd

m

(B)  Find the speed of the particle at � by modeling it as a nonisolated system in terms of energy.

Categorize  The problem statement tells us that the charge is a nonisolated system for energy. The electric force, like any 
force, can do work on a system. Energy is transferred to the system of the charge by work done by the electric force 
exerted on the charge. The initial configuration of the system is when the particle is at rest at �, and the final configu-
ration is when it is moving with some speed at �.

S O L U T I O N
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Example 23.11   An Accelerated Electron 

An electron enters the region of a uniform electric field as shown 
in Figure 23.24, with vi 5 3.00 3 106 m/s and E 5 200 N/C. The 
horizontal length of the plates is , 5 0.100 m.

(A)  Find the acceleration of the electron while it is in the elec-
tric field.

Conceptualize  This example differs from the preceding one 
because the velocity of the charged particle is initially perpen-
dicular to the electric field lines. (In Example 23.10, the veloc-
ity of the charged particle is always parallel to the electric field 
lines.) As a result, the electron in this example follows a curved 
path as shown in Figure  23.24. The motion of the electron is 
the same as that of a massive particle projected horizontally in a 
gravitational field near the surface of the Earth.

Categorize  The electron is a particle in a field (electric). Because the electric field is uniform, a constant electric force is 
exerted on the electron. To find the acceleration of the electron, we can model it as a particle under a net force.

Analyze  From the particle in a field model, we know that the direction of the electric force on the electron is down-
ward in Figure 23.24, opposite the direction of the electric field lines. From the particle under a net force model, 
therefore, the acceleration of the electron is downward.

AM

S O L U T I O N

Replace the work and kinetic energies with values appro-
priate for this situation:

Fe Dx 5 K � 2 K � 5 1
2mvf

2 2 0   S   vf 5 Å2Fe Dx
m

Analyze  Write the appropriate reduction of the conser-
vation of energy equation, Equation 8.2, for the system of 
the charged particle:

W 5 DK

Substitute for the magnitude of the electric force Fe from 
the particle in a field model and the displacement Dx:

vf 5 Å2 1qE 2 1d 2
m

5 Å2qEd
m

Finalize  The answer to part (B) is the same as that for part (A), as we expect. This problem can be solved with different 
approaches. We saw the same possibilities with mechanical problems.

(0, 0)

�

(x, y)

vi î
�

�
v
S

x

y

The electron undergoes a downward 
acceleration (opposite E), and its motion 
is parabolic while it is between the plates.

S

E
S

 

� � � � � � � � � � � �

� � � � � � � � � � � �

Figure 23.24 (Example 23.11) An electron is pro-
jected horizontally into a uniform electric field pro-
duced by two charged plates.

Substitute numerical values: ay 5 2
11.60 3 10219 C 2 1200 N/C 2

9.11 3 10231 kg
5  23.51 3 1013 m/s2

The particle under a net force model was used to develop 
Equation 23.12 in the case in which the electric force on 
a particle is the only force. Use this equation to evaluate 
the y component of the acceleration of the electron:

ay 5 2
eE
me

 

(B)  Assuming the electron enters the field at time t 5 0, find the time at which it leaves the field.

Categorize  Because the electric force acts only in the vertical direction in Figure 23.24, the motion of the particle in 
the horizontal direction can be analyzed by modeling it as a particle under constant velocity.

S O L U T I O N
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Substitute numerical values: t 5
, 2 0

vx
5

0.100 m
3.00 3 106 m/s

5  3.33 3 1028 s

Analyze  Solve Equation 2.7 for the time at which the 
electron arrives at the right edges of the plates:

xf 5 xi 1 vx t   S   t 5
xf 2 xi

vx

(C)  Assuming the vertical position of the electron as it enters the field is yi 5 0, what is its vertical position when it 
leaves the field?

Categorize  Because the electric force is constant in Figure 23.24, the motion of the particle in the vertical direction 
can be analyzed by modeling it as a particle under constant acceleration.

S O L U T I O N

Substitute numerical values: yf 5 0 1 0 1 1
2 123.51 3 1013 m/s2 2 13.33 3 1028 s 22 

5 20.019 5 m 5   21.95 cm

Analyze  Use Equation 2.16 to describe the position of 
the particle at any time t :

yf 5 yi 1 vyi t 1 1
2ayt

2

Finalize  If the electron enters just below the negative plate in Figure 23.24 and the separation between the plates is 
less than the value just calculated, the electron will strike the positive plate.
 Notice that we have used four analysis models to describe the electron in the various parts of this problem. We 
have neglected the gravitational force acting on the electron, which represents a good approximation when dealing 
with atomic particles. For an electric field of 200 N/C, the ratio of the magnitude of the electric force eE to the mag-
nitude of the gravitational force mg is on the order of 1012 for an electron and on the order of 109 for a proton.

continued

▸ 23.11 c o n t i n u e d

 

Summary

 The electric field E
S

 at some point in space is defined as the electric force F
S

e that acts on a small positive test 
charge placed at that point divided by the magnitude q0 of the test charge:

 E
S

 ;
F
S

e

q 0
 (23.7)

 Electric charges have the following important properties:

 Charges of opposite sign attract one another, and charges of the 
same sign repel one another.

 The total charge in an isolated system is conserved.
 Charge is quantized.

 Conductors are materials in which 
electrons move freely. Insulators are 
materials in which electrons do not 
move freely.

Definitions 

Concepts and Principles
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 Coulomb’s law states that the electric force exerted by a 
point charge q1 on a second point charge q2 is

 F
S

12 5 ke 
q1q2

r 2  r̂12 (23.6)

where r is the distance between the two charges and r̂12 is 
a unit vector directed from q1 toward q2. The constant ke, 
which is called the Coulomb constant, has the value ke 5 
8.988 3 109 N ? m2/C2.

 At a distance r from a point charge q, the elec-
tric field due to the charge is

 E
S

5 ke 
q

r 2 r̂  (23.9)

where r̂ is a unit vector directed from the charge 
toward the point in question. The electric field is 
directed radially outward from a positive charge 
and radially inward toward a negative charge.

 The electric field at some point due to a continuous charge 
distribution is

 E
S

5 ke 3 
dq

r 2  r̂ (23.11)

where dq is the charge on one element of the charge distribution 
and r is the distance from the element to the point in question.

 The electric field due to a group of point 
charges can be obtained by using the super-
position principle. That is, the total electric 
field at some point equals the vector sum of 
the electric fields of all the charges:

 E
S

5 kea
i

 
qi

ri 
2 r̂i  (23.10)

Analysis Models for Problem Solving

 Particle in a Field (Electric) A source particle with some electric charge establishes an electric 

field E
S

 throughout space. When a particle with charge q is placed in that field, it experiences an 
electric force given by

 F
S

e 5 q E
S

 (23.8)

The field lines are parallel to the electron’s velocity 
and pointing in the same direction as the velocity. How 
far does the electron travel before it is brought to rest?  
(a) 2.56 cm (b) 5.12 cm (c) 11.2 cm (d) 3.34 m (e) 4.24 m

 5. A point charge of 24.00 nC is located at (0, 1.00) m. 
What is the x component of the electric field due to 
the point charge at (4.00, 22.00) m? (a) 1.15 N/C  
(b) 20.864 N/C (c) 1.44 N/C (d) 21.15 N/C (e) 0.864 N/C

 6. A circular ring of charge with radius b has total charge 
q uniformly distributed around it. What is the mag-
nitude of the electric field at the center of the ring? 
(a) 0 (b) keq/b2 (c) keq 2/b2 (d) keq2/b (e) none of those 
answers

 7. What happens when a charged insulator is placed near 
an uncharged metallic object? (a) They repel each 
other. (b) They attract each other. (c) They may attract 
or repel each other, depending on whether the charge 
on the insulator is positive or negative. (d) They exert 
no electrostatic force on each other. (e) The charged 
insulator always spontaneously discharges.

 8. Estimate the magnitude of the electric field due to the 
proton in a hydrogen atom at a distance of 5.29 3 10211 m,  
the expected position of the electron in the atom. 
(a)  10211  N/C (b) 108 N/C (c) 1014 N/C (d) 106 N/C  
(e) 1012 N/C

 1. A free electron and a free proton are released in iden-
tical electric fields. (i) How do the magnitudes of the 
electric force exerted on the two particles compare? 
(a) It is millions of times greater for the electron. (b) It 
is thousands of times greater for the electron. (c) They 
are equal. (d) It is thousands of times smaller for the 
electron. (e) It is millions of times smaller for the elec-
tron. (ii) Compare the magnitudes of their accelera-
tions. Choose from the same possibilities as in part (i).

 2. What prevents gravity from pulling you through the 
ground to the center of the Earth? Choose the best 
answer. (a) The density of matter is too great. (b) The 
positive nuclei of your body’s atoms repel the positive 
nuclei of the atoms of the ground. (c) The density of 
the ground is greater than the density of your body. 
(d) Atoms are bound together by chemical bonds.  
(e) Electrons on the ground’s surface and the surface 
of your feet repel one another.

 3. A very small ball has a mass of 5.00 3 1023 kg and 
a charge of 4.00 mC. What magnitude electric field 
directed upward will balance the weight of the ball so 
that the ball is suspended motionless above the ground?  
(a) 8.21 3 102 N/C (b) 1.22 3 104 N/C (c) 2.00 3 1022 N/C  
(d) 5.11 3 106 N/C (e) 3.72 3 103 N/C

 4. An electron with a speed of 3.00 3 106 m/s moves into 
a uniform electric field of magnitude 1.00 3 103 N/C.  

Objective Questions 1. denotes answer available in Student Solutions Manual/Study Guide

qE
S

 

Fe � qE
S S



 Conceptual Questions 715

 12. Two point charges attract each other with an electric 
force of magnitude F. If the charge on one of the par-
ticles is reduced to one-third its original value and the 
distance between the particles is doubled, what is the  
resulting magnitude of the electric force between 
them? (a) 1

12 F  (b) 13 F  (c) 16 F  (d) 34 F  (e) 32 F

 13. Assume a uniformly charged ring of radius R and 
charge Q produces an electric field E ring at a point P on 
its axis, at distance x away from the center of the ring as 
in Figure OQ23.13a. Now the same charge Q is spread 
uniformly over the circular area the ring encloses, 
forming a flat disk of charge with the same radius as in 
Figure OQ23.13b. How does the field E disk produced 
by the disk at P compare with the field produced by 
the ring at the same point? (a) E disk , E ring (b) E disk 5 
E ring (c) E disk . E ring (d) impossible to determine

P
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x
x

a

E
S

ring 
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Q

R

x
x
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S
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Figure OQ23.13

 14. An object with negative charge is placed in a region 
of space where the electric field is directed vertically 
upward. What is the direction of the electric force 
exerted on this charge? (a) It is up. (b) It is down. 
(c) There is no force. (d)  The force can be in any 
direction.

 15. The magnitude of the electric force between two 
protons is 2.30 3 10226 N. How far apart are they?  
(a) 0.100 m (b)  0.022 0 m (c) 3.10 m (d) 0.005 70 m  
(e) 0.480 m

 9. (i) A metallic coin is given a positive electric charge. 
Does its mass (a) increase measurably, (b) increase by 
an amount too small to measure directly, (c) remain 
unchanged, (d)  decrease by an amount too small to 
measure directly, or (e) decrease measurably? (ii) Now 
the coin is given a negative electric charge. What hap-
pens to its mass? Choose from the same possibilities as 
in part (i).

 10. Assume the charged objects in Figure OQ23.10 are 
fixed. Notice that there is no sight line from the loca-
tion of q2 to the location of q1. If you were at q1, you 
would be unable to see q2 because it is behind q3. How 
would you calculate the electric force exerted on the 
object with charge q1? (a) Find only the force exerted 
by q2 on charge q1. (b) Find only the force exerted by q3 
on charge q1. (c) Add the force that q2 would exert by 
itself on charge q1 to the force that q3 would exert by 
itself on charge q1. (d) Add the force that q3 would 
exert by itself to a certain fraction of the force that q2 
would exert by itself. (e) There is no definite way to 
find the force on charge q1.

x
q1 q2q3

� ��

Figure OQ23.10

 11. Three charged particles 
are arranged on corners of 
a square as shown in Fig-
ure OQ23.11, with charge 
2Q on both the particle at 
the upper left corner and 
the particle at the lower 
right corner and with 
charge 12Q on the particle 
at the lower left corner.  
(i) What is the direction of the electric field at the 
upper right corner, which is a point in empty space?  
(a) It is upward and to the right. (b) It is straight to the 
right. (c) It is straight downward. (d) It is downward 
and to the left. (e) It is perpendicular to the plane  
of the picture and outward. (ii) Suppose the 12Q 
charge at the lower left corner is removed. Then does 
the magnitude of the field at the upper right corner 
(a)  become larger, (b) become smaller, (c) stay the 
same, or (d) change unpredictably?

�2Q �Q

�Q

(a)
(e)

(b)

(c)(d)

Figure OQ23.11

Conceptual Questions 1. denotes answer available in Student Solutions Manual/Study Guide

 1. (a) Would life be different if the electron were posi-
tively charged and the proton were negatively charged? 
(b) Does the choice of signs have any bearing on physi-
cal and chemical interactions? Explain your answers.

 2. A charged comb often attracts small bits of dry paper 
that then fly away when they touch the comb. Explain 
why that occurs.

 3. A person is placed in a large, hollow, metallic sphere 
that is insulated from ground. If a large charge is placed 

on the sphere, will the person be harmed upon touch-
ing the inside of the sphere?

 4. A student who grew up in a tropical country and is 
studying in the United States may have no experience 
with static electricity sparks and shocks until his or her 
first American winter. Explain.

 5. If a suspended object A is attracted to a charged object 
B, can we conclude that A is charged? Explain.
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 4. A charged particle A exerts a force of 2.62 mN to the 
right on charged particle B when the particles are  
13.7 mm apart. Particle B moves straight away from A 
to make the distance between them 17.7 mm. What vec-
tor force does it then exert on A?

 5. In a thundercloud, there may be electric charges of 
140.0 C near the top of the cloud and 240.0 C near the 
bottom of the cloud. These charges are separated by 
2.00 km. What is the electric force on the top charge?

 6. (a) Find the magnitude of the electric force between a 
Na1 ion and a Cl2 ion separated by 0.50 nm. (b) Would 
the answer change if the sodium ion were replaced by 
Li1 and the chloride ion by Br2? Explain.

 7. Review. A molecule of DNA (deoxyribonucleic acid) is 
2.17 mm long. The ends of the molecule become sin-
gly ionized: negative on one end, positive on the other. 
The helical molecule acts like a spring and compresses 
1.00% upon becoming charged. Determine the effec-
tive spring constant of the molecule.

 8. Nobel laureate Richard Feynman (1918–1988) once 
said that if two persons stood at arm’s length from each 
other and each person had 1% more electrons than 
protons, the force of repulsion between them would 
be enough to lift a “weight” equal to that of the entire 
Earth. Carry out an order-of-magnitude calculation to 
substantiate this assertion.

 9. A 7.50-nC point charge is located 1.80 m from a  
4.20-nC point charge. (a) Find the magnitude of the 

Q/C
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Q/C

Section 23.1  Properties of Electric Charges
 1. Find to three significant digits the charge and the mass 

of the following particles. Suggestion: Begin by looking 
up the mass of a neutral atom on the periodic table of 
the elements in Appendix C. (a) an ionized hydrogen 
atom, represented as H1 (b) a singly ionized sodium 
atom, Na1 (c) a chloride ion Cl2 (d) a doubly ionized 
calcium atom, Ca11 5 Ca21 (e) the center of an ammo-
nia molecule, modeled as an N32 ion (f) quadruply 
ionized nitrogen atoms, N41, found in plasma in a hot 
star (g) the nucleus of a nitrogen atom (h) the molecu-
lar ion H2O2

 2. (a) Calculate the number of electrons in a small, elec-
trically neutral silver pin that has a mass of 10.0 g. 
Silver has 47 electrons per atom, and its molar mass 
is 107.87 g/mol. (b) Imagine adding electrons to the 
pin until the negative charge has the very large value  
1.00 mC. How many electrons are added for every 109 
electrons already present?

Section 23.2  Charging Objects by Induction
Section 23.3  Coulomb’s Law
 3. Two protons in an atomic nucleus are typically sepa-

rated by a distance of 2 3 10215 m. The electric repul-
sive force between the protons is huge, but the attractive 
nuclear force is even stronger and keeps the nucleus 
from bursting apart. What is the magnitude of the 
electric force between two protons separated by 2.00 3 
10215 m?

W

 8. Why must hospital personnel wear special conducting 
shoes while working around oxygen in an operating 
room? What might happen if the personnel wore shoes 
with rubber soles?

 9. A balloon clings to a wall after it is negatively charged 
by rubbing. (a) Does that occur because the wall is posi-
tively charged? (b) Why does the balloon eventually fall?

 10. Consider two electric dipoles in empty space. Each 
dipole has zero net charge. (a) Does an electric force 
exist between the dipoles; that is, can two objects with 
zero net charge exert electric forces on each other?  
(b) If so, is the force one of attraction or of repulsion?

 11. A glass object receives a positive charge by rubbing 
it with a silk cloth. In the rubbing process, have pro-
tons been added to the object or have electrons been 
removed from it?

 6. Consider point A in 
Figure CQ23.6 located 
an arbitrary distance 
from two positive point 
charges in otherwise 
empty space. (a) Is it 
possible for an electric 
field to exist at point A 
in empty space? Explain. 
(b) Does charge exist 
at this point? Explain.  
(c) Does a force exist at 
this point? Explain.

 7. In fair weather, there is an electric field at the surface 
of the Earth, pointing down into the ground. What is 
the sign of the electric charge on the ground in this 
situation?

A

� �

Figure CQ23.6
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 Problems 717

 15. Three charged particles are located at the corners of 
an equilateral triangle as shown in Figure P23.15. Cal-
culate the total electric force on the 7.00-mC charge.

�

�

�

0.500 m

7.00 mC

2.00 mC �4.00 mC

60.0�
x

y

Figure P23.15 Problems 15 and 30.

 16. Two small metallic spheres, each of 
mass m 5 0.200 g, are suspended as 
pendulums by light strings of length 
L as shown in Figure P23.16. The 
spheres are given the same electric 
charge of 7.2 nC, and they come to 
equilibrium when each string is at 
an angle of u 5 5.008 with the verti-
cal. How long are the strings?

 17. Review. In the Bohr theory of the 
hydrogen atom, an electron moves in a circular orbit 
about a proton, where the radius of the orbit is 5.29 3 
10211 m. (a) Find the magnitude of the electric force 
exerted on each particle. (b) If this force causes the 
centripetal acceleration of the electron, what is the 
speed of the electron?

 18. Particle A of charge 3.00 3 1024 C is at the origin, par-
ticle B of charge 26.00 3 1024 C is at (4.00 m, 0), and 
particle C of charge 1.00 3 1024 C is at (0, 3.00 m). We 
wish to find the net electric force on C. (a) What is the 
x component of the electric force exerted by A on C? 
(b) What is the y component of the force exerted by A 
on C? (c) Find the magnitude of the force exerted by B 
on C. (d)  Calculate the x component of the force 
exerted by B on C. (e) Calculate the y component of 
the force exerted by B on C. (f) Sum the two x compo-
nents from parts (a) and (d) to obtain the resultant x 
component of the electric force acting on C. (g) Simi-
larly, find the y component of the resultant force vector 
acting on C. (h) Find the magnitude and direction of 
the resultant electric force acting on C.

 19. A point charge 12Q is at 
the origin and a point 
charge 2Q is located 
along the x axis at x  5 d 
as in Figure P23.19. Find 
a symbolic expression for 
the net force on a third 
point charge 1Q located 
along the y axis at y 5 d.

 20. Review. Two identical 
particles, each having charge 1q, are fixed in space 
and separated by a distance d. A third particle with 
charge 2Q  is free to move and lies initially at rest on the  

M

L

m m

θ

Figure P23.16
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Figure P23.19
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electric force that one particle exerts on the other.  
(b) Is the force attractive or repulsive?

 10. (a) Two protons in a molecule are 3.80 3 10210 m 
apart. Find the magnitude of the electric force exerted 
by one proton on the other. (b) State how the mag-
nitude of this force compares with the magnitude of 
the gravitational force exerted by one proton on the 
other. (c) What If? What must be a particle’s charge-to-
mass ratio if the magnitude of the gravitational force 
between two of these particles is equal to the magni-
tude of electric force between them?

 11. Three point charges are arranged as shown in Figure 
P23.11. Find (a) the magnitude and (b) the direction 
of the electric force on the particle at the origin.

0.100 m
x

–3.00 nC

5.00 nC
0.300 m

6.00 nC

y

��

�

Figure P23.11 Problems 11 and 35.

 12. Three point charges lie along a straight line as shown 
in Figure P23.12, where q1 5 6.00 mC, q2 5 1.50 mC, 
and q3 5 22.00 mC. The separation distances are d1 5 
3.00 cm and d2 5 2.00 cm. Calculate the magnitude 
and direction of the net electric force on (a) q1, (b) q2, 
and (c) q3.

�� �

q1

d1

q2

d2

q3

Figure P23.12

 13. Two small beads having positive charges q1 5 3q and  
q2 5 q are fixed at the opposite ends of a horizontal 
insulating rod of length d 5 1.50 m. The bead with 
charge q1 is at the origin. As shown in Figure P23.13, 
a third small, charged bead is free to slide on the rod. 
(a) At what position x is the third bead in equilibrium? 
(b) Can the equilibrium be stable?

d

��

q1 q2

x

x

Figure P23.13 Problems 13 and 14.

 14. Two small beads having charges q1 and q2 of the same 
sign are fixed at the opposite ends of a horizontal insu-
lating rod of length d. The bead with charge q1 is at 
the origin. As shown in Figure P23.13, a third small, 
charged bead is free to slide on the rod. (a) At what 
position x is the third bead in equilibrium? (b) Can the 
equilibrium be stable?
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 27. Two equal positively 
charged particles are at 
opposite corners of a trap-
ezoid as shown in Figure 
P23.27. Find symbolic 
expressions for the total 
electric field at (a) the 
point P and (b) the point P 9.

 28. Consider n equal positively charged particles each of 
magnitude Q /n placed symmetrically around a circle 
of radius a. (a) Calculate the magnitude of the elec-
tric field at a point a distance x from the center of the 
circle and on the line passing through the center and 
perpendicular to the plane of the circle. (b) Explain 
why this result is identical to the result of the calcula-
tion done in Example 23.8.

 29. In Figure P23.29, determine the point (other than 
infinity) at which the electric field is zero.

1.00 m

�2.50 mC 6.00 mC
��

Figure P23.29

 30. Three charged particles are at the corners of an equi-
lateral triangle as shown in Figure P23.15. (a) Calcu-
late the electric field at the position of the 2.00-mC 
charge due to the 7.00-mC and 24.00-mC charges.  
(b) Use your answer to part (a) to determine the force 
on the 2.00-mC charge.

 31. Three point charges are located on a circular arc as 
shown in Figure P23.31. (a) What is the total electric 
field at P, the center of the arc? (b) Find the elec-
tric force that would be exerted on a 25.00-nC point 
charge placed at P.

S
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perpendicular bisector of the 
two fixed charges a distance x 
from the midpoint between those 
charges (Fig. P23.20). (a) Show 
that if x is small compared with 
d, the motion of 2Q is simple 
harmonic along the perpendicu-
lar bisector. (b) Determine the 
period of that motion. (c) How 
fast will the charge 2Q be mov-
ing when it is at the midpoint 
between the two fixed charges if 
initially it is released at a distance 
a ,, d from the midpoint?

 21. Two identical conducting small spheres are placed with 
their centers 0.300 m apart. One is given a charge of 
12.0 nC and the other a charge of 218.0 nC. (a) Find 
the electric force exerted by one sphere on the other. 
(b) What If? The spheres are connected by a conduct-
ing wire. Find the electric force each exerts on the 
other after they have come to equilibrium.

 22. Why is the following situation impossible? Two identical 
dust particles of mass 1.00 mg are floating in empty 
space, far from any external sources of large gravi-
tational or electric fields, and at rest with respect to 
each other. Both particles carry electric charges that 
are identical in magnitude and sign. The gravitational 
and electric forces between the particles happen to 
have the same magnitude, so each particle experiences 
zero net force and the distance between the particles 
remains constant.

Section 23.4 Analysis Model: Particle in a Field (Electric)

 23. What are the magnitude and direction of the electric 
field that will balance the weight of (a) an electron and 
(b) a proton? (You may use the data in Table 23.1.)

 24. A small object of mass 3.80 g and charge 218.0 mC 
is suspended motionless above the ground when 
immersed in a uniform electric field perpendicular to 
the ground. What are the magnitude and direction of 
the electric field?

 25. Four charged particles are at the corners of a square 
of side a as shown in Figure P23.25. Determine (a) the 
electric field at the location of charge q and (b) the 
total electric force exerted on q.

� �
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q

3q 4q

2q

Figure P23.25

 26. Three point charges lie along a circle of radius r at 
angles of 308, 1508, and 2708 as shown in Figure P23.26. 
Find a symbolic expression for the resultant electric 
field at the center of the circle.
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the ring at (a) 1.00 cm, (b) 5.00 cm, (c) 30.0 cm, and 
(d) 100 cm from the center of the ring.

 40. The electric field along the axis of a uniformly charged 
disk of radius R and total charge Q was calculated in 
Example 23.9. Show that the electric field at distances 
x that are large compared with R approaches that of  
a particle with charge Q 5 spR 2. Suggestion: First show 
that x/(x 2 1 R 2)1/2 5 (1 1 R 2/x2)21/2 and use the bino-
mial expansion (1 1 d)n < 1 1 nd, when d ,, 1.

 41. Example 23.9 derives the exact expression for the 
electric field at a point on the axis of a uniformly 
charged disk. Consider a disk of radius R 5 3.00 cm 
having a uniformly distributed charge of 15.20 mC. 
(a) Using the result of Example 23.9, compute the 
electric field at a point on the axis and 3.00 mm from 
the center. (b) What If? Explain how the answer to 
part (a) compares with the field computed from the 
near-field approximation E 5 s/2P0. (We derived this 
expression in Example 23.9.) (c) Using the result of 
Example 23.9, compute the electric field at a point on 
the axis and 30.0 cm from the center of the disk. 
(d) What If? Explain how the answer to part (c) com-
pares with the electric field obtained by treating the 
disk as a 15.20-mC charged particle at a distance of 
30.0 cm.

 42. A uniformly charged 
rod of length L and total 
charge Q lies along the x 
axis as shown in Figure 
P23.42. (a) Find the com-
ponents of the electric 
field at the point P on the 
y axis a distance d from 
the origin. (b) What are 
the approximate values 
of the field components when d .. L? Explain why you 
would expect these results.

 43. A continuous line of charge lies along the x axis, 
extending from x 5 1x0 to positive infinity. The line 
carries positive charge with a uniform linear charge 
density l0. What are (a) the magnitude and (b) the 
direction of the electric field at the origin?

 44. A thin rod of length , and uniform charge per unit 
length l lies along the x axis as shown in Figure P23.44. 
(a) Show that the electric field at P, a distance d from 
the rod along its perpendicular bisector, has no x  

S

Q/C

P

x

y

d

LO

Figure P23.42
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 32. Two charged particles are located on the x axis. The first 
is a charge 1Q at x 5 2a. The second is an unknown 
charge located at x 5 13a. The net electric field these 
charges produce at the origin has a magnitude of  
2keQ /a2. Explain how many values are possible for the 
unknown charge and find the possible values.

 33. A small, 2.00-g plastic ball is suspended by a 20.0-cm-
long string in a uniform electric field as shown in Fig-
ure P23.33. If the ball is in equilibrium when the string 
makes a 15.0° angle with the vertical, what is the net 
charge on the ball? 

L

m = 2.00 g

E = 1.00 � 103  N/C

15.0°

x

y

Figure P23.33

 34. Two 2.00-mC point charges are located on the x axis. 
One is at x 5 1.00 m, and the other is at x 5 21.00 m.  
(a) Determine the electric field on the y axis at y 5 
0.500 m. (b) Calculate the electric force on a 23.00-mC 
charge placed on the y axis at y 5 0.500 m. 

 35. Three point charges are arranged as shown in Fig-
ure P23.11. (a) Find the vector electric field that the  
6.00-nC and 23.00-nC charges together create at the 
origin. (b) Find the vector force on the 5.00-nC charge.

 36. Consider the electric dipole shown in Figure P23.36. 
Show that the electric field at a distant point on the  
1x axis is Ex < 4keqa/x 3.

2a

x
–q q

y

��

Figure P23.36

Section 23.5  Electric Field of a Continuous Charge Distribution

 37. A rod 14.0 cm long is uniformly charged and has a total 
charge of 222.0 mC. Determine (a) the magnitude and 
(b) the direction of the electric field along the axis of 
the rod at a point 36.0 cm from its center.

 38. A uniformly charged disk of radius 35.0 cm carries 
charge with a density of 7.90 3 1023 C/m2. Calculate 
the electric field on the axis of the disk at (a) 5.00 cm, 
(b) 10.0 cm, (c) 50.0 cm, and (d) 200 cm from the cen-
ter of the disk.

 39. A uniformly charged ring of radius 10.0 cm has a total 
charge of 75.0 mC. Find the electric field on the axis of 
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Section 23.7  Motion of a Charged Particle  
in a Uniform Electric Field

 51. A proton accelerates from rest in a uniform electric 
field of 640 N/C. At one later moment, its speed is 
1.20 Mm/s (nonrelativistic because v is much less than 
the speed of light). (a) Find the acceleration of the pro-
ton. (b) Over what time interval does the proton reach 
this speed? (c) How far does it move in this time inter-
val? (d)  What is its kinetic energy at the end of this 
interval?

 52. A proton is projected in the positive x direction  
into a region of a uniform electric field E

S
5126.00 3 105 2  î N/C at t 5 0. The proton travels  

7.00 cm as it comes to rest. Determine (a) the accelera-
tion of the proton, (b) its initial speed, and (c) the time 
interval over which the proton comes to rest.

 53. An electron and a proton are each placed at rest in 
a uniform electric field of magnitude 520 N/C. Cal-
culate the speed of each particle 48.0 ns after being 
released.

 54. Protons are projected with an initial speed vi 5 
9.55  km/s from a field-free region through a plane 
and into a region where a uniform electric field  
E
S

5 2720 ĵ N/C is present above the plane as shown 
in Figure P23.54. The initial velocity vector of the  
protons makes an angle u with the plane. The protons 
are to hit a target that lies at a horizontal distance of  
R 5 1.27 mm from the point where the protons cross 
the plane and enter the electric field. We wish to find 
the angle u at which the protons must pass through the  
plane to strike the target. (a) What analysis model 
describes the horizontal motion of the protons above 
the plane? (b) What analysis model describes the verti-
cal motion of the protons above the plane? (c) Argue 
that Equation 4.13 would be applicable to the protons 
in this situation. (d) Use Equation 4.13 to write an 
expression for R in terms of vi , E, the charge and mass 
of the proton, and the angle u. (e) Find the two pos-
sible values of the angle u. (f) Find the time interval 
during which the proton is above the plane in Figure 
P23.54 for each of the two possible values of u.

R
Target�

Proton
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u
vi
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ˆE � �720 j  N/C
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E � 0 below the plane
S

Figure P23.54

 55. The electrons in a particle beam each have a kinetic 
energy K. What are (a) the magnitude and (b) the 
direction of the electric field that will stop these elec-
trons in a distance d?

M
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component and is given by E 5 2ke l sin u0/d. (b) What 

If? Using your result to part (a), show that the field of a 
rod of infinite length is E 5 2ke l/d.

 45. A uniformly charged insulating rod 
of length 14.0 cm is bent into the 
shape of a semicircle as shown in Fig-
ure P23.45. The rod has a total charge 
of 27.50 mC. Find (a) the magnitude 
and (b) the direction of the electric 
field at O, the center of the semicircle.

 46. (a) Consider a uniformly charged, 
thin-walled, right circular cylindri-
cal shell having total charge Q , radius R, and length 
,. Determine the electric field at a point a distance 
d from the right side of the cylinder as shown in Fig-
ure P23.46. Suggestion: Use the result of Example 23.8 
and treat the cylinder as a collection of ring charges. 
(b) What If? Consider now a solid cylinder with the 
same dimensions and carrying the same charge, uni-
formly distributed through its volume. Use the result 
of Example 23.9 to find the field it creates at the same 
point.

R
d

Q

,

Figure P23.46

Section 23.6  Electric Field Lines

 47. A negatively charged rod of finite length carries charge 
with a uniform charge per unit length. Sketch the elec-
tric field lines in a plane containing the rod.

 48. A positively charged disk has a uniform charge per 
unit area s as described in Example 23.9. Sketch the 
electric field lines in a plane per-
pendicular to the plane of the 
disk passing through its center.

 49. Figure P23.49 shows the electric 
field lines for two charged parti-
cles separated by a small distance. 
(a)  Determine the ratio q1/q2.  
(b) What are the signs of q1 and q2?

 50. Three equal positive charges q 
are at the corners of an equilat-
eral triangle of side a as shown 
in Figure P23.50. Assume the 
three charges together create an 
electric field. (a) Sketch the field 
lines in the plane of the charges. 
(b) Find the location of one point 
(other than `) where the electric 
field is zero. What are (c)  the 
magnitude and (d) the direction 
of the electric field at P due to 
the two charges at the base?

O

Figure P23.45

M

S

q2

q1

Figure P23.49
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the first sphere as in Figure P23.62b, the spring 
stretches by d 5 3.50 cm from its original length and 
reaches a new equilibrium position with a separation 
between the charges of r 5 5.00 cm. What is the force 
constant of the spring?

d

r

k k

�

�

�

a b

q1
q1

q2

Figure P23.62

 63. A line of charge starts at x 5 1x0 and extends to posi-
tive infinity. The linear charge density is l 5 l0x0/x, 
where l0 is a constant. Determine the electric field at 
the origin.

 64. A small sphere of mass m 5 7.50 g and charge q1  5  
32.0 nC is attached to the end of a string and hangs 
vertically as in Figure P23.64. A second charge of equal 
mass and charge q2 5 258.0 nC is located below the first 
charge a distance d 5 2.00 cm below the first charge 
as in Figure P23.64. (a) Find the tension in the string.  
(b) If the string can withstand a maximum tension of 
0.180 N, what is the smallest value d can have before the 
string breaks?

�q1

d

�q2

Figure P23.64

 65. A uniform electric field of magnitude 640 N/C exists 
between two parallel plates that are 4.00 cm apart.  
A proton is released from rest at the positive plate at 
the same instant an electron is released from rest at the 
negative plate. (a)  Determine the distance from the 
positive plate at which the two pass each other. Ignore 
the electrical attraction between the proton and elec-
tron. (b) What If? Repeat part (a) for a sodium ion 
(Na1) and a chloride ion (Cl2).

 66. Two small silver spheres, each with a mass of 10.0 g, 
are separated by 1.00 m. Calculate the fraction of the 
electrons in one sphere that must be transferred to the 
other to produce an attractive force of 1.00 3 104 N  
(about 1 ton) between the spheres. The number of 
electrons per atom of silver is 47.

S

AMT

 56. Two horizontal metal plates, each 10.0 cm square, are 
aligned 1.00 cm apart with one above the other. They 
are given equal-magnitude charges of opposite sign 
so that a uniform downward electric field of 2.00 3 
103 N/C exists in the region between them. A particle 
of mass 2.00 3 10216 kg and with a positive charge of  
1.00 3 1026 C leaves the center of the bottom negative 
plate with an initial speed of 1.00 3 105 m/s at an angle 
of 37.08 above the horizontal. (a) Describe the trajec-
tory of the particle. (b) Which plate does it strike?  
(c) Where does it strike, relative to its starting point?

 57. A proton moves at 4.50 3 105 m/s in the horizontal 
direction. It enters a uniform vertical electric field with 
a magnitude of 9.60 3 103 N/C. Ignoring any gravita-
tional effects, find (a) the time interval required for 
the proton to travel 5.00 cm horizontally, (b) its verti-
cal displacement during the time interval in which it 
travels 5.00 cm horizontally, and (c) the horizontal and 
vertical components of its velocity after it has traveled 
5.00 cm horizontally.

Additional Problems
 58. Three solid plastic cylinders all have radius 2.50 cm 

and length 6.00 cm. Find the charge of each cylinder 
given the following additional information about each 
one. Cylinder (a) carries charge with uniform den-
sity 15.0 nC/m2 everywhere on its surface. Cylinder 
(b) carries charge with uniform density 15.0 nC/m2 
on its curved lateral surface only. Cylinder (c) carries 
charge with uniform density 500 nC/m3 throughout 
the plastic.

 59. Consider an infinite number of identical particles, 
each with charge q, placed along the x axis at distances 
a, 2a, 3a, 4a, . . . from the origin. What is the electric 
field at the origin due to this distribution? Suggestion: 
Use

1 1
1
22 1

1
32 1

1
42 1 . . . 5

p2

6

 60. A particle with charge 23.00 nC is at the origin, and a 
particle with negative charge of magnitude Q is at  
x 5 50.0 cm. A third particle with a positive charge is in 
equilibrium at x 5 20.9 cm. What is Q?

 61. A small block of mass m  
and charge Q is placed on  
an insulated, frictionless, 
inclined plane of angle u as 
in Figure P23.61. An electric 
field is applied parallel to 
the incline. (a) Find an 
expression for the magni-
tude of the electric field that 
enables the block to remain at rest. (b) If m 5 5.40 g,  
Q 5 27.00 mC, and u 5 25.08, determine the magnitude 
and the direction of the electric field that enables the 
block to remain at rest on the incline.

 62. A small sphere of charge q1 5 0.800 mC hangs from the 
end of a spring as in Figure P23.62a. When another 
small sphere of charge q2 5 20.600 mC is held beneath 

Q/C

M

S

u

m

Q

Figure P23.61
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 73. Two small spheres hang in equilibrium at the bottom 
ends of threads, 40.0 cm long, that have their top ends 
tied to the same fixed point. One sphere has mass  
2.40 g and charge 1300 nC. The other sphere has the 
same mass and charge 1200 nC. Find the distance 
between the centers of the spheres.

 74. Why is the following situation impossible? An electron 
enters a region of uniform electric field between two 
parallel plates. The plates are used in a cathode-ray 
tube to adjust the position of an electron beam on a 
distant fluorescent screen. The magnitude of the elec-
tric field between the plates is 200 N/C. The plates are 
0.200 m in length and are separated by 1.50 cm. The 
electron enters the region at a speed of 3.00 3 106 m/s, 
traveling parallel to the plane of the plates in the direc-
tion of their length. It leaves the plates heading toward 
its correct location on the fluorescent screen.

 75. Review. Two identical blocks resting on a frictionless, 
horizontal surface are connected by a light spring hav-
ing a spring constant k 5 100 N/m and an unstretched 
length Li  5 0.400 m as shown in Figure P23.75a.  
A charge Q is slowly placed on each block, causing the 
spring to stretch to an equilibrium length L 5 0.500 m 
as shown in Figure P23.75b. Determine the value of Q , 
modeling the blocks as charged particles.

k QQ

k

a

b

Li

L

Figure P23.75 Problems 75 and 76.

 76. Review. Two identical blocks resting on a frictionless, 
horizontal surface are connected by a light spring 
having a spring constant k and an unstretched length 
Li as shown in Figure P23.75a. A charge Q is slowly 
placed on each block, causing the spring to stretch to 
an equilibrium length L as shown in Figure P23.75b. 
Determine the value of Q , modeling the blocks as 
charged particles.

 77. Three identical point charges, each of mass m 5  
0.100 kg, hang from three strings as shown in Figure 

S

 67. A charged cork ball of 
mass 1.00  g is suspended 
on a light string in the 
presence of a uniform 
electric field as shown in 
Figure P23.67. When E

S
513.00 î 1 5.00 ĵ 2 3 105 N/C,

the ball is in equilibrium at  
u 5 37.08. Find (a) the charge 
on the ball and (b) the  
tension in the string.

 68. A charged cork ball of mass 
m is suspended on a light string in the presence of a 
uniform electric field as shown in Figure P23.67. When 
E
S

5 A î 1 B ĵ,  where A and B are positive quantities, 
the ball is in equilibrium at the angle u. Find (a) the 
charge on the ball and (b) the tension in the string.

 69. Three charged particles are aligned along the x axis as 
shown in Figure P23.69. Find the electric field at (a) the 
position (2.00 m, 0) and (b) the position (0, 2.00 m).

0.800 m

y

3.00 nC5.00 nC

0.500 m

�4.00 nC
x���

Figure P23.69

 70. Two point charges qA 5 212.0 mC and qB 5 45.0 mC 
and a third particle with unknown charge qC are 
located on the x axis. The particle qA is at the origin, 
and qB is at x 5 15.0 cm. The third particle is to be 
placed so that each particle is in equilibrium under the 
action of the electric forces exerted by the other two 
particles. (a) Is this situation possible? If so, is it possi-
ble in more than one way? Explain. Find (b) the 
required location and (c) the magnitude and the sign 
of the charge of the third particle.

 71. A line of positive charge is 
formed into a semicircle 
of radius R 5 60.0 cm  
as shown in Figure P23.71. 
The charge per unit 
length along the semi-
circle is described by the 
expression l 5 l 0 cos u.  
The total charge on the 
semicircle is 12.0 mC. Cal-
culate the total force on a 
charge of 3.00 mC placed at the center of curvature P.

 72. Four identical charged particles (q 5 110.0 mC) are 
located on the corners of a rectangle as shown in Fig-
ure P23.72. The dimensions of the rectangle are L 5 
60.0 cm and W 5 15.0 cm. Calculate (a) the magnitude 
and (b) the direction of the total electric force exerted 
on the charge at the lower left corner by the other 
three charges.
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Figure P23.71
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(a) Explain how u1 and u2 are related. (b) Assume u1 and 
u2 are small. Show that the distance r between the 
spheres is approximately

r < a4keQ
2,

mg
b1/3

 82. Review. A negatively charged particle 2q is placed at 
the center of a uniformly charged ring, where the ring 
has a total positive charge Q as shown in Figure P23.82. 
The particle, confined to move along the x axis, is 
moved a small distance x along the axis (where x ,, a)  
and released. Show that the particle oscillates in sim-
ple harmonic motion with a frequency given by

f 5
1

2p
ake qQ

ma3 b1/2

Q

a

x
�q

Figure P23.82

 83. Review. A 1.00-g cork ball with charge 2.00 mC is sus-
pended vertically on a 0.500-m-long light string in the 
presence of a uniform, downward-directed electric 
field of magnitude E 5 1.00 3 105 N/C. If the ball is 
displaced slightly from the vertical, it oscillates like a 
simple pendulum. (a)  Determine the period of this 
oscillation. (b)  Should the effect of gravitation be 
included in the calculation for part (a)? Explain.

Challenge Problems

 84. Identical thin rods of length 2a carry equal charges 
1Q uniformly distributed along their lengths. The 
rods lie along the x axis with their centers separated 
by a distance b . 2a (Fig. P23.84). Show that the mag-
nitude of the force exerted by the left rod on the right 
one is

F 5 akeQ
2

4a 2 b ln a b 2

b 2 2 4a 2 b

b

y

a�a b � a b � a
x

Figure P23.84

 85. Eight charged particles, each of magnitude q, are 
located on the corners of a cube of edge s as shown in 
Figure P23.85 (page 724). (a) Determine the x, y, and 
z components of the total force exerted by the other 
charges on the charge located at point A. What are 

S

Q/C

S

S

P23.77. If the lengths of the left and right strings are 
each L 5 30.0 cm and the angle u is 45.08, determine 
the value of q.

L L

�q �q

mmm

�q

θ θ

� ��

Figure P23.77

 78. Show that the maximum magnitude E max of the elec-
tric field along the axis of a uniformly charged ring 
occurs at x 5 a/!2 (see Fig. 23.16) and has the value 
Q / 16!3pP0a

2 2 .
 79. Two hard rubber spheres, each of mass m 5 15.0 g, are 

rubbed with fur on a dry day and are then suspended 
with two insulating strings of length L 5 5.00 cm whose 
support points are a distance d 5 3.00 cm from each 
other as shown in Figure P23.79. During the rubbing 
process, one sphere receives exactly twice the charge 
of the other. They are observed to hang at equilibrium, 
each at an angle of u 5 10.08 with the vertical. Find the 
amount of charge on each sphere.

L

d

u u

m m

Figure P23.79

 80. Two identical beads each have a mass m and charge q. 
When placed in a hemispherical bowl of radius R with 
frictionless, nonconducting walls, the beads move, 
and at equilibrium, they are a distance d apart (Fig. 
P23.80). (a)  Determine the charge q on each bead.  
(b) Determine the charge required for d to become 
equal to 2R.

d

R R

��
mm

Figure P23.80

 81. Two small spheres of mass m are suspended from strings 
of length , that are connected at a common point. One 
sphere has charge Q and the other charge 2Q. The 
strings make angles u1 and u2 with the vertical. 

S
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 88. Inez is putting up decorations for her sister’s quince-
añera (fifteenth birthday party). She ties three light 
silk ribbons together to the top of a gateway and hangs 
a rubber balloon from each ribbon (Fig. P23.88). To 
include the effects of the gravitational and buoyant 
forces on it, each balloon can be modeled as a particle 
of mass 2.00 g, with its center 50.0 cm from the point 
of support. Inez rubs the whole surface of each bal-
loon with her woolen scarf, making the balloons hang 
separately with gaps between them. Looking directly 
upward from below the balloons, Inez notices that 
the centers of the hanging balloons form a horizontal 
equilateral triangle with sides 30.0 cm long. What is 
the common charge each balloon carries?

Figure P23.88

 89. A line of charge with uniform density 35.0 nC/m lies 
along the line y 5 215.0 cm between the points with 
coordinates x 5 0 and x 5 40.0 cm. Find the electric 
field it creates at the origin.

 90. A particle of mass m and charge q moves at high speed 
along the x axis. It is initially near x 5 2 ,̀ and it ends 
up near x 5 1 .̀ A second charge Q is fixed at the 
point x 5 0, y 5 2d. As the moving charge passes the 
stationary charge, its x component of velocity does not 
change appreciably, but it acquires a small velocity in 
the y direction. Determine the angle through which 
the moving charge is deflected from the direction of 
its initial velocity.

 91. Two particles, each with charge 52.0 nC, are located on 
the y axis at y 5 25.0 cm and y 5 225.0 cm. (a) Find the 
vector electric field at a point on the x axis as a function 
of x. (b) Find the field at x 5 36.0 cm. (c) At what loca-
tion is the field 1.00 î kN/C? You may need a computer 
to solve this equation. (d) At what location is the field  
16.0 î kN/C?

S

Q/C

(b) the magnitude and (c) the direction of this total 
force?
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Figure P23.85 Problems 85 and 86.

 86. Consider the charge distribution shown in Figure 
P23.85. (a) Show that the magnitude of the electric 
field at the center of any face of the cube has a value 
of 2.18keq /s2. (b) What is the direction of the electric 
field at the center of the top face of the cube?

 87. Review. An electric dipole in a uniform horizontal 
electric field is displaced slightly from its equilibrium 
position as shown in Figure P23.87, where u is small. 
The separation of the charges is 2a, and each of the 
two particles has mass m. (a) Assuming the dipole is 
released from this position, show that its angular ori-
entation exhibits simple harmonic motion with a 
frequency

f 5
1

2p Å qE

ma

  What If? (b) Suppose the masses of the two charged 
particles in the dipole are not the same even though 
each particle continues to have charge q. Let the 
masses of the particles be m1 and m2. Show that the fre-
quency of the oscillation in this case is

f 5
1

2p ÅqE 1m1 1 m2 2
2am1m2
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u

E
S

 
�

�

Figure P23.87



In a tabletop plasma ball, the colorful 

lines emanating from the sphere 

give evidence of strong electric 

fields. Using Gauss’s law, we show 

in this chapter that the electric field 

surrounding a uniformly charged 

sphere is identical to that of a point 

charge. (Steve Cole/Getty Images)

24.1 Electric Flux

24.2 Gauss’s Law

24.3 Application of Gauss’s 

Law to Various Charge 

Distributions

24.4 Conductors in Electrostatic 

Equilibrium

C H A P T E R

Gauss’s Law

725

In Chapter 23, we showed how to calculate the electric field due to a given charge 
distribution by integrating over the distribution. In this chapter, we describe Gauss’s law and 

an alternative procedure for calculating electric fields. Gauss’s law is based on the inverse-

square behavior of the electric force between point charges. Although Gauss’s law is a 

direct consequence of Coulomb’s law, it is more convenient for calculating the electric fields 

of highly symmetric charge distributions and makes it possible to deal with complicated 

problems using qualitative reasoning. As we show in this chapter, Gauss’s law is important in 

understanding and verifying the properties of conductors in electrostatic equilibrium.

4.1 Electric Flux
The concept of electric field lines was described qualitatively in Chapter 23. We 
now treat electric field lines in a more quantitative way.

Consider an electric field that is uniform in both magnitude and direction as 
shown in Figure 24.1. The field lines penetrate a rectangular surface of area 
whose plane is oriented perpendicular to the field. Recall from Section 23.6 that 
the number of lines per unit area (in other words, the line density) is proportional to 
the magnitude of the electric field. Therefore, the total number of lines penetrat
ing the surface is proportional to the product EA. This product of the magnitude 
of the electric field  and surface area  perpendicular to the field is called the 
electric flux  (uppercase Greek letter phi):

(24.1)

4.1

Figure 24.1 Field lines repre-
senting a uniform electric field 
penetrating a plane of area  per-
pendicular to the field. 
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From the SI units of E and A, we see that FE has units of newton meters squared per 
coulomb (N ? m2/C). Electric flux is proportional to the number of electric field 
lines penetrating some surface.
 If the surface under consideration is not perpendicular to the field, the flux 
through it must be less than that given by Equation 24.1. Consider Figure 24.2, where 
the normal to the surface of area A is at an angle u to the uniform electric field. Notice 
that the number of lines that cross this area A is equal to the number of lines that 
cross the area A�, which is a projection of area A onto a plane oriented perpendicu-
lar to the field. The area A is the product of the length and the width of the surface:  
A 5 ,w. At the left edge of the figure, we see that the widths of the surfaces are related 
by w� 5 w cos u. The area A� is given by A� 5 ,w� 5 ,w cos u and we see that the two 
areas are related by A� 5 A cos u. Because the flux through A equals the flux through 
A�, the flux through A is

 FE 5 EA� 5 EA cos u (24.2)

From this result, we see that the flux through a surface of fixed area A has a maxi-
mum value EA when the surface is perpendicular to the field (when the normal to 
the surface is parallel to the field, that is, when u 5 08 in Fig. 24.2); the flux is zero 
when the surface is parallel to the field (when the normal to the surface is perpen-
dicular to the field, that is, when u 5 908).
 In this discussion, the angle u is used to describe the orientation of the surface 
of area A. We can also interpret the angle as that between the electric field vector 
and the normal to the surface. In this case, the product E cos u in Equation 24.2 is 
the component of the electric field perpendicular to the surface. The flux through 
the surface can then be written FE  5 (E cos u)A 5 EnA, where we use En as the com-
ponent of the electric field normal to the surface.
 We assumed a uniform electric field in the preceding discussion. In more gen-
eral situations, the electric field may vary over a large surface. Therefore, the defi-
nition of flux given by Equation 24.2 has meaning only for a small element of area 
over which the field is approximately constant. Consider a general surface divided 
into a large number of small elements, each of area DAi. It is convenient to define 
a vector D A

S
i whose magnitude represents the area of the i th element of the large 

surface and whose direction is defined to be perpendicular to the surface element as 
shown in Figure 24.3. The electric field E

S
i  at the location of this element makes an 

angle ui with the vector D A
S

i. The electric flux FE , i through this element is

FE,i 5 Ei DAi  cos ui 5 E
S

i ?D A
S

i

where we have used the definition of the scalar product of two vectors  
( A
S
? B
S

; AB cos u ; see Chapter 7). Summing the contributions of all elements 
gives an approximation to the total flux through the surface:

FE < a E
S

i ?D A
S

i

If the area of each element approaches zero, the number of elements approaches 
infinity and the sum is replaced by an integral. Therefore, the general definition of 
electric flux is

 FE ; 3
surface

E
S
?d A

S
 (24.3)

Equation 24.3 is a surface integral, which means it must be evaluated over the surface 
in question. In general, the value of FE depends both on the field pattern and on 
the surface.
 We are often interested in evaluating the flux through a closed surface, defined as 
a surface that divides space into an inside and an outside region so that one cannot 
move from one region to the other without crossing the surface. The surface of a 
sphere, for example, is a closed surface. By convention, if the area element in Equa-

Definition of electric flux 

A

w
w›

A›

Normal

u

u

E
S

The number of field lines that 
go through the area A› is the 
same as the number that go 
through area A.

,

Figure 24.2  Field lines repre-
senting a uniform electric field 
penetrating an area A whose nor-
mal is at an angle u to the field.

The electric field makes an angle
ui with the vector �Ai 

, defined as
being normal to the surface
element.  

ui

Ei
S

S

�Ai  
S

Figure 24.3  A small element of 
surface area DAi  in an electric field.
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tion 24.3 is part of a closed surface, the direction of the area vector is chosen so 
that the vector points outward from the surface. If the area element is not part of a 
closed surface, the direction of the area vector is chosen so that the angle between 
the area vector and the electric field vector is less than or equal to 90°.

Consider the closed surface in Figure 24.4. The vectors D A
S

i point in different 
directions for the various surface elements, but for each element they are normal to 
the surface and point outward. At the element labeled �, the field lines are cross-
ing the surface from the inside to the outside and u , 908; hence, the flux FE,1 5
E
S
?D A

S
1 through this element is positive. For element �, the field lines graze the 

surface (perpendicular to D A
S

2); therefore, u 5 908 and the flux is zero. For ele-
ments such as �, where the field lines are crossing the surface from outside to 
inside, 1808 . u . 908 and the flux is negative because cos u is negative. The net 
flux through the surface is proportional to the net number of lines leaving the sur-
face, where the net number means the number of lines leaving the surface minus the num-
ber of lines entering the surface. If more lines are leaving than entering, the net flux is 
positive. If more lines are entering than leaving, the net flux is negative. Using the 
symbol r to represent an integral over a closed surface, we can write the net flux FE
through a closed surface as

FE 5 C E
S
?d A

S
5 C En dA (24.4)

where En represents the component of the electric field normal to the surface.

Q uick Quiz 24.1  Suppose a point charge is located at the center of a spheri-
cal surface. The electric field at the surface of the sphere and the total flux 
through the sphere are determined. Now the radius of the sphere is halved. 

Q

En

En

u
u

E
SE

SE
S

�A3
S

�A2
S

�A1
S

The electric
flux through
this area
element is
negative.  

The electric
flux through
this area
element is
zero. 

The electric
flux through
this area
element is
positive.  

�

�

�

�

�

�

Figure 24.4 A closed surface in 
an electric field. The area vectors 
are, by convention, normal to the 
surface and point outward. 
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24.2 Gauss’s Law
In this section, we describe a general relationship between the net electric flux 
through a closed surface (often called a gaussian surface) and the charge enclosed 
by the surface. This relationship, known as Gauss’s law, is of fundamental impor-
tance in the study of electric fields.

Consider a positive point charge q located at the center of a sphere of radius r as 
shown in Figure 24.6. From Equation 23.9, we know that the magnitude of the elec-
tric field everywhere on the surface of the sphere is E 5 keq/r 2. The field lines are 
directed radially outward and hence are perpendicular to the surface at every point 
on the surface. That is, at each surface point, E

S
 is parallel to the  vector D A

S
i repre-

senting a local element of area DAi surrounding the surface point. Therefore,

 E
S
?D A

S
i 5 E DAi  

and, from Equation 24.4, we find that the net flux through the gaussian surface is

 FE 5 C E
S
?d A

S
5 C E dA 5 E C dA  

24.2

What happens to the flux through the sphere and the magnitude of the elec-
tric field at the surface of the sphere? (a) The flux and field both increase. 
(b) The flux and field both decrease. (c) The flux increases, and the field 
decreases. (d) The flux decreases, and the field increases. (e) The flux remains 
the same, and the field increases. (f) The flux decreases, and the field remains 
the same.

Write the integrals for the net flux through faces �  
and �:

FE 5 3
1
  E
S
?d A

S
1 3

2
  E
S
?d A

S

For face �, E
S

 is constant and directed inward but d A
S

1 
is directed outward (u 5 1808). Find the flux through 
this face:

3
1
  E
S
?d A

S
5 3

1
 E 1cos 1808 2  dA 5 2E 3

1
 dA 5 2EA 5 2E,2

For face �, E
S

 is constant and outward and in the same 
direction as d A

S
2 (u 5 08). Find the flux through this face:

3
2
  E
S
?d A

S
5 3

2
 E 1cos 08 2  dA 5 E 3

2
 dA 5 1EA 5 E,2

Find the net flux by adding the flux over all six faces: FE 5 2E,2 1 E,2 1 0 1 0 1 0 1 0 5 0

When the charge is at the center 
of the sphere, the electric field is 
everywhere normal to the surface 
and constant in magnitude.

Spherical
gaussian
surface

E
S

 

�A i
S

r

q
�

Figure 24.6  A spherical gauss-
ian surface of radius r surround-
ing a positive point charge q. 

 

Example 24.1   Flux Through a Cube

Consider a uniform electric field E
S

 oriented in the x direction in empty 
space. A cube of edge length , is placed in the field, oriented as shown in 
Figure 24.5. Find the net electric flux through the surface of the cube.

Conceptualize  Examine Figure 24.5 carefully. Notice that the electric 
field lines pass through two faces perpendicularly and are parallel to 
four other faces of the cube.

Categorize  We evaluate the flux from its definition, so we categorize 
this example as a substitution problem.
 The flux through four of the faces (�, �, and the unnumbered 
faces) is zero because E

S
 is parallel to the four faces and therefore per-

pendicular to d A
S

 on these faces.

S O L U T I O N
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A4
S

A2
S

E
S

 

�

�

�

�

Figure 24.5  (Example 24.1) A closed surface in 
the shape of a cube in a uniform electric field ori-
ented parallel to the x axis. Side � is the bottom of 
the cube, and side � is opposite side �.
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where we have moved E outside of the integral because, by symmetry, E is constant 
over the surface. The value of E is given by E 5 keq/r 2. Furthermore, because the 
surface is spherical, rdA 5 A 5 4pr 2. Hence, the net flux through the gaussian 
surface is

 FE 5 ke

q

r 2
14pr 2 2 5 4pkeq  

Recalling from Equation 23.3 that ke 5 1/4pP0, we can write this equation in the form

 FE 5
q
P0

 (24.5)

Equation 24.5 shows that the net flux through the spherical surface is propor-
tional to the charge inside the surface. The flux is independent of the radius r 
because the area of the spherical surface is proportional to r 2, whereas the electric 
field is proportional to 1/r 2. Therefore, in the product of area and electric field, 
the dependence on r cancels.
 Now consider several closed surfaces surrounding a charge q as shown in Figure 
24.7. Surface S 1 is spherical, but surfaces S2 and S3 are not. From Equation 24.5, the 
flux that passes through S 1 has the value q/P0. As discussed in the preceding section, 
flux is proportional to the number of electric field lines passing through a surface. 
The construction shown in Figure 24.7 shows that the number of lines through S 1 is 
equal to the number of lines through the nonspherical surfaces S 2 and S 3. Therefore,

the net flux through any closed surface surrounding a point charge q is given 
by q/P0 and is independent of the shape of that surface.

 Now consider a point charge located outside a closed surface of arbitrary shape as 
shown in Figure 24.8. As can be seen from this construction, any electric field line 
entering the surface leaves the surface at another point. The number of electric 
field lines entering the surface equals the number leaving the surface. Therefore, 
the net electric flux through a closed surface that surrounds no charge is zero. 
Applying this result to Example 24.1, we see that the net flux through the cube is 
zero because there is no charge inside the cube.
 Let’s extend these arguments to two generalized cases: (1) that of many point 
charges and (2) that of a continuous distribution of charge. We once again use the 
superposition principle, which states that the electric field due to many charges is 

the net flux through any closed surface surrounding a point chargey q is givenq
by q/P0 and is independent of the shape of that surface.

The net electric flux is the 
same through all surfaces.  

�

S 3

S 2

S 1

Figure 24.7  Closed surfaces of 
various shapes surrounding a posi-
tive charge.

The number of field lines 
entering the surface equals the 
number leaving the surface.  

q
�

Figure 24.8  A point charge 
located outside a closed surface. 

Karl Friedrich Gauss
German mathematician and astrono- 
mer (1777–1855)
Gauss received a doctoral degree in 
mathematics from the University of 
Helmstedt in 1799. In addition to his 
work in electromagnetism, he made 
contributions to mathematics and 
science in number theory, statistics, 
non-Euclidean geometry, and cometary 
orbital mechanics. He was a founder 
of the German Magnetic Union, which 
studies the Earth’s magnetic field on a 
continual basis.
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the vector sum of the electric fields produced by the individual charges. Therefore, 
the flux through any closed surface can be expressed as

C E
S
?d A

S
5 C 1 E

S
1 1 E

S
2 1 c2 ?d A

S
  

where E
S

 is the total electric field at any point on the surface produced by the vec-
tor addition of the electric fields at that point due to the individual charges. Con-
sider the system of charges shown in Figure 24.9. The surface S surrounds only 
one charge, q1; hence, the net flux through S is q 1/P0. The flux through S due 
to charges q2, q3, and q4 outside it is zero because each electric field line from  
these charges that enters S at one point leaves it at another. The surface S 9 sur-
rounds charges q2 and q3; hence, the net flux through it is (q2 1 q3)/P0. Finally, the 
net flux through surface S0 is zero because there is no charge inside this surface. 
That is, all the electric field lines that enter S0 at one point leave at another. Charge 
q4 does not contribute to the net flux through any of the surfaces.
 The mathematical form of Gauss’s law is a generalization of what we have just 
described and states that the net flux through any closed surface is

 FE 5 C E
S
?d A

S
5

qin

P0
 (24.6)

where E
S

 represents the electric field at any point on the surface and qin represents 
the net charge inside the surface.
 When using Equation 24.6, you should note that although the charge qin is the 
net charge inside the gaussian surface, E

S
 represents the total electric field, which 

includes contributions from charges both inside and outside the surface.
 In principle, Gauss’s law can be solved for E

S
 to determine the electric field due 

to a system of charges or a continuous distribution of charge. In practice, however, 
this type of solution is applicable only in a limited number of highly symmetric 
situations. In the next section, we use Gauss’s law to evaluate the electric field for 
charge distributions that have spherical, cylindrical, or planar symmetry. If one 
chooses the gaussian surface surrounding the charge distribution carefully, the 
integral in Equation 24.6 can be simplified and the electric field determined.

Q uick Quiz 24.2  If the net flux through a gaussian surface is zero, the following 
four statements could be true. Which of the statements must be true? (a) There are 
no charges inside the surface. (b) The net charge inside the surface is zero.  
(c) The electric field is zero everywhere on the surface. (d) The number of elec-
tric field lines entering the surface equals the number leaving the surface.

FE 5 C E
S
?d A

S
5

qinqq
P0

Q

Charge q4 does not contribute to 
the flux through any surface 
because it is outside all surfaces.  

S

S 	

S�

q1

� q4

� q2

q3

�

�

Figure 24.9 The net electric 
flux through any closed surface 
depends only on the charge inside 
that surface. The net flux through 
surface S is q 1/P0, the net flux 
through surface S 9 is (q 2 1 q 3)/P0, 
and the net flux through surface 
S 0 is zero. 

Pitfall Prevention 24.1
Zero Flux Is Not Zero Field  
In two situations, there is 
zero flux through a closed 
surface: either (1) there are 
no charged particles enclosed 
by the surface or (2) there are 
charged particles enclosed, 
but the net charge inside the 
surface is zero. For either situ-
ation, it is incorrect to conclude 
that the electric field on the 
surface is zero. Gauss’s law 
states that the electric flux is 
proportional to the enclosed 
charge, not the electric field.

Conceptual Example 24.2   Flux Due to a Point Charge

A spherical gaussian surface surrounds a point charge q. Describe what happens to the total flux through the surface 
if (A) the charge is tripled, (B) the radius of the sphere is doubled, (C) the surface is changed to a cube, and (D) the 
charge is moved to another location inside the surface.

(A) The flux through the surface is tripled because flux is proportional to the amount of charge inside the surface.

(B) The flux does not change because all electric field lines from the charge pass through the sphere, regardless of 
its radius.

(C) The flux does not change when the shape of the gaussian surface changes because all electric field lines from 
the charge pass through the surface, regardless of its shape.

(D) The flux does not change when the charge is moved to another location inside that surface because Gauss’s law 
refers to the total charge enclosed, regardless of where the charge is located inside the surface.

S O L U T I O N
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Example 24.3   A Spherically Symmetric Charge Distribution

An insulating solid sphere of radius a has a uniform 
volume charge density r and carries a total positive 
charge Q (Fig. 24.10).

(A)  Calculate the magnitude of the electric field at a 
point outside the sphere.

Conceptualize  Notice how this problem differs from 
our previous discussion of Gauss’s law. The electric 
field due to point charges was discussed in Section 
24.2. Now we are considering the electric field due 
to a distribution of charge. We found the field for 
various distributions of charge in Chapter 23 by inte-
grating over the distribution. This example demon-
strates a difference from our discussions in Chapter 
23. In this chapter, we find the electric field using 
Gauss’s law.

Categorize  Because the charge is distributed uni-
formly throughout the sphere, the charge distribution 
has spherical symmetry and we can apply Gauss’s law to find the electric field.

Analyze To reflect the spherical symmetry, let’s choose a spherical gaussian surface of radius r, concentric with the 
sphere, as shown in Figure 24.10a. For this choice, condition (2) is satisfied everywhere on the surface and E

S
?d A

S
5 E dA.

S O L U T I O N

24.3 Application of Gauss’s Law to Various  
Charge Distributions

As mentioned earlier, Gauss’s law is useful for determining electric fields when the 
charge distribution is highly symmetric. The following examples demonstrate ways 
of choosing the gaussian surface over which the surface integral given by Equation 
24.6 can be simplified and the electric field determined. In choosing the surface, 
always take advantage of the symmetry of the charge distribution so that E can be 
removed from the integral. The goal in this type of calculation is to determine a 
surface for which each portion of the surface satisfies one or more of the following 
conditions:

1. The value of the electric field can be argued by symmetry to be constant 
over the portion of the surface.

2. The dot product in Equation 24.6 can be expressed as a simple algebraic 
product E dA because E

S
 and d A

S
 are parallel.

 3. The dot product in Equation 24.6 is zero because E
S

 and d A
S

 are 
perpendicular.

 4. The electric field is zero over the portion of the surface.

 Different portions of the gaussian surface can satisfy different conditions as 
long as every portion satisfies at least one condition. All four conditions are used in 
examples throughout the remainder of this chapter and will be identified by num-
ber. If the charge distribution does not have sufficient symmetry such that a gauss-
ian surface that satisfies these conditions can be found, Gauss’s law is still true, but 
is not useful for determining the electric field for that charge distribution.

24.3

Gaussian
sphere

Gaussian
sphere

For points outside the sphere, 
a large, spherical gaussian 
surface is drawn concentric 
with the sphere.

For points inside the sphere, 
a spherical gaussian surface 
smaller than the sphere is 
drawn.

r

a

r
a

Q

a b

Figure 24.10  (Example 24.3) A uniformly charged insulating 
sphere of radius a and total charge Q. In diagrams such as this one, 
the dotted line represents the intersection of the gaussian surface 
with the plane of the page.

Pitfall Prevention 24.2
Gaussian Surfaces Are Not Real  
A gaussian surface is an imaginary 
surface you construct to satisfy the 
conditions listed here. It does not 
have to coincide with a physical 
surface in the situation.

continued
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Replace E
S
?d A

S
 in Gauss’s law with E dA: FE 5 C E

S
?d A

S
5 C E dA 5

Q
P0

By symmetry, E has the same value everywhere on the 
surface, which satisfies condition (1), so we can remove  
E from the integral:

C E dA 5 E C dA 5 E 14pr 2 2 5
Q
P0

Solve for E : (1)   E 5
Q

4pP0r
2 5 ke 

Q

r 2    1 for r .  a 2
Finalize  This field is identical to that for a point charge. Therefore, the electric field due to a uniformly charged 

sphere in the region external to the sphere is equivalent to that of a point charge located at the center of the sphere.

(B)  Find the magnitude of the electric field at a point inside the sphere.

Analyze  In this case, let’s choose a spherical gaussian surface having radius r , a, concentric with the insulating 
sphere (Fig. 24.10b). Let V 9 be the volume of this smaller sphere. To apply Gauss’s law in this situation, recognize that 
the charge q in within the gaussian surface of volume V 9 is less than Q.

S O L U T I O N

Notice that conditions (1) and (2) are satisfied every-
where on the gaussian surface in Figure 24.10b. Apply 
Gauss’s law in the region r , a :

C E dA 5 E C dA 5 E 14pr 2 2 5
q in

P0

Calculate q in by using q in5 rV 9: q in 5 rV r 5 r 1 43pr 3 2

Solve for E and substitute for q in: E 5
q in

4pP0r
2 5

r 1 43pr 3 2
4pP0r

2 5
r

3P0
 r

Substitute r 5 Q /4
3pa3 and P0 5 1/4pke : (2)   E 5

Q /4
3 pa 3

3 11/4pke 2  r 5 ke 
Q

a 3 r 1 for r ,  a 2  

Finalize  This result for E differs from the one obtained in part (A). It shows that 
E S 0 as r S 0. Therefore, the result eliminates the problem that would exist at  
r 5 0 if E varied as 1/r 2 inside the sphere as it does outside the sphere. That is, if  
E ~ 1/r 2 for r , a, the field would be infinite at r 5 0, which is physically impossible.

Suppose the radial position r 5 a is approached from inside the 
sphere and from outside. Do we obtain the same value of the electric field from 
both directions?

Answer  Equation (1) shows that the electric field approaches a value from the out-
side given by

E 5 lim
r S a

ake 
Q

r 2 b 5 ke 
Q

a 2

From the inside, Equation (2) gives

E 5 lim
r S a

ake 
Q

a 3 rb 5 ke 
Q

a 3 a 5 ke 
Q

a 2

Therefore, the value of the field is the same as the surface is approached from 
both directions. A plot of E versus r is shown in Figure 24.11. Notice that the mag-
nitude of the field is continuous.

WHAT IF ?

a

E

a r

E 
keQ
r2

E �

�

keQ
a3 r

Figure 24.11  (Example 24.3)  
A plot of E versus r for a uniformly 
charged insulating sphere. The 
electric field inside the sphere  
(r , a) varies linearly with r. The 
field outside the sphere (r . a) is 
the same as that of a point charge  
Q located at r 5 0.

▸ 24.3 c o n t i n u e d
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Example 24.4   A Cylindrically Symmetric Charge Distribution

Find the electric field a distance r from a line of posi-
tive charge of infinite length and constant charge per 
unit length l (Fig. 24.12a).

Conceptualize  The line of charge is infinitely long. 
Therefore, the field is the same at all points equidis-
tant from the line, regardless of the vertical position 
of the point in Figure 24.12a. We expect the field to 
become weaker as we move farther away from the line 
of charge.

Categorize  Because the charge is distributed uni-
formly along the line, the charge distribution has cylin-
drical symmetry and we can apply Gauss’s law to find 
the electric field.

Analyze  The symmetry of the charge distribution 
requires that E

S
 be perpendicular to the line charge and  

directed outward as shown in Figure 24.12b. To reflect the symmetry of the charge distribution, let’s choose a cylindri-
cal gaussian surface of radius r and length , that is coaxial with the line charge. For the curved part of this surface, E

S
 is 

constant in magnitude and perpendicular to the surface at each point, satisfying conditions (1) and (2). Furthermore, 
the flux through the ends of the gaussian cylinder is zero because E

S
 is parallel to these surfaces. That is the first appli-

cation we have seen of condition (3).
 We must take the surface integral in Gauss’s law over the entire gaussian surface. Because E

S
?d A

S
 is zero for the flat 

ends of the cylinder, however, we restrict our attention to only the curved surface of the cylinder.

S O L U T I O N
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Figure 24.12  (Example 24.4) (a) An infinite line of charge sur-
rounded by a cylindrical gaussian surface concentric with the line. 
(b) An end view shows that the electric field at the cylindrical sur-
face is constant in magnitude and perpendicular to the surface.

Apply Gauss’s law and conditions (1) and (2) for the 
curved surface, noting that the total charge inside our 
gaussian surface is l,:

FE 5 C E
S
?d A

S
5 E C dA 5 EA 5

q in

P0
5

l,

P0

Substitute the area A 5 2pr, of the curved surface: E 12pr , 2 5
l,

P0

Solve for the magnitude of the electric field: E 5
l

2pP0r
5  2ke 

l

r
 (24.7)

What if the line segment in this example were not infinitely long?

Answer  If the line charge in this example were of finite length, the electric field would not be given by Equation 
24.7. A finite line charge does not possess sufficient symmetry to make use of Gauss’s law because the magnitude of 
the electric field is no longer constant over the surface of the gaussian cylinder: the field near the ends of the line 
would be different from that far from the ends. Therefore, condition (1) would not be satisfied in this situation. 
Furthermore, E

S
 is not perpendicular to the cylindrical surface at all points: the field vectors near the ends would 

have a component parallel to the line. Therefore, condition (2) would not be satisfied. For points close to a finite line 
charge and far from the ends, Equation 24.7 gives a good approximation of the value of the field.
 It is left for you to show (see Problem 33) that the electric field inside a uniformly charged rod of finite radius and 
infinite length is proportional to r.

WHAT IF ?

Finalize  This result shows that the electric field due to a cylindrically symmetric charge distribution varies as 1/r, 
whereas the field external to a spherically symmetric charge distribution varies as 1/r 2. Equation 24.7 can also be 
derived by direct integration over the charge distribution. (See Problem 44 in Chapter 23.)
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Example 24.5   A Plane of Charge

Find the electric field due to an infinite plane of positive charge with uniform 
surface charge density s.

Conceptualize  Notice that the plane of charge is infinitely large. Therefore, the 
electric field should be the same at all points equidistant from the plane. How 
would you expect the electric field to depend on the distance from the plane?

Categorize  Because the charge is distributed uniformly on the plane, the charge 
distribution is symmetric; hence, we can use Gauss’s law to find the electric field.

Analyze  By symmetry, E
S

 must be perpendicular to the plane at all points. The 
direction of E

S
 is away from positive charges, indicating that the direction of E

S
 

on one side of the plane must be opposite its direction on the other side as shown 
in Figure 24.13. A gaussian surface that reflects the symmetry is a small cylinder 
whose axis is perpendicular to the plane and whose ends each have an area A 
and are equidistant from the plane. Because E

S
 is parallel to the curved  surface of 

the cylinder—and therefore perpendicular to d A
S

 at all points on this surface— 
condition (3) is satisfied and there is no contribution to the surface integral from this surface. For the flat ends of the 
cylinder, conditions (1) and (2) are satisfied. The flux through each end of the cylinder is EA; hence, the total flux 
through the entire gaussian surface is just that through the ends, FE 5 2EA.

S O L U T I O N A
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Figure 24.13  (Example 24.5) A 
cylindrical gaussian surface pen-
etrating an infinite plane of charge. 
The flux is EA through each end 
of the gaussian surface and zero 
through its curved surface.

Write Gauss’s law for this surface, noting that the 
enclosed charge is q in 5 sA:

FE 5 2EA 5
q in

P0
5

sA
P0

Solve for E : E 5 
s

2P0
 (24.8)

Finalize  Because the distance from each flat end of 
the cylinder to the plane does not appear in Equation 
24.8, we conclude that E 5 s/2P0 at any distance from 
the plane. That is, the field is uniform everywhere. Fig-
ure 24.14 shows this uniform field due to an infinite 
plane of charge, seen edge-on.

Suppose two infinite planes of charge are 
parallel to each other, one positively charged and the 
other negatively charged. The surface charge densities 
of both planes are of the same magnitude. What does 
the electric field look like in this situation?

Answer  We first addressed this configuration in the 
What If? section of Example 23.9. The electric fields 
due to the two planes add in the region between the 
planes, resulting in a uniform field of magnitude s/P0, 
and cancel elsewhere to give a field of zero. Figure 24.15 
shows the field lines for such a configuration. This 
method is a practical way to achieve uniform electric 
fields with finite-sized planes placed close to each other.

WHAT IF ?
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Figure 24.14  (Example 24.5) 
The electric field lines due to an 
infinite plane of positive charge.
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Figure 24.15 (Example 24.5) 
The electric field lines between 
two infinite planes of charge, 
one positive and one negative. 
In practice, the field lines near 
the edges of finite-sized sheets 
of charge will curve outward.

 

Conceptual Example 24.6   Don’t Use Gauss’s Law Here! 

Explain why Gauss’s law cannot be used to calculate the electric field near an electric dipole, a charged disk, or a tri-
angle with a point charge at each corner.
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24.4 Conductors in Electrostatic Equilibrium
As we learned in Section 23.2, a good electrical conductor contains charges (elec-
trons) that are not bound to any atom and therefore are free to move about within 
the material. When there is no net motion of charge within a conductor, the 
conductor is in electrostatic equilibrium. A conductor in electrostatic equilibrium 
has the following properties:

1. The electric field is zero everywhere inside the conductor, whether the con-
ductor is solid or hollow.

2. If the conductor is isolated and carries a charge, the charge resides on its 
surface.

3. The electric field at a point just outside a charged conductor is perpendicu-
lar to the surface of the conductor and has a magnitude s/P0, where s is 
the surface charge density at that point.

 4. On an irregularly shaped conductor, the surface charge density is greatest 
at locations where the radius of curvature of the surface is smallest.

 We verify the first three properties in the discussion that follows. The fourth 
property is presented here (but not verified until we have studied the appropriate 
material in Chapter 25) to provide a complete list of properties for conductors in 
electrostatic equilibrium.
 We can understand the first property by considering a conducting slab placed 
in an external field E

S
 (Fig. 24.16). The electric field inside the conductor must be 

zero, assuming electrostatic equilibrium exists. If the field were not zero, free elec-
trons in the conductor would experience an electric force ( F

S
5 q E

S
) and would 

accelerate due to this force. This motion of electrons, however, would mean that 
the conductor is not in electrostatic equilibrium. Therefore, the existence of elec-
trostatic equilibrium is consistent only with a zero field in the conductor.
 Let’s investigate how this zero field is accomplished. Before the external field is 
applied, free electrons are uniformly distributed throughout the conductor. When 
the external field is applied, the free electrons accelerate to the left in Figure 
24.16, causing a plane of negative charge to accumulate on the left surface. The 
movement of electrons to the left results in a plane of positive charge on the right 
surface. These planes of charge create an additional electric field inside the con-
ductor that opposes the external field. As the electrons move, the surface charge 
densities on the left and right surfaces increase until the magnitude of the inter-
nal field equals that of the external field, resulting in a net field of zero inside 
the conductor. The time it takes a good conductor to reach equilibrium is on the 
order of 10216 s, which for most purposes can be considered instantaneous.
 If the conductor is hollow, the electric field inside the conductor is also zero, 
whether we consider points in the conductor or in the cavity within the conductor. 
The zero value of the electric field in the cavity is easiest to argue with the concept 
of electric potential, so we will address this issue in Section 25.6.
 Gauss’s law can be used to verify the second property of a conductor in electro-
static equilibrium. Figure 24.17 shows an arbitrarily shaped conductor. A gaussian  

24.4

 Properties of a conductor in 
electrostatic equilibrium

Gaussian
surface

Figure 24.17  A conductor of 
arbitrary shape. The broken line 
represents a gaussian surface  
that can be just inside the conduc-
tor’s surface.

The charge distributions of all these configurations do not have sufficient symmetry to make the use of Gauss’s law 
practical. We cannot find a closed surface surrounding any of these distributions for which all portions of the surface 
satisfy one or more of conditions (1) through (4) listed at the beginning of this section.

S O L U T I O N
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Figure 24.16  A conducting 
slab in an external electric field 
E
S

. The charges induced on the 
two surfaces of the slab produce 
an electric field that opposes the 
external field, giving a resultant 
field of zero inside the slab.



736 Chapter 24 Gauss’s Law

Example 24.7   A Sphere Inside a Spherical Shell

A solid insulating sphere of radius a carries a net positive charge Q uniformly distributed throughout its volume. A con-
ducting spherical shell of inner radius b and outer radius c is concentric with the solid sphere and carries a net charge 
22Q . Using Gauss’s law, find the electric field in the regions labeled �, �, �, and � in Figure 24.19 and the charge 
distribution on the shell when the entire system is in electrostatic equilibrium.

surface is drawn inside the conductor and can be very close to the conductor’s 
surface. As we have just shown, the electric field everywhere inside the conduc-
tor is zero when it is in electrostatic equilibrium. Therefore, the electric field 
must be zero at every point on the gaussian surface, in accordance with condition 
(4) in Section 24.3, and the net flux through this gaussian surface is zero. From this 
result and Gauss’s law, we conclude that the net charge inside the gaussian surface 
is zero. Because there can be no net charge inside the gaussian surface (which is 
arbitrarily close to the conductor’s surface), any net charge on the conductor must 
reside on its surface. Gauss’s law does not indicate how this excess charge is distrib-
uted on the conductor’s surface, only that it resides exclusively on the surface.

To verify the third property, let’s begin with the perpendicularity of the field to 
the surface. If the field vector E

S
 had a component parallel to the conductor’s sur-

face, free electrons would experience an electric force and move along the surface; 
in such a case, the conductor would not be in equilibrium. Therefore, the field vec-
tor must be perpendicular to the surface.
 To determine the magnitude of the electric field, we use Gauss’s law and draw 
a gaussian surface in the shape of a small cylinder whose end faces are parallel 
to the conductor’s surface (Fig. 24.18). Part of the cylinder is just outside the con-
ductor, and part is inside. The field is perpendicular to the conductor’s surface 
from the condition of electrostatic equilibrium. Therefore, condition (3) in Section 
24.3 is satisfied for the curved part of the cylindrical gaussian surface: there is no  
flux through this part of the gaussian surface because E

S
 is parallel to the surface. 

There is no flux through the flat face of the cylinder inside the conductor because 
here E

S
5 0 , which satisfies condition (4). Hence, the net flux through the gaussian 

surface is equal to that through only the flat face outside the conductor, where the 
field is perpendicular to the gaussian surface. Using conditions (1) and (2) for this 
face, the flux is EA, where E is the electric field just outside the conductor and A is 
the area of the cylinder’s face. Applying Gauss’s law to this surface gives

 FE 5 C E dA 5 EA 5
q in

P0
5

sA
P0

 

where we have used q in 5 sA. Solving for E gives for the electric field immediately 
outside a charged conductor:

 E 5
s

P0
 (24.9)

Q uick Quiz 24.3  Your younger brother likes to rub his feet on the carpet and then 
touch you to give you a shock. While you are trying to escape the shock treat-
ment, you discover a hollow metal cylinder in your basement, large enough to 
climb inside. In which of the following cases will you not be shocked? (a) You climb 
inside the cylinder, making contact with the inner surface, and your charged 
brother touches the outer metal surface. (b) Your charged brother is inside touch-
ing the inner metal surface and you are outside, touching the outer metal surface. 
(c) Both of you are outside the cylinder, touching its outer metal surface but not 
touching each other directly.

Q

The flux through the
gaussian surface is EA.  
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Figure 24.18  A gaussian surface 
in the shape of a small cylinder is 
used to calculate the electric field 
immediately outside a charged 
conductor. 
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The charge on the conducting shell creates zero electric 
field in the region r , b, so the shell has no effect on the 
field in region � due to the sphere. Therefore, write an 
expression for the field in region � as that due to the 
sphere from part (A) of Example 24.3:

E 2 5 ke 
Q

r 2 1 for a , r , b 2

Because the conducting shell creates zero field inside itself, 
it also has no effect on the field inside the sphere. There-
fore, write an expression for the field in region � as that 
due to the sphere from part (B) of Example 24.3:

E 1 5 ke 
Q

a 3  r    1 for r , a 2

In region �, where r . c, construct a spherical gaussian 
surface; this surface surrounds a total charge q in 5 Q 1 
(22Q ) 5 2Q . Therefore, model the charge distribution as 
a sphere with charge 2Q and write an expression for the 
field in region � from part (A) of Example 24.3:

E 4 5 2ke 
Q

r 2    1 for r . c 2

In region �, the electric field must be zero because the 
spherical shell is a conductor in equilibrium:

E 3 5 0    1 for b , r , c 2
Construct a gaussian surface of radius r in region �,  
where b , r , c, and note that q in must be zero because  
E3 5 0. Find the amount of charge q inner on the inner  
surface of the shell:

qin 5 qsphere 1 q inner

q inner 5 q in 2 qsphere 5 0 2 Q 5 2Q

Finalize  The charge on the inner surface of the spherical shell must be 2Q to cancel the charge 1Q on the solid 
sphere and give zero electric field in the material of the shell. Because the net charge on the shell is 22Q , its outer 
surface must carry a charge 2Q .

How would the results of this problem differ if the sphere were conducting instead of insulating?

Answer  The only change would be in region �, where r , a. Because there can be no charge inside a conductor in 
electrostatic equilibrium, q in 5 0 for a gaussian surface of radius r , a; therefore, on the basis of Gauss’s law and sym-
metry, E1 5 0. In regions �, �, and �, there would be no way to determine from observations of the electric field 
whether the sphere is conducting or insulating.

WHAT IF ?

 

▸ 24.7 c o n t i n u e d

Conceptualize  Notice how this problem differs from Example 24.3. The charged 
sphere in Figure 24.10 appears in Figure 24.19, but it is now surrounded by a shell car-
rying a charge 22Q . Think about how the presence of the shell will affect the electric 
field of the sphere.

Categorize  The charge is distributed uniformly throughout the sphere, and we know 
that the charge on the conducting shell distributes itself uniformly on the surfaces. 
Therefore, the system has spherical symmetry and we can apply Gauss’s law to find the 
electric field in the various regions.

Analyze  In region �—between the surface of the solid sphere and the inner surface 
of the shell—we construct a spherical gaussian surface of radius r, where a , r , b, not-
ing that the charge inside this surface is 1Q (the charge on the solid sphere). Because 
of the spherical symmetry, the electric field lines must be directed radially outward 
and be constant in magnitude on the gaussian surface.

S O L U T I O N

r
a

b

c

Q

�2Q

�

�

� �

Figure 24.19 (Example 
24.7) An insulating sphere of 
radius a and carrying a charge 
Q surrounded by a conduct-
ing spherical shell carrying a 
charge 22Q.
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Summary

 Electric flux is proportional to the number of electric field lines that penetrate a surface. If the electric field is 
uniform and makes an angle u with the normal to a surface of area A, the electric flux through the surface is

 FE 5 EA cos u  (24.2)

In general, the electric flux through a surface is

 FE ; 3
surface

 E
S
?d A

S
 (24.3)

Definition

Concepts and Principles

 Gauss’s law says that the net 
electric flux FE through any closed 
gaussian surface is equal to the net 
charge qin inside the surface divided 
by P0:

 FE 5 C E
S
?d A

S
5

q in

P0
 (24.6)

Using Gauss’s law, you can calculate 
the electric field due to various sym-
metric charge distributions.

 A conductor in electrostatic equilibrium has the following properties:

 1.  The electric field is zero everywhere inside the conductor, whether 
the conductor is solid or hollow.

 2.  If the conductor is isolated and carries a charge, the charge 
resides on its surface.

 3.  The electric field at a point just outside a charged conductor is 
perpendicular to the surface of the conductor and has a magni-
tude s/P0, where s is the surface charge density at that point.

 4.  On an irregularly shaped conductor, the surface charge density is 
greatest at locations where the radius of curvature of the surface  
is smallest.

 4. A particle with charge q is located inside a cubical 
gaussian surface. No other charges are nearby. (i) If 
the particle is at the center of the cube, what is the 
flux through each one of the faces of the cube? (a) 0 
(b) q/2P0 (c) q/6P0 (d) q/8P0 (e) depends on the size of 
the cube (ii) If the particle can be moved to any point 
within the cube, what maximum value can the flux 
through one face approach? Choose from the same 
possibilities as in part (i).

 5. Charges of 3.00 nC, 22.00 nC, 27.00 nC, and 1.00 nC 
are contained inside a rectangular box with length 
1.00 m, width 2.00 m, and height 2.50 m. Outside the 
box are charges of 1.00 nC and 4.00 nC. What is the 
electric flux through the surface of the box? (a) 0  
(b) 25.64  3 102  N ? m2/C (c)  21.47 3 103 N ? m2/C  
(d) 1.47 3 103 N ? m2/C (e) 5.64 3 102 N ? m2/C

 6. A large, metallic, spherical shell has no net charge. It 
is supported on an insulating stand and has a small 
hole at the top. A small tack with charge Q is lowered 
on a silk thread through the hole into the interior of 
the shell. (i) What is the charge on the inner surface 
of the shell, (a) Q (b) Q/2 (c) 0 (d) 2Q/2 or (e) 2Q?  
Choose your answers to the following questions from 

 1. A cubical gaussian surface surrounds a long, straight, 
charged filament that passes perpendicularly through 
two opposite faces. No other charges are nearby.  
(i) Over how many of the cube’s faces is the electric 
field zero? (a) 0 (b) 2 (c) 4 (d) 6 (ii) Through how many 
of the cube’s faces is  the electric flux zero? Choose 
from the same possibilities as in part (i).

 2. A coaxial cable consists of a long, straight filament 
surrounded by a long, coaxial, cylindrical conducting 
shell. Assume charge Q is on the filament, zero net 
charge is on the shell, and the electric field is E1 î at 
a particular point P midway between the filament and 
the inner surface of the shell. Next, you place the cable 
into a uniform external field 2E î. What is the x com-
ponent of the electric field at P then? (a) 0 (b) between 
0 and E1 (c) E1 (d) between 0 and 2E1 (e) 2E1

 3. In which of the following contexts can Gauss’s law not 
be readily applied to find the electric field? (a) near a 
long, uniformly charged wire (b) above a large, uni-
formly charged plane (c) inside a uniformly charged 
ball (d) outside a uniformly charged sphere (e) Gauss’s 
law can be readily applied to find the electric field in 
all these contexts.

Objective Questions 1. denotes answer available in Student Solutions Manual/Study Guide
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the magnitude of the elec-
tric field at points A (at radius 
4  cm), B (radius 8  cm), C 
(radius 12 cm), and D (radius 
16 cm) from largest to smallest. 
Display any cases of equality 
in your ranking. (b) Similarly 
rank the electric flux through 
concentric spherical surfaces 
through points A, B, C, and D.

 10. A cubical gaussian surface is bisected by a large sheet 
of charge, parallel to its top and bottom faces. No other 
charges are nearby. (i) Over how many of the cube’s 
faces is the electric field zero? (a) 0 (b) 2 (c) 4 (d) 6  
(ii) Through how many of the cube’s faces is the elec-
tric flux zero? Choose from the same possibilities as in 
part (i).

 11. Rank the electric fluxes through each gaussian surface 
shown in Figure OQ24.11 from largest to smallest. Dis-
play any cases of equality in your ranking.

the same possibilities. (ii) What is the charge on the 
outer surface of the shell? (iii) The tack is now allowed 
to touch the interior surface of the shell. After this 
contact, what is the charge on the tack? (iv) What  
is the charge on the inner surface of the shell now? 
(v)  What is the charge on the outer surface of the 
shell now?

 7. Two solid spheres, both of radius 5 cm, carry identical 
total charges of 2 mC. Sphere A is a good conductor. 
Sphere B is an insulator, and its charge is distributed 
uniformly throughout its volume. (i) How do the mag-
nitudes of the electric fields they separately create at 
a radial distance of 6 cm compare? (a) EA . EB 5 0  
(b) EA . EB . 0 (c) EA 5 EB . 0 (d) 0 , EA , EB (e) 0 5  
EA , EB (ii) How do the magnitudes of the electric 
fields they separately create at radius 4 cm compare? 
Choose from the same possibilities as in part (i).

 8. A uniform electric field of 1.00 N/C is set up by a uni-
form distribution of charge in the xy plane. What is 
the electric field inside a metal ball placed 0.500 m 
above the xy plane? (a) 1.00 N/C (b) 21.00 N/C (c) 0  
(d) 0.250 N/C (e) varies depending on the position 
inside the ball

 9. A solid insulating sphere of radius 5 cm carries electric 
charge uniformly distributed throughout its volume. 
Concentric with the sphere is a conducting spherical 
shell with no net charge as shown in Figure OQ24.9. 
The inner radius of the shell is 10 cm, and the outer 
radius is 15 cm. No other charges are nearby. (a) Rank 

Q

b

3Q 4Q
Q

a b c d

Figure OQ24.11

A B C D

Figure OQ24.9

Conceptual Questions 1. denotes answer available in Student Solutions Manual/Study Guide

 1. Consider an electric field that is uniform in direction 
throughout a certain volume. Can it be uniform in 
magnitude? Must it be uniform in magnitude? Answer 
these questions (a) assuming the volume is filled with 
an insulating material carrying charge described by a 
volume charge density and (b) assuming the volume is 
empty space. State reasoning to prove your answers.

 2. A cubical surface surrounds a point charge q. 
Describe what happens to the total flux through the 
surface if (a)  the charge is doubled, (b) the volume 
of the cube is doubled, (c) the surface is changed to 
a sphere, (d) the charge is moved to another location 
inside the surface, and (e) the charge is moved out-
side the surface.

 3. A uniform electric field exists in a region of space con-
taining no charges. What can you conclude about the 
net electric flux through a gaussian surface placed in 
this region of space?

 4. If the total charge inside a closed surface is known but 
the distribution of the charge is unspecified, can you 
use Gauss’s law to find the electric field? Explain.

 5. Explain why the electric flux through a closed surface 
with a given enclosed charge is independent of the size 
or shape of the surface.

 6. If more electric field lines leave a gaussian surface than 
enter it, what can you conclude about the net charge 
enclosed by that surface?

 7. A person is placed in a large, hollow, metallic sphere 
that is insulated from ground. (a) If a large charge 
is placed on the sphere, will the person be harmed 
upon touching the inside of the sphere? (b) Explain 
what will happen if the person also has an initial 
charge whose sign is opposite that of the charge on 
the sphere.

 8. Consider two identical conducting spheres whose sur-
faces are separated by a small distance. One sphere is 
given a large net positive charge, and the other is given 
a small net positive charge. It is found that the force 
between the spheres is attractive even though they 
both have net charges of the same sign. Explain how 
this attraction is possible.

 9. A common demonstration involves charging a rubber 
balloon, which is an insulator, by rubbing it on your 
hair and then touching the balloon to a ceiling or wall, 
which is also an insulator. Because of the electrical 
attraction between the charged balloon and the neutral 
wall, the balloon sticks to the wall. Imagine now that 
we have two infinitely large, flat sheets of insulating  
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material. One is charged, and the other is neutral. If 
these sheets are brought into contact, does an attrac-
tive force exist between them as there was for the bal-
loon and the wall?

 10. On the basis of the repulsive nature of the force 
between like charges and the freedom of motion of 

charge within a conductor, explain why excess charge 
on an isolated conductor must reside on its surface.

 11. The Sun is lower in the sky during the winter than it is 
during the summer. (a) How does this change affect the 
flux of sunlight hitting a given area on the surface of 
the Earth? (b) How does this change affect the weather?

Problems

 
The problems found in this  

 chapter may be assigned 

online in Enhanced WebAssign

1.  straightforward; 2. intermediate;  

3. challenging

1.   full solution available in the Student 
Solutions Manual/Study Guide

AMT   Analysis Model tutorial available in 

Enhanced WebAssign

 GP  Guided Problem

 M   Master It tutorial available in Enhanced 

WebAssign

 W   Watch It video solution available in 

Enhanced WebAssign

BIO

Q/C

S

Section 24.1  Electric Flux

 1. A flat surface of area 3.20 m2 is rotated in a uniform 
electric field of magnitude E 5 6.20 3 105 N/C. Deter-
mine the electric flux through this area (a) when 
the electric field is perpendicular to the surface and  
(b) when the electric field is parallel to the surface.

 2. A vertical electric field of magnitude 2.00 3 104 N/C 
exists above the Earth’s surface on a day when a thun-
derstorm is brewing. A car with a rectangular size of 
6.00 m by 3.00 m is traveling along a dry gravel road-
way sloping downward at 10.08. Determine the electric 
flux through the bottom of the car.

 3. A 40.0-cm-diameter circular loop is rotated in a uni-
form electric field until the position of maximum elec-
tric flux is found. The flux in this position is measured 
to be 5.20 3 105 N ? m2/C. What is the magnitude of 
the electric field?

 4. Consider a closed triangular box resting within a hori-
zontal electric field of magnitude E 5 7.80 3 104 N/C 
as shown in Figure P24.4. Calculate the electric flux 
through (a) the vertical rectangular surface, (b) the 
slanted surface, and (c) the entire surface of the box.

30.0 cm

60.0�10.0 cm

E
S

 

Figure P24.4

 5. An electric field of magnitude 3.50 kN/C is applied 
along the x axis. Calculate the electric flux through 
a rectangular plane 0.350 m wide and 0.700 m long  
(a) if the plane is parallel to the yz plane, (b) if the 
plane is parallel to the xy plane, and (c) if the plane 
contains the y axis and its normal makes an angle of 
40.08 with the x axis.

W

M

W

M

 6. A nonuniform electric field is given by the expression

E
S

5 ay î 1 bz ĵ 1 cx k̂

  where a, b, and c are constants. Determine the electric 
flux through a rectangular surface in the xy plane, 
extending from x 5 0 to x 5 w and from y 5 0 to  
y 5 h.

Section 24.2  Gauss’s Law

 7. An uncharged, nonconducting, hollow sphere of 
radius 10.0 cm surrounds a 10.0-mC charge located 
at the origin of a Cartesian coordinate system. A drill 
with a radius of 1.00 mm is aligned along the z axis, 
and a hole is drilled in the sphere. Calculate the elec-
tric flux through the hole.

 8. Find the net electric flux through the spherical closed 
surface shown in Figure P24.8. The two charges on the 
right are inside the spherical surface.

�2.00 nC
�1.00 nC

�3.00 nC

Figure P24.8

 9. The following charges are located inside a submarine: 
5.00  mC, 29.00 mC, 27.0 mC, and 284.0 mC. (a) Cal-
culate the net electric flux through the hull of the  
submarine. (b)  Is the number of electric field lines 
leaving the submarine greater than, equal to, or less 
than the number entering it?

 10. The electric field everywhere on the surface of a 
thin, spherical shell of radius 0.750 m is of magnitude  
890 N/C and points radially toward the center of the 
sphere. (a) What is the net charge within the sphere’s 
surface? (b)  What is the distribution of the charge 
inside the spherical shell?

S

M

W
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tered at O resulting from this line charge. Consider 
both cases, where (a) R , d and (b) R . d.

 18. Find the net electric flux through (a) the closed spheri-
cal surface in a uniform electric field shown in Figure 
P24.18a and (b) the closed cylindrical surface shown in 
Figure P24.18b. (c) What can you conclude about the 
charges, if any, inside the cylindrical surface?

a

2R

b

R

E
S

E
S

Figure P24.18

 19. A particle with charge 
Q 5 5.00 mC is located 
at the center of a cube 
of edge L 5 0.100 m. In 
addition, six other iden-
tical charged particles 
having q 5 21.00  mC 
are positioned sym-
metrically around Q as 
shown in Figure P24.19. 
Determine the electric 
flux through one face 
of the cube.

 20. A particle with charge 
Q is located at the center of a cube of edge L. In addi-
tion, six other identical charged particles q are posi-
tioned symmetrically around Q as shown in Figure 
P24.19. For each of these particles, q is a negative num-
ber. Determine the electric flux through one face of 
the cube.

 21. A particle with charge 
Q is located a small dis-
tance d immediately 
above the center of 
the flat face of a hemi-
sphere of radius R as 
shown in Figure P24.21. 
What is the electric flux 
(a) through the curved 
surface and (b) through 
the flat face as d S 0?

 22. Figure P24.22 (page 742) represents the top view of a 
cubic gaussian surface in a uniform electric field E

S
 ori-

ented parallel to the top and bottom faces of the cube. 
The field makes an angle u with side �, and the area of 
each face is A. In symbolic form, find the electric flux 
through (a) face �, (b) face �, (c) face �, (d) face �, 
and (e) the top and bottom faces of the cube. (f) What 

S

Q/C

L

L

q

q

q

q

Qq

q

L

Figure P24.19  
Problems 19 and 20.
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�

Figure P24.21
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 11. Four closed surfaces, S1 
through S4, together with 
the charges 22Q , Q , and 
2Q are sketched in Figure 
P24.11. (The colored lines 
are the intersections of the 
surfaces with the page.) 
Find the electric flux 
through each surface.

 12. A charge of 170 mC is at the 
center of a cube of edge 
80.0 cm. No other charges 
are nearby. (a) Find the 
flux through each face of the cube. (b) Find the flux 
through the whole surface of the cube. (c) What If? 
Would your answers to either part (a) or part (b) change 
if the charge were not at the center? Explain.

 13. In the air over a particular region at an altitude of 
500 m above the ground, the electric field is 120 N/C 
directed downward. At 600 m above the ground, the 
electric field is 100 N/C downward. What is the average 
volume charge density in the layer of air between these 
two elevations? Is it positive or negative?

 14. A particle with charge of 12.0 mC is placed at the cen-
ter of a spherical shell of radius 22.0 cm. What is the 
total electric flux through (a) the surface of the shell 
and (b) any hemispherical surface of the shell? (c) Do 
the results depend on the radius? Explain.

 15. (a) Find the net electric 
flux through the cube 
shown in Figure P24.15. 
(b)  Can you use Gauss’s 
law to find the electric 
field on the surface of 
this cube? Explain.

 16. (a) A particle with charge 
q is located a distance 
d from an infinite plane. Determine the electric flux 
through the plane due to the charged particle. (b) What 

If? A particle with charge q is located a very small dis-
tance from the center of a very large square on the line 
perpendicular to the square and going through its cen-
ter. Determine the approximate electric flux through 
the square due to the charged particle. (c) How do the 
answers to parts (a) and (b) compare? Explain.

 17. An infinitely long line charge having a uniform charge 
per unit length l lies a distance d from point O as 
shown in Figure P24.17. Determine the total electric 
flux through the surface of a sphere of radius R cen-

S

W

Q/C

Q/C

�8.00 nC
�3.00 nC

Figure P24.15

Q/C

S

Q/C

S

S1

S3

S2

S4
�2Q

�Q

�Q

Figure P24.11

d

R
O

l

Figure P24.17
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with the dimensions of the wall? (b) Does your result 
change as the distance from the wall varies? Explain.

 31. A uniformly charged, straight filament 7.00 m in 
length has a total positive charge of 2.00 mC. An 
uncharged cardboard cylinder 2.00 cm in length and 
10.0 cm in radius surrounds the filament at its center, 
with the filament as the axis of the cylinder. Using rea-
sonable approximations, find (a) the electric field at 
the surface of the cylinder and (b) the total electric 
flux through the cylinder.

 32. Assume the magnitude of the electric field on each 
face of the cube of edge L 5 1.00 m in Figure P24.32 
is uniform and the directions of the fields on each face 
are as indicated. Find (a) the net electric flux through 
the cube and (b) the net charge inside the cube.  
(c) Could the net charge be a single point charge?

L

20.0 N/C

20.0 N/C

25.0 N/C

20.0 N/C 35.0 N/C

15.0 N/C

Figure P24.32

 33. Consider a long, cylindrical charge distribution of 
radius R with a uniform charge density r. Find the 
electric field at distance r from the axis, where r , R.

 34. A cylindrical shell of radius 7.00 cm and length 2.40 m  
has its charge uniformly distributed on its curved sur-
face. The magnitude of the electric field at a point  
19.0 cm radially outward from its axis (measured from 
the midpoint of the shell) is 36.0 kN/C. Find (a) the 
net charge on the shell and (b) the electric field at a 
point 4.00 cm from the axis, measured radially out-
ward from the midpoint of the shell.

 35. A solid sphere of radius 40.0 cm has a total positive 
charge of 26.0 mC uniformly distributed throughout its 
volume. Calculate the magnitude of the electric field 
(a) 0 cm, (b)  10.0 cm, (c) 40.0 cm, and (d) 60.0 cm 
from the center of the sphere.

 36. Review. A particle with a charge of 260.0 nC is placed 
at the center of a nonconducting spherical shell of 
inner radius 20.0 cm and outer radius 25.0 cm. The 
spherical shell carries charge with a uniform density 
of 21.33 mC/m3. A proton moves in a circular orbit 
just outside the spherical shell. Calculate the speed of 
the proton.

Section 24.4  Conductors in Electrostatic Equilibrium

 37. A long, straight metal rod has a radius of 5.00 cm and a 
charge per unit length of 30.0 nC/m. Find the electric 
field (a) 3.00 cm, (b) 10.0 cm, and (c) 100 cm from the 

M

Q/C

S

W

W

AMT

M

is the net electric flux through the cube? (g) How 
much charge is enclosed within the gaussian surface?

u E
S 

�
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�

Figure P24.22

Section 24.3  Application of Gauss’s Law  
to Various Charge Distributions
 23. In nuclear fission, a nucleus of uranium-238, which 

contains 92 protons, can divide into two smaller 
spheres, each having 46 protons and a radius of 5.90 3 
10215 m. What is the magnitude of the repulsive elec-
tric force pushing the two spheres apart?

 24. The charge per unit length on a long, straight filament 
is 290.0 mC/m. Find the electric field (a) 10.0 cm, 
(b) 20.0 cm, and (c) 100 cm from the filament, where 
distances are measured perpendicular to the length of 
the filament.

 25. A 10.0-g piece of Styrofoam carries a net charge of 
20.700 mC and is suspended in equilibrium above the 
center of a large, horizontal sheet of plastic that has 
a uniform charge density on its surface. What is the 
charge per unit area on the plastic sheet?

 26. Determine the magnitude of the electric field at the 
surface of a lead-208 nucleus, which contains 82 pro-
tons and 126 neutrons. Assume the lead nucleus has 
a volume 208 times that of one proton and consider a 
proton to be a sphere of radius 1.20 3 10215 m.

 27. A large, flat, horizontal sheet of charge has a charge 
per unit area of 9.00 mC/m2. Find the electric field just 
above the middle of the sheet.

 28. Suppose you fill two rubber balloons with air, suspend 
both of them from the same point, and let them hang 
down on strings of equal length. You then rub each 
with wool or on your hair so that the balloons hang 
apart with a noticeable separation between them. 
Make order-of-magnitude estimates of (a) the force on 
each, (b) the charge on each, (c)  the field each cre-
ates at the center of the other, and (d) the total flux of 
electric field created by each balloon. In your solution, 
state the quantities you take as data and the values you 
measure or estimate for them.

 29. Consider a thin, spherical shell of radius 14.0 cm with a 
total charge of 32.0 mC distributed uniformly on its sur-
face. Find the electric field (a) 10.0 cm and (b) 20.0 cm 
from the center of the charge distribution.

 30. A nonconducting wall carries charge with a uniform 
density of 8.60 mC/cm2. (a) What is the electric field 
7.00 cm in front of the wall if 7.00 cm is small compared 
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on the plate. Find (a) the charge density on each face of 
the plate, (b) the electric field just above the plate, and  
(c)  the electric field just below the plate. You may 
assume the charge density is uniform.

 47. A solid conducting sphere of radius 2.00 cm has a 
charge of 8.00 mC. A conducting spherical shell of 
inner radius 4.00 cm and outer radius 5.00 cm is 
concentric with the solid sphere and has a charge of  
24.00 mC. Find the electric field at (a) r 5 1.00 cm,  
(b) r 5 3.00 cm, (c) r 5 4.50 cm, and (d) r 5 7.00 cm 
from the center of this charge configuration.

Additional Problems

 48. Consider a plane surface in 
a uniform electric field as 
in Figure P24.48, where d 5 
15.0 cm and u 5 70.08. If the 
net flux through the surface is  
6.00 N ? m2/C, find the mag-
nitude of the electric field.

 49. Find the electric flux through 
the plane surface shown 
in Figure P24.48 if u 5 60.08, E 5 350 N/C, and d 5 
5.00 cm. The electric field is uniform over the entire 
area of the surface.

 50. A hollow, metallic, spherical shell has exterior radius 
0.750 m, carries no net charge, and is supported on an 
insulating stand. The electric field everywhere just out-
side its surface is 890 N/C radially toward the center  
of the sphere. Explain what you can conclude about  
(a) the amount of charge on the exterior surface of the 
sphere and the distribution of this charge, (b) the 
amount of charge on the interior surface of the sphere 
and its distribution, and (c)  the amount of charge 
inside the shell and its distribution.

 51. A sphere of radius R 5 1.00 m  
surrounds a particle with charge 
Q 5 50.0 mC located at its center 
as shown in Figure P24.51. Find 
the electric flux through a cir-
cular cap of half-angle u 5 45.08.

 52. A sphere of radius R surrounds 
a particle with charge Q located 
at its center as shown in Figure 
P24.51. Find the electric flux 
through a circular cap of half-
angle u.

 53. A very large conducting plate lying in the xy plane car-
ries a charge per unit area of s. A second such plate 
located above the first plate at z 5 z 0 and oriented par-
allel to the xy plane carries a charge per unit area of 
22s. Find the electric field for (a) z , 0, (b) 0 , z , z 0, 
and (c) z . z 0.

 54. A solid, insulating sphere of radius a has a uniform 
charge density throughout its volume and a total charge 
Q. Concentric with this sphere is an uncharged, con-
ducting, hollow sphere whose inner and outer radii are 
b and c as shown in Figure P24.54 (page 744). We wish to  
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axis of the rod, where distances are measured perpen-
dicular to the rod’s axis.

 38. Why is the following 
situation impossible? A 
solid copper sphere 
of radius 15.0 cm is 
in electrostatic equi-
librium and carries 
a charge of 40.0 nC. 
Figure P24.38 shows 
the magnitude of the 
electric field as a func-
tion of radial position 
r measured from the center of the sphere.

 39. A solid metallic sphere of radius a carries total charge 
Q. No other charges are nearby. The electric field 
just outside its surface is keQ /a2 radially outward. At 
this close point, the uniformly charged surface of the 
sphere looks exactly like a uniform flat sheet of charge. 
Is the electric field here given by s/P0 or by s/2P0?

 40. A positively charged particle is at a distance R/2 from 
the center of an uncharged thin, conducting, spherical 
shell of radius R. Sketch the electric field lines set up 
by this arrangement both inside and outside the shell.

 41. A very large, thin, flat plate of aluminum of area A has 
a total charge Q uniformly distributed over its surfaces. 
Assuming the same charge is spread uniformly over 
the upper surface of an otherwise identical glass plate, 
compare the electric fields just above the center of the 
upper surface of each plate.

 42. In a certain region of space, the electric field is E
S

 5
6.00 3 103 x 2

 î, where E
S

 is in newtons per coulomb and 
x is in meters. Electric charges in this region are at rest 
and remain at rest. (a) Find the volume density of elec-
tric charge at x 5 0.300 m. Suggestion: Apply Gauss’s law 
to a box between x 5 0.300 m and x 5 0.300 m 1 dx. 
(b) Could this region of space be inside a conductor?

 43. Two identical conducting spheres each having a radius 
of 0.500 cm are connected by a light, 2.00-m-long con-
ducting wire. A charge of 60.0 mC is placed on one of 
the conductors. Assume the surface distribution of 
charge on each sphere is uniform. Determine the ten-
sion in the wire.

 44. A square plate of copper with 50.0-cm sides has no net 
charge and is placed in a region of uniform electric 
field of 80.0 kN/C directed perpendicularly to the 
plate. Find (a) the charge density of each face of the 
plate and (b) the total charge on each face.

 45. A long, straight wire is surrounded by a hollow metal 
cylinder whose axis coincides with that of the wire. 
The wire has a charge per unit length of l, and the 
cylinder has a net charge per unit length of 2l. From 
this information, use Gauss’s law to find (a) the charge 
per unit length on the inner surface of the cylinder,  
(b) the charge per unit length on the outer surface of 
the cylinder, and (c) the electric field outside the cylin-
der a distance r from the axis.

 46. A thin, square, conducting plate 50.0 cm on a side lies 
in the xy plane. A total charge of 4.00 3 1028 C is placed 
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 59. A uniformly charged spherical shell with positive sur-
face charge density s contains a circular hole in its sur-
face. The radius r of the hole is small compared with 
the radius R of the sphere. What is the electric field at 
the center of the hole? Suggestion: This problem can be 
solved by using the principle of superposition.

 60. An infinitely long, cylindrical, insulating shell of 
inner radius a and outer radius b has a uniform vol-
ume charge density r. A line of uniform linear charge 
density l is placed along the axis of the shell. Deter-
mine the electric field for (a) r , a, (b) a , r , b, and 
(c) r . b.

Challenge Problems

 61. A slab of insulating material has 
a nonuniform positive charge 
density r  5 Cx 2, where x is mea-
sured from the center of the slab 
as shown in Figure P24.61 and C 
is a constant. The slab is infinite 
in the y and z directions. Derive 
expressions for the electric field 
in (a) the exterior regions (ux u  . 
d/2) and (b) the interior region of 
the slab (2d/2 , x , d/2).

 62. Review. An early (incorrect) 
model of the hydrogen atom, 
suggested by J. J. Thomson, proposed that a posi-
tive cloud of charge 1e was uniformly distributed 
throughout the volume of a sphere of radius R, with 
the electron (an equal-magnitude negatively charged 
particle 2e) at the center. (a) Using Gauss’s law, show 
that the electron would be in equilibrium at the cen-
ter and, if displaced from the center a distance r , R,  
would experience a restoring force of the form  
F 5 2Kr, where K is a constant. (b) Show that K 5 
kee 2/R3. (c) Find an expression for the frequency f of 
simple harmonic oscillations that an electron of mass 
me would undergo if displaced a small distance (, R) 
from the center and released. (d) Calculate a numeri-
cal value for R that would result in a frequency of  
2.47 3 1015 Hz, the frequency of the light radiated in 
the most intense line in the hydrogen spectrum.

 63. A closed surface with dimensions a 5 b 5 0.400 m and 
c 5 0.600 m is located as shown in Figure P24.63. The 
left edge of the closed surface is located at position  
x 5 a. The electric field throughout the region is non-
uniform and is given by E

S
5 13.00 1 2.00x 2 2 î N/C,  

where x is in meters. (a) Calculate the net electric flux 
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Figure P24.61  
Problems 61 and 69.
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understand completely the charges and electric fields 
at all locations. (a) Find the charge contained within a 
sphere of radius r , a. (b) From this value, find the mag-
nitude of the electric field for r , a. (c) What charge is 
contained within a sphere of radius r when a , r , b?  
(d)  From this value, find the magnitude of the elec-
tric field for r when a , r , b. (e) Now consider r when  
b , r , c. What is the magnitude of the electric field for 
this range of values of r ? (f) From this value, what must 
be the charge on the inner surface of the hollow sphere? 
(g) From part (f), what 
must be the charge on 
the outer surface of the 
hollow sphere? (h) Con-
sider the three spheri-
cal surfaces of radii a, 
b, and c. Which of these 
surfaces has the largest 
magnitude of surface 
charge density?

 55. A solid insulating sphere of radius a 5 5.00 cm carries 
a net positive charge of Q 5 3.00 mC uniformly distrib-
uted throughout its volume. Concentric with this 
sphere is a conducting spherical shell with inner radius 
b 5 10.0 cm and outer radius c 5 15.0 cm as shown in 
Figure P24.54, having net charge q 5 21.00 mC. Pre-
pare a graph of the magnitude of the electric field due 
to this configuration versus r for 0 , r , 25.0 cm.

 56. Two infinite, nonconducting sheets 
of charge are parallel to each other 
as shown in Figure P24.56. The 
sheet on the left has a uniform sur-
face charge density s, and the one 
on the right has a uniform charge 
density 2s. Calculate the electric 
field at points (a) to the left of, (b) in  
between, and (c) to the right of the 
two sheets. (d) What If? Find the 
electric fields in all three regions if both sheets have 
positive uniform surface charge densities of value s.

 57. For the configuration shown in Figure P24.54, sup-
pose a 5 5.00 cm, b 5 20.0 cm, and c 5 25.0 cm. Fur-
thermore, suppose the electric field at a point 10.0 cm  
from the center is measured to be 3.60 3 103 N/C radi-
ally inward and the electric field at a point 50.0 cm 
from the center is of magnitude 200 N/C and points 
radially outward. From this information, find (a)  the 
charge on the insulating sphere, (b) the net charge on 
the hollow conducting sphere, (c)  the charge on the 
inner surface of the hollow conducting sphere, and 
(d) the charge on the outer surface of the hollow con-
ducting sphere.

 58. An insulating solid sphere of radius a has a uniform vol-
ume charge density and carries a total positive charge 
Q. A spherical gaussian surface of radius r, which shares 
a common center with the insulating sphere, is inflated 
starting from r 5 0. (a) Find an expression for the elec-
tric flux passing through the surface of the gaussian 
sphere as a function of r for r , a. (b) Find an expression 
for the electric flux for r . a. (c) Plot the flux versus r.
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 67. An infinitely long insulating cylinder of radius R has a 
volume charge density that varies with the radius as

r 5 r0aa 2
r
b
b

  where r0, a, and b are positive constants and r is the 
distance from the axis of the cylinder. Use Gauss’s law 
to determine the magnitude of the electric field at 
radial distances (a) r , R and (b) r . R.

 68. A particle with charge Q is located 
on the axis of a circle of radius R at 
a distance b from the plane of the 
circle (Fig. P24.68). Show that if 
one-fourth of the electric flux from 
the charge passes through the cir-
cle, then R 5 !3b.

 69. Review. A slab of insulating mate-
rial (infinite in the y and z direc-
tions) has a thickness d and a uni-
form positive charge density r. An edge view of the 
slab is shown in Figure P24.61. (a) Show that the mag-
nitude of the electric field a distance x from its center 
and inside the slab is E 5 rx/P0. (b) What If? Suppose 
an electron of charge 2e and mass me can move freely 
within the slab. It is released from rest at a distance x 
from the center. Show that the electron exhibits simple 
harmonic motion with a frequency

f 5
1

2p Å re
me P0
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leaving the closed surface. (b)  What net charge is 
enclosed by the surface?

 64. A sphere of radius 2a is made of 
a nonconducting material that 
has a uniform volume charge 
density r. Assume the mate-
rial does not affect the elec-
tric field. A spherical cavity of 
radius a is now removed from 
the sphere as shown in Figure 
P24.64. Show that the electric 
field within the cavity is uni-
form and is given by Ex 5 0 and Ey 5 ra/3P0.

 65. A spherically symmetric charge distribution has a 
charge density given by r 5 a/r, where a is constant. 
Find the electric field within the charge distribution 
as a function of r. Note: The volume element dV for a 
spherical shell of radius r and thickness dr is equal to 
4pr 2dr.

 66. A solid insulating sphere of radius R has a nonuni-
form charge density that varies with r according to 
the expression r 5 Ar 2, where A is a constant and  
r , R is measured from the center of the sphere.  
(a) Show that the magnitude of the electric field out-
side (r . R) the sphere is E  5 AR 5/5P0r 2. (b) Show 
that the magnitude of the electric field inside (r , R) 
the sphere is E 5 Ar 3/5P0. Note: The volume element 
dV for a spherical shell of radius r and thickness dr is 
equal to 4pr 2dr.
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In Chapter 23, we linked our new study of electromagnetism to our earlier studies of 
force. Now we make a new link to our earlier investigations into energy. The concept of 

potential energy was introduced in Chapter 7 in connection with such conservative forces as 

the gravitational force and the elastic force exerted by a spring. By using the law of conser-

vation of energy, we could solve various problems in mechanics that were not solvable with 

an approach using forces. The concept of potential energy is also of great value in the study 

of electricity. Because the electrostatic force is conservative, electrostatic phenomena can 

be conveniently described in terms of an electric potential energy. This idea enables us to 

define a quantity known as electric potential. Because the electric potential at any point in 

an electric field is a scalar quantity, we can use it to describe electrostatic phenomena more 

simply than if we were to rely only on the electric field and electric forces. The concept of 

electric potential is of great practical value in the operation of electric circuits and devices 

that we will study in later chapters.

25.1 Electric Potential and Potential Difference
When a charge q is placed in an electric field E

S
 created by some source charge dis- 

tribution, the particle in a field model tells us that there is an electric force q E
S

25.1

25.1 Electric Potential and 

Potential Difference

25.2 Potential Difference in a 

Uniform Electric Field

25.3 Electric Potential and 

Potential Energy Due  

to Point Charges

25.4 Obtaining the Value of 

the Electric Field from the 

Electric Potential

25.5 Electric Potential Due 

to Continuous Charge 

Distributions

25.6 Electric Potential Due to a 

Charged Conductor

25.7 The Millikan Oil-Drop 

Experiment

25.8 Applications of 

Electrostatics

C H A P T E R 

25 Electric Potential

Processes occurring during 

thunderstorms cause large 

differences in electric potential 

between a thundercloud and the 

ground. The result of this potential 

difference is an electrical discharge 

that we call lightning, such as  

this display. Notice at the left that 

a downward channel of lightning 

(a stepped leader) is about to make 

contact with a channel coming up 

from the ground (a return stroke).  

(Costazzurra/Shutterstock.com)
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acting on the charge. This force is conservative because the force between charges 
described by Coulomb’s law is conservative. Let us identify the charge and the field 
as a system. If the charge is free to move, it will do so in response to the electric 
force. Therefore, the electric field will be doing work on the charge. This work 
is internal to the system. This situation is similar to that in a gravitational system: 
When an object is released near the surface of the Earth, the gravitational force 
does work on the object. This work is internal to the object–Earth system as dis-
cussed in Sections 7.7 and 7.8.

When analyzing electric and magnetic fields, it is common practice to use the 
notation d sS to represent an infinitesimal displacement vector that is oriented tan-
gent to a path through space. This path may be straight or curved, and an integral 
performed along this path is called either a path integral or a line integral (the two 
terms are synonymous).
 For an infinitesimal displacement d sS of a point charge q immersed in an electric 
field, the work done within the charge–field system by the electric field on the charge 
is Wint 5 F

S
e ?d sS 5 q E

S
?d sS. Recall from Equation 7.26 that internal work done in a 

system is equal to the negative of the change in the potential energy of the system: 
Wint 5 2DU. Therefore, as the charge q is displaced, the electric potential energy 
of the charge–field system is changed by an amount dU 5 2Wint 5 2q E

S
?d sS. For a 

finite displacement of the charge from some point � in space to some other point 
�, the change in electric potential energy of the system is

 DU 5 2q 3
�

�
  E
S
?d sS (25.1)

The integration is performed along the path that q follows as it moves from � to 
�. Because the force q E

S
 is conservative, this line integral does not depend on the 

path taken from � to �.
 For a given position of the charge in the field, the charge–field system has a 
potential energy U relative to the configuration of the system that is defined as U 5 
0. Dividing the potential energy by the charge gives a physical quantity that depends 
only on the source charge distribution and has a value at every point in an electric 
field. This quantity is called the electric potential (or simply the potential) V :

 V 5
U
q

 (25.2)

Because potential energy is a scalar quantity, electric potential also is a scalar 
quantity.
 The potential difference DV 5 V� 2 V� between two points � and � in an elec-
tric field is defined as the change in electric potential energy of the system when a 
charge q is moved between the points (Eq. 25.1) divided by the charge:

 DV ;
DU
q

5 23
�

�

 E
S
?d sS (25.3)

In this definition, the infinitesimal displacement d sS is interpreted as the displace-
ment between two points in space rather than the displacement of a point charge 
as in Equation 25.1.
 Just as with potential energy, only differences in electric potential are meaningful. 
We often take the value of the electric potential to be zero at some convenient point 
in an electric field.
 Potential difference should not be confused with difference in potential 
energy. The potential difference between � and � exists solely because of a source 
charge and depends on the source charge distribution (consider points � and 
� in the discussion above without the presence of the charge q).  For a poten-
tial energy to exist, we must have a system of two or more charges. The potential 

 Change in electric potential 
energy of a system

DV ;
DU
q

5 23
�

�
33 E

S
?d sS  Potential difference between 

two points

Pitfall Prevention 25.1
Potential and Potential Energy  
The potential is characteristic of 
the field only, independent of a 
charged particle that may be 
placed in the field. Potential energy 
is characteristic of the charge-field sys-
tem due to an interaction between 
the field and a charged particle 
placed in the field.
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energy belongs to the system and changes only if a charge is moved relative to 
the rest of the system. This situation is similar to that for the electric field. An 
electric field exists solely because of a source charge. An electric force requires two 
charges: the source charge to set up the field and another charge placed within 
that field.
 Let’s now consider the situation in which an external agent moves the charge in 
the field. If the agent moves the charge from � to � without changing the kinetic 
energy of the charge, the agent performs work that changes the potential energy 
of the system: W 5 DU. From Equation 25.3, the work done by an external agent in 
moving a charge q through an electric field at constant velocity is

 W 5 q DV (25.4)

 Because electric potential is a measure of potential energy per unit charge, the 
SI unit of both electric potential and potential difference is joules per coulomb, 
which is defined as a volt (V):

 1 V ; 1 J/C 

That is, as we can see from Equation 25.4, 1 J of work must be done to move a 1-C 
charge through a potential difference of 1 V.
 Equation 25.3 shows that potential difference also has units of electric field times 
distance. It follows that the SI unit of electric field (N/C) can also be expressed in 
volts per meter:

 1 N/C 5 1 V/m 

Therefore, we can state a new interpretation of the electric field:

The electric field is a measure of the rate of change of the electric potential 
with respect to position.

 A unit of energy commonly used in atomic and nuclear physics is the electron 

volt (eV), which is defined as the energy a charge–field system gains or loses when a 
charge of magnitude e (that is, an electron or a proton) is moved through a poten-
tial difference of 1 V. Because 1 V 5 1 J/C and the fundamental charge is equal to 
1.60 3 10219 C, the electron volt is related to the joule as follows:

 1 eV 5 1.60 3 10219 C ? V 5 1.60 3 10219 J (25.5)

For instance, an electron in the beam of a typical dental x-ray machine may have 
a speed of 1.4 3 108 m/s. This speed corresponds to a kinetic energy 1.1 3 10214 J 
(using relativistic calculations as discussed in Chapter 39), which is equivalent to 
6.7 3 104 eV. Such an electron has to be accelerated from rest through a potential 
difference of 67 kV to reach this speed.

Q uick Quiz 25.1  In Figure 25.1, two points � and � are located within a region 
in which there is an electric field. (i) How would you describe the potential dif-
ference DV 5 V� 2 V�? (a) It is positive. (b) It is negative. (c) It is zero. (ii) A 
negative charge is placed at � and then moved to �. How would you describe 
the change in potential energy of the charge–field system for this process? 
Choose from the same possibilities.

25.2 Potential Difference in a Uniform Electric Field
Equations 25.1 and 25.3 hold in all electric fields, whether uniform or varying, but 
they can be simplified for the special case of a uniform field. First, consider a uni-
form electric field directed along the negative y axis as shown in Figure 25.2a. Let’s 
calculate the potential difference between two points � and � separated by a dis-

W 5 q DV

The electric field is a measure of the rate of change of the electric potential
with respect to position.

Q

25.2

�
�

E
S

 

Figure 25.1  (Quick Quiz 25.1) 
Two points in an electric field.

Pitfall Prevention 25.2
Voltage A variety of phrases are 
used to describe the potential dif-
ference between two points, the 
most common being voltage, aris-
ing from the unit for potential. A 
voltage applied to a device, such as 
a television, or across a device is the 
same as the potential difference 
across the device. Despite popular 
language, voltage is not something 
that moves through a device.

Pitfall Prevention 25.3
The Electron Volt The electron 
volt is a unit of energy, NOT of 
potential. The energy of any system 
may be expressed in eV, but this 
unit is most convenient for describ-
ing the emission and absorption 
of visible light from atoms. Ener-
gies of nuclear processes are often 
expressed in MeV.
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tance d, where the displacement sS points from � toward � and is parallel to the 
field lines. Equation 25.3 gives

 V� 2 V� 5 DV 5 23
�

�

E
S
?d sS 5 23

�

�

E ds 1cos 08 2 5 23
�

�

E ds 

Because E is constant, it can be removed from the integral sign, which gives

 DV 5 2E 3
�

�

ds 

 DV 5 2Ed (25.6)

The negative sign indicates that the electric potential at point � is lower than 
at point �; that is, V� , V�. Electric field lines always point in the direction of 
decreasing electric potential as shown in Figure 25.2a.
 Now suppose a charge q moves from � to �. We can calculate the change in the 
potential energy of the charge–field system from Equations 25.3 and 25.6:

 DU 5 q DV 5 2qEd (25.7)

This result shows that if q is positive, then DU is negative. Therefore, in a system 
consisting of a positive charge and an electric field, the electric potential energy 
of the system decreases when the charge moves in the direction of the field. If a 
positive charge is released from rest in this electric field, it experiences an electric 
force q E

S
 in the direction of E

S
 (downward in Fig. 25.2a). Therefore, it accelerates 

downward, gaining kinetic energy. As the charged particle gains kinetic energy, the 
electric potential energy of the charge–field system decreases by an equal amount. 
This equivalence should not be surprising; it is simply conservation of mechanical 
energy in an isolated system as introduced in Chapter 8.
 Figure 25.2b shows an analogous situation with a gravitational field. When a 
particle with mass m is released in a gravitational field, it accelerates downward, 
gaining kinetic energy. At the same time, the gravitational potential energy of the 
object–field system decreases.
 The comparison between a system of a positive charge residing in an electrical 
field and an object with mass residing in a gravitational field in Figure 25.2 is use-
ful for conceptualizing electrical behavior. The electrical situation, however, has 
one feature that the gravitational situation does not: the charge can be negative. 
If q is negative, then DU in Equation 25.7 is positive and the situation is reversed.  

DV 5 2Ed  Potential difference between 
two points in a uniform 
electric field

When a positive charge moves 

from point � to point �, the 
electric potential energy of the 
charge–field system decreases.

When an object with mass moves 

from point � to point �, the 
gravitational potential energy of 
the object–field system decreases.

E
S

 

�

d

q

�

�

a

g
S 

d

m
�

�

b

Figure 25.2 (a) When the elec-
tric field E

S
 is directed downward, 

point � is at a lower electric 
potential than point �. (b) A 
gravitational analog to the situa-
tion in (a).

Pitfall Prevention 25.4
The Sign of DV The negative sign 
in Equation 25.6 is due to the 
fact that we started at point � 
and moved to a new point in the 
same direction as the electric field 
lines. If we started from � and 
moved to �, the potential differ-
ence would be 1Ed. In a uniform 
electric field, the magnitude of 
the potential difference is Ed and 
the sign can be determined by the 
direction of travel.
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Example 25.1   The Electric Field Between Two Parallel Plates of Opposite Charge

A battery has a specified potential difference DV between its terminals and establishes that potential difference between 
conductors attached to the terminals. A 12-V battery is connected between two parallel plates as shown in Figure 25.5. 
The separation between the plates is d 5 0.30 cm, and we assume the electric field between the plates to be uniform. 
(This assumption is reasonable if the plate separation is small relative to the plate dimensions and we do not consider 
locations near the plate edges.) Find the magnitude of the electric field between the plates.

A system consisting of a negative charge and an electric field gains electric potential 
energy when the charge moves in the direction of the field. If a negative charge is 
released from rest in an electric field, it accelerates in a direction opposite the direc-
tion of the field. For the negative charge to move in the direction of the field, an 
external agent must apply a force and do positive work on the charge.

Now consider the more general case of a charged particle that moves between � 
and � in a uniform electric field such that the vector sS is not parallel to the field 
lines as shown in Figure 25.3. In this case, Equation 25.3 gives

 DV 5 23
�

�

E
S
?d sS 5 2 E

S
?3

�

�

d sS 5 2 E
S
? sS (25.8)

where again E
S

 was removed from the integral because it is constant. The change in 
potential energy of the charge–field system is

 DU 5 q DV 5 2q E
S
? sS  (25.9)

 Finally, we conclude from Equation 25.8 that all points in a plane perpendicular 
to a uniform electric field are at the same electric potential. We can see that in 
Figure 25.3, where the potential difference V� 2 V� is equal to the potential dif-
ference V� 2 V�. (Prove this fact to yourself by working out two dot products for 
E
S
? sS: one for sS�S�, where the angle u between E

S
 and sS is arbitrary as shown in 

Figure 25.3, and one for sS�S�, where u 5 0.) Therefore, V� 5 V�. The name equi-

potential surface is given to any surface consisting of a continuous distribution of 
points having the same electric potential.
 The equipotential surfaces associated with a uniform electric field consist of a 
family of parallel planes that are all perpendicular to the field. Equipotential sur-
faces associated with fields having other symmetries are described in later sections.

Q uick Quiz 25.2  The labeled points in Figure 25.4 are on a series of equipoten-
tial surfaces associated with an electric field. Rank (from greatest to least) the 
work done by the electric field on a positively charged particle that moves from 
� to �, from � to �, from � to �, and from � to �.

Change in potential between 
two points in a uniform 

electric field

Q

9 V 

8 V 

7 V 

6 V 

�

�

�

�

�

Figure 25.4  (Quick Quiz 25.2) 
Four equipotential surfaces.

d�

�

�
u

E
S

 

s
S 

Point � is at a lower electric 

potential than point �.

Points � and � are at the 
same  electric potential.

Figure 25.3  A uniform 
electric field directed along 
the positive x axis. Three 
points in the electric field 
are labeled.
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Use Equation 25.6 to evaluate the magnitude of the elec-
tric field between the plates:

E 5
0 VB 2 VA 0

d
5

12 V
0.30 3 1022 m

5  4.0 3 103 V/m

The configuration of plates in Figure 25.5 is called a parallel-plate capacitor and is examined in greater detail in Chapter 26.

Example 25.2   Motion of a Proton in a Uniform Electric Field 

A proton is released from rest at point � in a uniform electric field that has a 
magnitude of 8.0 3 104 V/m (Fig. 25.6). The proton undergoes a displacement 
of magnitude d 5 0.50 m to point � in the direction of E

S
. Find the speed of the 

proton after completing the displacement.

Conceptualize  Visualize the proton in Figure 25.6 moving downward through 
the potential difference. The situation is analogous to an object falling through 
a gravitational field. Also compare this example to Example 23.10 where a posi-
tive charge was moving in a uniform electric field. In that example, we applied 
the particle under constant acceleration and nonisolated system models. Now 
that we have investigated electric potential energy, what model can we use here?

Categorize  The system of the proton and the two plates in Figure 25.6 does not 
interact with the environment, so we model it as an isolated system for energy.

Analyze

AM

S O L U T I O N

Solve for the final speed of the proton and substitute for 
DV  from Equation 25.6:

v 5 Å22e DV
m

5 Å22e 12Ed 2
m

5 Å2e Ed
m

Substitute the changes in energy for both terms: 112mv2 2 0 2 1 e DV 5 0

Write the appropriate reduction of Equation 8.2, the 
conservation of energy equation, for the isolated system 
of the charge and the electric field:

DK 1 DU 5 0

Substitute numerical values: v 5 Å2 11.6 3 10219 C 2 18.0 3 104 V 2 10.50 m 2
1.67 3 10227 kg

5   2.8 3 106 m/s

d

�

�

E
S

 

v�
S

v�� 0S

�

�

�  �  �  �  �  �  �

�  �  �  �  �  �  �

Figure 25.6  (Example 25.2) A 
proton accelerates from � to � in 
the direction of the electric field.

� �

V = 12 V

A
B

d

�

Figure 25.5  (Example 25.1) A 
12-V battery connected to two paral-
lel plates. The electric field between 
the plates has a magnitude given by 
the potential difference DV divided 
by the plate separation d.

 

▸ 25.1 c o n t i n u e d

Conceptualize  In Example 24.5, we illustrated the uniform electric field between parallel plates. The new feature to 
this problem is that the electric field is related to the new concept of electric potential.

Categorize  The electric field is evaluated from a relationship between field and potential given in this section, so we 
categorize this example as a substitution problem.

S O L U T I O N

continued
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25.3 Electric Potential and Potential Energy Due  
to Point Charges

As discussed in Section 23.4, an isolated positive point charge q produces an electric 
field directed radially outward from the charge. To find the electric potential at a 
point located a distance r from the charge, let’s begin with the general expression 
for potential difference, Equation 25.3,

V� 2 V� 5 23
�

�

E
S
?d sS 

where � and � are the two arbitrary points shown in Figure 25.7. At any point in 
space, the electric field due to the point charge is E

S
5 1keq/r 2 2 r̂  (Eq. 23.9), where 

r̂ is a unit vector directed radially outward from the charge. Therefore, the quantity 
E
S
?d sS can be expressed as

E
S
? d sS 5 ke 

q

r 2 r̂ ?d sS

Because the magnitude of r̂ is 1, the dot product r̂ ?d sS 5 ds cos u, where u is the 
angle between r̂ and d sS. Furthermore, ds cos u is the projection of d sS onto r̂; there-
fore, ds cos u 5 dr. That is, any displacement d sS along the path from point � to 
point � produces a change dr in the magnitude of rS, the position vector of the point 
relative to the charge creating the field. Making these substitutions, we find that 
E
S
? d sS 5 1keq/r 2 2dr ; hence, the expression for the potential difference becomes

 V� 2 V� 5 2keq 3
r �

r �

 
dr
r 2 5 ke 

q
r
` r �

r �

 

 V� 2 V� 5 keq c 1
r�

2
1
r�
d  (25.10)

 Equation 25.10 shows us that the integral of E
S
?d sS is independent of the path 

between points � and �. Multiplying by a charge q0 that moves between points � 
and �, we see that the integral of q0 E

S
? d sS is also independent of path. This latter 

integral, which is the work done by the electric force on the charge q0, shows that 
the electric force is conservative (see Section 7.7). We define a field that is related 
to a conservative force as a conservative field. Therefore, Equation 25.10 tells us 
that the electric field of a fixed point charge q is conservative. Furthermore, Equa-
tion 25.10 expresses the important result that the potential difference between any 
two points � and � in a field created by a point charge depends only on the radial 
coordinates r� and r�. It is customary to choose the reference of electric potential 
for a point charge to be V 5 0 at r� 5 .̀ With this reference choice, the electric 
potential due to a point charge at any distance r  from the charge is

 V 5 ke 
q
r
 (25.11)

25.3

V 5 ke

q
r

Pitfall Prevention 25.5
Similar Equation Warning Do not 
confuse Equation 25.11 for the 
electric potential of a point charge 
with Equation 23.9 for the electric 
field of a point charge. Potential 
is proportional to 1/r, whereas 
the magnitude of the field is pro-
portional to 1/r 2. The effect of a 
charge on the space surrounding 
it can be described in two ways. 
The charge sets up a vector elec-
tric field E

S
, which is related to 

the force experienced by a charge 
placed in the field. It also sets up a 
scalar potential V, which is related 
to the potential energy of the two-
charge system when a charge is 
placed in the field.

The two dashed circles represent 
intersections of spherical equi- 
potential surfaces with the page.

dr d

q

�

�

�

�

u

rS 

rS 
rS

sS

�

r̂

Figure 25.7 The potential dif-
ference between points � and � 
due to a point charge q depends 
only on the initial and final radial 
coordinates r� and r�.

Finalize  Because DV is negative for the field, DU is also negative for the proton–field system. The negative value of DU 
means the potential energy of the system decreases as the proton moves in the direction of the electric field. As the 
proton accelerates in the direction of the field, it gains kinetic energy while the electric potential energy of the system 
decreases at the same time.
 Figure 25.6 is oriented so that the proton moves downward. The proton’s motion is analogous to that of an object 
falling in a gravitational field. Although the gravitational field is always downward at the surface of the Earth, an elec-
tric field can be in any direction, depending on the orientation of the plates creating the field. Therefore, Figure 25.6 
could be rotated 908 or 1808 and the proton could move horizontally or upward in the electric field!

 

▸ 25.2 c o n t i n u e d
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We obtain the electric potential resulting from two or more point charges by 
applying the superposition principle. That is, the total electric potential at some 
point P due to several point charges is the sum of the potentials due to the individual 
charges. For a group of point charges, we can write the total electric potential at P as

V 5 ke a
i

 
qi

ri
 (25.12)

Figure 25.8a shows a charge q1, which sets up an electric field throughout space. 
The charge also establishes an electric potential at all points, including point P, 
where the electric potential is V1. Now imagine that an external agent brings a 
charge q2 from infinity to point P. The work that must be done to do this is given 
by Equation 25.4, W 5 q2DV. This work represents a transfer of energy across the 
boundary of the two-charge system, and the energy appears in the system as poten-
tial energy U when the particles are separated by a distance r12 as in Figure 25.8b. 
From Equation 8.2, we have W 5 DU. Therefore, the electric potential energy of a 
pair of point charges1 can be found as follows:

 DU 5 W 5 q2DV    S   U 2 0 5 q 2 ake

q 1

r12
2 0b 

 U 5 ke 
q1q2

r12
 (25.13)

If the charges are of the same sign, then U is positive. Positive work must be done by 
an external agent on the system to bring the two charges near each other (because 
charges of the same sign repel). If the charges are of opposite sign, as in Figure 25.8b, 
then U is negative. Negative work is done by an external agent against the attractive 
force between the charges of opposite sign as they are brought near each other; a force 
must be applied opposite the displacement to prevent q2 from accelerating toward q1.
 If the system consists of more than two charged particles, we can obtain the total 
potential energy of the system by calculating U for every pair of charges and sum-
ming the terms algebraically. For example, the total potential energy of the system 
of three charges shown in Figure 25.9 is

 U 5 ke aq1q2

r12
1

q1q3

r13
1

q2q3

r23
b  (25.14)

Physically, this result can be interpreted as follows. Imagine q1 is fixed at the posi-
tion shown in Figure 25.9 but q2 and q3 are at infinity. The work an external agent 
must do to bring q2 from infinity to its position near q1 is keq1q2/r12, which is the first 
term in Equation 25.14. The last two terms represent the work required to bring q3
from infinity to its position near q1 and q2. (The result is independent of the order 
in which the charges are transported.)

V 5 ke a
i

qiqq
rirr

 Electric potential due to  
several point charges

1The expression for the electric potential energy of a system made up of two point charges, Equation 25.13, is of the 
same form as the equation for the gravitational potential energy of a system made up of two point masses, 2Gm1m2/r 
(see Chapter 13). The similarity is not surprising considering that both expressions are derived from an inverse-
square force law.

q 1r12

V1 � ke
q 1
r12

P

�

q2

q 1r12

�

�

The potential energy of 
the pair of charges is
given by keq1q2/r12.

A potential keq1/r12 
exists at point P due to 
charge q1.

a b

Figure 25.8 (a) Charge q1  

establishes an electric potential 
V1 at point P. (b) Charge q2 is 
brought from infinity to point P.

q 2

q1

q3

r13

r12

r23

�

�

�

The potential energy of this 
system of charges is given by 
Equation 25.14.

Figure 25.9  Three point 
charges are fixed at the positions 
shown.



754 Chapter 25 Electric Potential

 

Example 25.3   The Electric Potential Due to Two Point Charges

As shown in Figure 25.10a, a charge q1 5 2.00 mC is 
located at the origin and a charge q2  5 26.00 mC is 
located at (0, 3.00) m.

(A)  Find the total electric potential due to these charges 
at the point P, whose coordinates are (4.00, 0) m.

Conceptualize  Recognize first that the 2.00-mC and  
26.00-mC charges are source charges and set up an 
electric field as well as a potential at all points in space, 
including point P.

Categorize  The potential is evaluated using an equa-
tion developed in this chapter, so we categorize this 
example as a substitution problem.

S O L U T I O N

Q uick Quiz 25.3  In Figure 25.8b, take q2 to be a negative source charge and q1 
to be a second charge whose sign can be changed. (i) If q1 is initially positive 
and is changed to a charge of the same magnitude but negative, what happens 
to the potential at the position of q1 due to q2? (a) It increases. (b) It decreases. 
(c) It remains the same. (ii) When q1 is changed from positive to negative, what 
happens to the potential energy of the two-charge system? Choose from the 
same possibilities.

Q

 4.00 m  4.00 m

x

y

x

�6.00 mC

y

2.00 mC 3.00 mCP

3.00 m

�6.00 mC

2.00 mC

3.00 m

a b

�

�

� �

�

Figure 25.10  (Example 25.3) (a) The electric potential at P due 
to the two charges q1 and q2 is the algebraic sum of the potentials 
due to the individual charges. (b) A third charge q3 5 3.00 mC is 
brought from infinity to point P.

Substitute numerical values: VP 5 18.988 3 109 N # m2/C2 2 a2.00 3 1026 C
4.00 m

1
26.00 3 1026 C

5.00 m
b

5   26.29 3 103 V

Use Equation 25.12 for the system of two 
source charges:

VP 5 ke aq1

r1
1

q2

r2
b

(B)  Find the change in potential energy of the system of two charges plus a third charge q3 5 3.00 mC as the latter 
charge moves from infinity to point P (Fig. 25.10b).

S O L U T I O N

Substitute numerical values to evaluate DU : DU 5 Uf  2 Ui 5 q3VP 2 0 5 (3.00 3 1026 C)(26.29 3 103 V)

5   21.89 3 1022 J

Assign Ui 5 0 for the system to the initial configura-
tion in which the charge q3 is at infinity. Use Equa-
tion 25.2 to evaluate the potential energy for the 
configuration in which the charge is at P :

Uf 5 q3VP

Therefore, because the potential energy of the system has decreased, an external agent has to do positive work to 
remove the charge q3 from point P back to infinity.

You are working through this example with a classmate and she says, “Wait a minute! In part (B), we 
ignored the potential energy associated with the pair of charges q1 and q2!” How would you respond?

Answer  Given the statement of the problem, it is not necessary to include this potential energy because part (B) asks 
for the change in potential energy of the system as q3 is brought in from infinity. Because the configuration of charges 
q1 and q2 does not change in the process, there is no DU associated with these charges. Had part (B) asked to find the 
change in potential energy when all three charges start out infinitely far apart and are then brought to the positions in 
Figure 25.10b, however, you would have to calculate the change using Equation 25.14.

WHAT IF ?
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25.4 Obtaining the Value of the Electric Field  
from the Electric Potential

The electric field E
S

 and the electric potential V are related as shown in Equation 
25.3, which tells us how to find DV if the electric field E

S
 is known. What if the situ-

ation is reversed? How do we calculate the value of the electric field if the electric 
potential is known in a certain region?
 From Equation 25.3, the potential difference dV between two points a distance 
ds apart can be expressed as

 dV 5 2 E
S
?d sS  (25.15)

If the electric field has only one component Ex, then E
S
?d sS 5 Ex dx . Therefore, 

Equation 25.15 becomes dV 5 2Ex dx, or

 Ex 5 2
dV
dx

 (25.16)

That is, the x component of the electric field is equal to the negative of the deriv-
ative of the electric potential with respect to x. Similar statements can be made 
about the y and z components. Equation 25.16 is the mathematical statement of 
the electric field being a measure of the rate of change with position of the electric 
potential as mentioned in Section 25.1.
 Experimentally, electric potential and position can be measured easily with a 
voltmeter (a device for measuring potential difference) and a meterstick. Conse-
quently, an electric field can be determined by measuring the electric potential at 
several positions in the field and making a graph of the results. According to Equa-
tion 25.16, the slope of a graph of V versus x at a given point provides the magnitude 
of the electric field at that point.
 Imagine starting at a point and then moving through a displacement d sS along 
an equipotential surface. For this motion, dV 5 0 because the potential is constant 
along an equipotential surface. From Equation 25.15, we see that dV 5 2 E

S
?d sS 5 0; 

therefore, because the dot product is zero, E
S

 must be perpendicular to the displace-
ment along the equipotential surface. This result shows that the equipotential sur-
faces must always be perpendicular to the electric field lines passing through them.
 As mentioned at the end of Section 25.2, the equipotential surfaces associated 
with a uniform electric field consist of a family of planes perpendicular to the 
field lines. Figure 25.11a shows some representative equipotential surfaces for this 
situation.

25.4

Figure 25.11 Equipotential surfaces (the dashed blue lines are intersections of these surfaces with the page) and elec-
tric field lines. In all cases, the equipotential surfaces are perpendicular to the electric field lines at every point.

q

�

A uniform electric field produced 
by an infinite sheet of charge

A spherically symmetric electric 
field produced by a point charge

An electric field produced by an 
electric dipole

a b c

E
S
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If the charge distribution creating an electric field has spherical symmetry such 
that the volume charge density depends only on the radial distance r, the electric 
field is radial. In this case, E

S
? d sS 5 Er dr,  and we can express dV as dV 5 2Er dr. 

Therefore,

 Er 5 2
dV
dr

 (25.17)

For example, the electric potential of a point charge is V 5 keq/r. Because V is a 
function of r only, the potential function has spherical symmetry. Applying Equa-
tion 25.17, we find that the magnitude of the electric field due to the point charge 
is E r 5 keq/r 2, a familiar result. Notice that the potential changes only in the radial 
direction, not in any direction perpendicular to r. Therefore, V (like Er) is a func-
tion only of r, which is again consistent with the idea that equipotential surfaces are 
perpendicular to field lines. In this case, the equipotential surfaces are a family of 
spheres concentric with the spherically symmetric charge distribution (Fig. 25.11b). 
The equipotential surfaces for an electric dipole are sketched in Figure 25.11c.
 In general, the electric potential is a function of all three spatial coordinates. If 
V(r) is given in terms of the Cartesian coordinates, the electric field components 
Ex , Ey , and Ez can readily be found from V(x, y, z) as the partial derivatives2

 Ex 5 2
'V
'x
  Ey 5 2

'V
'y
  Ez 5 2

'V
'z

 (25.18)

Q uick Quiz 25.4  In a certain region of space, the electric potential is zero every-
where along the x axis. (i) From this information, you can conclude that the x 
component of the electric field in this region is (a) zero, (b) in the positive x 
direction, or (c) in the negative x direction. (ii) Suppose the electric potential 
is 12 V everywhere along the x axis. From the same choices, what can you con-
clude about the x component of the electric field now?

25.5  Electric Potential Due to Continuous  
Charge Distributions

In Section 25.3, we found how to determine the electric potential due to a small 
number of charges. What if we wish to find the potential due to a continuous dis-
tribution of charge? The electric potential in this situation can be calculated using 
two different methods. The first method is as follows. If the charge distribution is 
known, we consider the potential due to a small charge element dq, treating this 
element as a point charge (Fig. 25.12). From Equation 25.11, the electric potential 
dV at some point P due to the charge element dq is

 dV 5 ke 
dq
r

 (25.19)

where r is the distance from the charge element to point P. To obtain the total 
potential at point P, we integrate Equation 25.19 to include contributions from all 
elements of the charge distribution. Because each element is, in general, a different 
distance from point P and ke is constant, we can express V as

 V 5 ke 3  
dq
r

 (25.20)

Finding the electric field  
from the potential

Q

25.5

V 5 ke 3 dq
r

Electric potential due to  
a continuous charge 

distribution
2In vector notation, E

S
 is often written in Cartesian coordinate systems as

E
S

5 2=V 5 2a î 
'
'x

1 ĵ 
'
'y

1 k̂ 
'
'z
bV

where = is called the gradient operator.

P

dq1

r1

r2

r3

dq2

dq3

Figure 25.12  The electric 
potential at point P due to a 
continuous charge distribution 
can be calculated by dividing the 
charge distribution into elements 
of charge dq and summing the 
electric potential contributions 
over all elements. Three sample 
elements of charge are shown.
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In effect, we have replaced the sum in Equation 25.12 with an integral. In this 
expression for V, the electric potential is taken to be zero when point P is infinitely 
far from the charge distribution.
 The second method for calculating the electric potential is used if the electric 
field is already known from other considerations such as Gauss’s law. If the charge 
distribution has sufficient symmetry, we first evaluate E

S
 using Gauss’s law and then 

substitute the value obtained into Equation 25.3 to determine the potential differ-
ence DV between any two points. We then choose the electric potential V to be zero 
at some convenient point.

Problem-Solving Strategy  Calculating Electric Potential

The following procedure is recommended for solving problems that involve the 
determination of an electric potential due to a charge distribution.

1. Conceptualize. Think carefully about the individual charges or the charge distri-
bution you have in the problem and imagine what type of potential would be created. 
Appeal to any symmetry in the arrangement of charges to help you visualize the 
potential.

2. Categorize. Are you analyzing a group of individual charges or a continuous 
charge distribution? The answer to this question will tell you how to proceed in the 
Analyze step.

3. Analyze. When working problems involving electric potential, remember that it is 
a scalar quantity, so there are no components to consider. Therefore, when using the 
superposition principle to evaluate the electric potential at a point, simply take the 
algebraic sum of the potentials due to each charge. You must keep track of signs, 
however.
 As with potential energy in mechanics, only changes in electric potential are sig-
nificant; hence, the point where the potential is set at zero is arbitrary. When dealing 
with point charges or a finite-sized charge distribution, we usually define V 5 0 to be 
at a point infinitely far from the charges. If the charge distribution itself extends to 
infinity, however, some other nearby point must be selected as the reference point.

(a) If you are analyzing a group of individual charges: Use the superposition principle, 
which states that when several point charges are present, the resultant potential 
at a point P in space is the algebraic sum of the individual potentials at P due to the 
individual charges (Eq. 25.12). Example 25.4 below demonstrates this procedure.

(b) If you are analyzing a continuous charge distribution: Replace the sums for evaluat-
ing the total potential at some point P from individual charges by integrals (Eq. 
25.20). The total potential at P is obtained by integrating over the entire charge 
distribution. For many problems, it is possible in performing the integration to 
express dq and r in terms of a single variable. To simplify the integration, give 
careful consideration to the geometry involved in the problem. Examples 25.5 
through 25.7 demonstrate such a procedure.

 To obtain the potential from the electric field: Another method used to obtain the 
potential is to start with the definition of the potential difference given by Equation 
25.3. If E

S
 is known or can be obtained easily (such as from Gauss’s law), the line inte-

gral of E
S
?d sS  can be evaluated.

4. Finalize. Check to see if your expression for the potential is consistent with your 
mental representation and reflects any symmetry you noted previously. Imagine 
varying parameters such as the distance of the observation point from the charges 
or the radius of any circular objects to see if the mathematical result changes in a 
reasonable way.
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Example 25.4   The Electric Potential Due to a Dipole

An electric dipole consists of two charges of equal magnitude and opposite sign 
separated by a distance 2a as shown in Figure 25.13. The dipole is along the x axis 
and is centered at the origin.

(A)  Calculate the electric potential at point P on the y axis.

Conceptualize  Compare this situation to that in part (B) of Example 23.6. It is the 
same situation, but here we are seeking the electric potential rather than the electric 
field.

Categorize  We categorize the problem as one in which we have a small number of 
particles rather than a continuous distribution of charge. The electric potential can be evaluated by summing the 
potentials due to the individual charges.

S O L U T I O N
aa

q

R

P

x

x

y

�q
� �

y

Figure 25.13  (Example 25.4) 
An electric dipole located on the 
x axis.

Analyze  Use Equation 25.12 to find the electric potential 
at P due to the two charges:

VP 5 ke a
i

 
qi

ri
5 ke a q

"a 2 1 y 2
1

2q

"a 2 1 y 2
b 5 0

(B)  Calculate the electric potential at point R on the positive x axis.

S O L U T I O N

Use Equation 25.12 to find the electric potential at R due 
to the two charges:

VR 5 ke a
i

 
qi

ri
5 ke a 2q

x 2 a
1

q

x 1 a
b 5 2

2keqa

x 2 2 a 2

(C)  Calculate V and Ex at a point on the x axis far from the dipole.

S O L U T I O N

Use Equation 25.16 and this result to calculate the x 
component of the electric field at a point on the x axis 
far from the dipole:

Ex 5 2
dV
dx

5 2
d
dx
a2 2keqa

x 2 b
5 2ke qa 

d
dx
a 1

x 2b 5 2
4ke qa

x 3  1x .. a 2

For point R far from the dipole such that x .. a, neglect 
a2 in the denominator of the answer to part (B) and 
write V in this limit:

VR 5 lim
x ..a

 a2 2keqa

x 2 2 a 2b < 2
2keqa

x 2  1x .. a 2

Finalize  The potentials in parts (B) and (C) are negative because points on the positive x axis are closer to the nega-
tive charge than to the positive charge. For the same reason, the x component of the electric field is negative. Notice 
that we have a 1/r 3 falloff of the electric field with distance far from the dipole, similar to the behavior of the electric 
field on the y axis in Example 23.6.

 Suppose you want to find the electric field at a point P on the y axis. In part (A), the electric potential was 
found to be zero for all values of y. Is the electric field zero at all points on the y axis?

Answer  No. That there is no change in the potential along the y axis tells us only that the y component of the electric 
field is zero. Look back at Figure 23.13 in Example 23.6. We showed there that the electric field of a dipole on the y 
axis has only an x component. We could not find the x component in the current example because we do not have an 
expression for the potential near the y axis as a function of x.

WHAT IF ?
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Example 25.5   Electric Potential Due to a Uniformly Charged Ring

(A)  Find an expression for the electric potential at a point P located on the per-
pendicular central axis of a uniformly charged ring of radius a and total charge Q.

Conceptualize  Study Figure 25.14, in which the ring is oriented so that its plane 
is perpendicular to the x axis and its center is at the origin. Notice that the 
symmetry of the situation means that all the charges on the ring are the same 
distance from point P. Compare this example to Example 23.8. Notice that no 
vector considerations are necessary here because electric potential is a scalar.

Categorize  Because the ring consists of a continuous distribution of charge 
rather than a set of discrete charges, we must use the integration technique rep-
resented by Equation 25.20 in this example.

Analyze  We take point P to be at a distance x from the center of the ring as 
shown in Figure 25.14.

S O L U T I O N
a2�x2

dq

a

P
xx

Figure 25.14  (Example 25.5) A uni-
formly charged ring of radius a lies in 
a plane perpendicular to the x axis. 
All elements dq of the ring are the 
same distance from a point P lying  
on the x axis.

Noting that a and x do not vary for an integration over 
the ring, bring "a 2 1 x 2 in front of the integral sign 
and integrate over the ring:

V 5
ke"a 2 1 x 2

 3 dq 5
keQ"a 2 1 x 2

 (25.21)

Use Equation 25.20 to express V in terms of the 
geometry:

V 5 ke 3 
dq

r
5 ke 3 

dq

"a 2 1 x 2

(B)  Find an expression for the magnitude of the electric field at point P.

S O L U T I O N

From symmetry, notice that along the x axis E
S

 can have 
only an x component. Therefore, apply Equation 25.16 to 
Equation 25.21:

Ex 5 2
dV
dx

5 2k eQ 
d
dx

 1a 2 1 x 2 221/2

5 2keQ 121
2 2 1a 2 1 x 2 223/2 12x 2

Ex 5 
k e x1a 2 1 x 2 23/2 Q  (25.22)

Finalize  The only variable in the expressions for V and Ex is x. That is not surprising because our calculation is valid 
only for points along the x axis, where y and z are both zero. This result for the electric field agrees with that obtained 
by direct integration (see Example 23.8). For practice, use the result of part (B) in Equation 25.3 to verify that the 
potential is given by the expression in part (A).

Example 25.6   Electric Potential Due to a Uniformly Charged Disk

A uniformly charged disk has radius R and surface charge density s.

(A)  Find the electric potential at a point P along the perpendicular central axis of the disk.

Conceptualize  If we consider the disk to be a set of concentric rings, we can use our result from Example 25.5—
which gives the potential due to a ring of radius a—and sum the contributions of all rings making up the disk. Figure 

S O L U T I O N

continued
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25.15 shows one such ring. Because point P is on 
the central axis of the disk, symmetry again tells 
us that all points in a given ring are the same dis-
tance from P.

Categorize  Because the disk is continuous, we 
evaluate the potential due to a continuous charge 
distribution rather than a group of individual 
charges.

As in Example 25.5, use Equation 25.16 to find the elec-
tric field at any axial point:

Ex 5 2
dV
dx

5 2pke s c1 2
x1R 2 1 x2 21/2 d  (25.24)

Finalize  Compare Equation 25.24 with the result of Example 23.9. They are the same. The calculation of V and E
S

 for 
an arbitrary point off the x axis is more difficult to perform because of the absence of symmetry and we do not treat 
that situation in this book.

This integral is of the common form e  un du, where 
n 5 21

2 and u 5 r 2 1 x 2, and has the value un11/(n 1 1). 
Use this result to evaluate the integral:

V 5 2pke s 3 1R 2 1 x2 21/2 2 x 4  (25.23)

To obtain the total potential at P, integrate this expression 
over the limits r 5 0 to r 5 R, noting that x is a constant:

V 5 pke s 3
R

0
  

2r dr

"r 2 1 x 2
5 pke s 3

R

0
 1r 2 1 x 2 221/2 2r dr

Use this result in Equation 25.21 in Example 25.5 (with a 
replaced by the variable r and Q replaced by the differen-
tial dq) to find the potential due to the ring:

dV 5
ke dq

"r 2 1 x 2
5

ke 2psr dr

"r 2 1 x 2

Analyze  Find the amount of charge dq on a ring of radius 
r and width dr as shown in Figure 25.15:

dq 5 s dA 5 s 12pr dr 2 5 2psr dr

(B)  Find the x component of the electric field at a point P along the perpendicular central axis of the disk.

S O L U T I O N

Example 25.7   Electric Potential Due to a Finite Line of Charge

A rod of length , located along the x axis has a total charge Q and a 
uniform linear charge density l. Find the electric potential at a point P 
located on the y axis a distance a from the origin (Fig. 25.16).

Conceptualize  The potential at P due to every segment of charge on the 
rod is positive because every segment carries a positive charge. Notice that 
we have no symmetry to appeal to here, but the simple geometry should 
make the problem solvable.

Categorize  Because the rod is continuous, we evaluate the potential due to 
a continuous charge distribution rather than a group of individual charges.

Analyze  In Figure 25.16, the rod lies along the x axis, dx is the length of one 
small segment, and dq is the charge on that segment. Because the rod has a 
charge per unit length l, the charge dq on the small segment is dq 5 l dx.

S O L U T I O N
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dr
dA � 2pr dr 

x
P

r
R

r 2�x2

x

Figure 25.15  (Example 25.6) A 
uniformly charged disk of radius 
R lies in a plane perpendicular to 
the x axis. The calculation of the 
electric potential at any point P on 
the x axis is simplified by dividing 
the disk into many rings of radius r 
and width dr, with area 2pr dr.

dx

�

x
x

O

dq

ra

P

y

Figure 25.16  (Example 25.7) A uniform line 
charge of length , located along the x axis. To 
calculate the electric potential at P, the line 
charge is divided into segments each of length 
dx and each carrying a charge dq 5 l dx.
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25.6 Electric Potential Due to a Charged Conductor
In Section 24.4, we found that when a solid conductor in equilibrium carries a net 
charge, the charge resides on the conductor’s outer surface. Furthermore, the elec-
tric field just outside the conductor is perpendicular to the surface and the field 
inside is zero.

We now generate another property of a charged conductor, related to electric 
potential. Consider two points � and � on the surface of a charged conductor as 
shown in Figure 25.17. Along a surface path connecting these points, E

S
 is always 

25.6

What if you were asked to find the electric 
field at point P ? Would that be a simple calculation?

Answer  Calculating the electric field by means of Equa-
tion 23.11 would be a little messy. There is no symmetry 
to appeal to, and the integration over the line of charge 
would represent a vector addition of electric fields at point 
P. Using Equation 25.18, you could find Ey by replacing a 
with y in Equation 25.25 and performing the differentia-
tion with respect to y. Because the charged rod in Figure 

WHAT IF ? 25.16 lies entirely to the right of x 5 0, the electric field at 
point P would have an x component to the left if the rod is 
charged positively. You cannot use Equation 25.18 to find 
the x component of the field, however, because the poten-
tial due to the rod was evaluated at a specific value of  
x (x 5 0) rather than a general value of x. You would have 
to find the potential as a function of both x and y to be 
able to find the x and y components of the electric field 
using Equation 25.18.

Evaluate the result between the limits: V 5 ke 
Q

,
 3ln 1, 1 "a 2 1 ,2 2 2 ln a 4 5 ke 

Q

,
  ln a, 1 "a 2 1 ,2

a
b  (25.25)

Noting that ke and l 5 Q /, are constants and can be 
removed from the integral, evaluate the integral with 
the help of Appendix B:

V 5 ke l 3
,

0
  

dx

"a 2 1 x 2
5 ke 

Q

,
  ln 1x 1 "a 2 1 x 2 2 ` ,

0

Find the total potential at P by integrating this expres-
sion over the limits x 5 0 to x 5 ,:

V 5 3
,

0
 ke 

l dx

"a 2 1 x 2

Find the potential at P due to one segment of the rod  
at an arbitrary position x :

dV 5 ke 
dq

r
5 ke 

l dx

"a 2 1 x 2

Pitfall Prevention 25.6
Potential May Not Be Zero  
The electric potential inside the 
conductor is not necessarily zero 
in Figure 25.17, even though the 
electric field is zero. Equation 
25.15 shows that a zero value of 
the field results in no change in 
the potential from one point 
to another inside the conduc-
tor. Therefore, the potential 
everywhere inside the conductor, 
including the surface, has the 
same value, which may or may not 
be zero, depending on where the 
zero of potential is defined.

Notice from the spacing of the 
positive signs that the surface 
charge density is nonuniform.

�
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E
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Figure 25.17  An arbitrarily shaped conductor carrying a 
positive charge. When the conductor is in electrostatic equi-
librium, all the charge resides at the surface, E

S
5 0 inside 

the conductor, and the direction of E
S

 immediately outside 
the conductor is perpendicular to the surface. The electric 
potential is constant inside the conductor and is equal to the 
potential at the surface. 

Finalize  If , ,, a, the potential at P should approach that of a point charge because the rod is very short compared 
to the distance from the rod to P.  By using a series expansion for the natural logarithm from Appendix B.5, it is easy 
to show that Equation 25.25 becomes V = keQ /a.
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perpendicular to the displacement d sS; therefore, E
S
? d sS 5 0. Using this result and 

Equation 25.3, we conclude that the potential difference between � and � is nec-
essarily zero:

 V� 2 V� 5 2 3
�

�

E
S
?d sS 5 0 

This result applies to any two points on the surface. Therefore, V is constant every-
where on the surface of a charged conductor in equilibrium. That is,

the surface of any charged conductor in electrostatic equilibrium is an equi-
potential surface: every point on the surface of a charged conductor in equi-
librium is at the same electric potential. Furthermore, because the electric 
field is zero inside the conductor, the electric potential is constant everywhere 
inside the conductor and equal to its value at the surface. 

Because of the constant value of the potential, no work is required to move a charge 
from the interior of a charged conductor to its surface.
 Consider a solid metal conducting sphere of radius R and total positive charge Q 
as shown in Figure 25.18a. As determined in part (A) of Example 24.3, the electric 
field outside the sphere is keQ /r 2 and points radially outward. Because the field 
outside a spherically symmetric charge distribution is identical to that of a point 
charge, we expect the potential to also be that of a point charge, keQ /r. At the 
surface of the conducting sphere in Figure 25.18a, the potential must be keQ /R. 
Because the entire sphere must be at the same potential, the potential at any point 
within the sphere must also be keQ /R. Figure 25.18b is a plot of the electric poten-
tial as a function of r, and Figure 25.18c shows how the electric field varies with r.
 When a net charge is placed on a spherical conductor, the surface charge density 
is uniform as indicated in Figure 25.18a. If the conductor is nonspherical as in Fig-
ure 25.17, however, the surface charge density is high where the radius of curvature 
is small (as noted in Section 24.4) and low where the radius of curvature is large. 
Because the electric field immediately outside the conductor is proportional to the 
surface charge density, the electric field is large near convex points having small radii 
of curvature and reaches very high values at sharp points. In Example 25.8, the rela-
tionship between electric field and radius of curvature is explored mathematically.

the surface of any charged conductor in electrostatic equilibrium is an equi-
potential surface: every point on the surface of a charged conductor in equi-
librium is at the same electric potential. Furthermore, because the electric 
field is zero inside the conductor, the electric potential is constant everywhere
inside the conductor and equal to its value at the surface.

b

c

a R

V

keQ
R

keQ
r

r

E
keQ

r 2

r
R

�

�

�

� �

� �

�

Figure 25.18  (a) The excess 
charge on a conducting sphere of 
radius R is uniformly distributed 
on its surface. (b) Electric potential 
versus distance r from the center 
of the charged conducting sphere. 
(c) Electric field magnitude versus 
distance r from the center of the 
charged conducting sphere.

Example 25.8   Two Connected Charged Spheres

Two spherical conductors of radii r1 and r2 are separated by a distance much 
greater than the radius of either sphere. The spheres are connected by a con-
ducting wire as shown in Figure 25.19. The charges on the spheres in equilib-
rium are q1 and q2, respectively, and they are uniformly charged. Find the ratio 
of the magnitudes of the electric fields at the surfaces of the spheres.

Conceptualize  Imagine the spheres are much farther apart than shown in Fig-
ure 25.19. Because they are so far apart, the field of one does not affect the 
charge distribution on the other. The conducting wire between them ensures 
that both spheres have the same electric potential.

Categorize  Because the spheres are so far apart, we model the charge dis-
tribution on them as spherically symmetric, and we can model the field and 
potential outside the spheres to be that due to point charges.

S O L U T I O N

r1

q1

r2

q2

Figure 25.19  (Example 25.8) Two 
charged spherical conductors connected 
by a conducting wire. The spheres are at 
the same electric potential V.

Analyze  Set the electric potentials at the surfaces of the 
spheres equal to each other:

V 5 ke 
q1

r1
5 ke 

q2

r2
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A Cavity Within a Conductor
Suppose a conductor of arbitrary shape contains a cavity as shown in Figure 25.20. 
Let’s assume no charges are inside the cavity. In this case, the electric field inside 
the cavity must be zero regardless of the charge distribution on the outside surface 
of the conductor as we mentioned in Section 24.4. Furthermore, the field in the 
cavity is zero even if an electric field exists outside the conductor.
 To prove this point, remember that every point on the conductor is at the same 
electric potential; therefore, any two points � and � on the cavity’s surface must 
be at the same potential. Now imagine a field E

S
 exists in the cavity and evaluate the 

potential difference V� 2 V� defined by Equation 25.3:

 V� 2 V� 5 23
�

�

E
S
?d sS 

Because V� 2 V� 5 0, the integral of E
S
? d sS  must be zero for all paths between  

any two points � and � on the conductor. The only way that can be true for all 
paths is if E

S
 is zero everywhere in the cavity. Therefore, a cavity surrounded by con-

ducting walls is a field-free region as long as no charges are inside the cavity.

Corona Discharge
A phenomenon known as corona discharge is often observed near a conductor 
such as a high-voltage power line. When the electric field in the vicinity of the con-
ductor is sufficiently strong, electrons resulting from random ionizations of air  
molecules near the conductor accelerate away from their parent molecules. These 
rapidly moving electrons can ionize additional molecules near the conductor, creat-
ing more free electrons. The observed glow (or corona discharge) results from the 
recombination of these free electrons with the ionized air molecules. If a conduc-
tor has an irregular shape, the electric field can be very high near sharp points or 
edges of the conductor; consequently, the ionization process and corona discharge 
are most likely to occur around such points.
 Corona discharge is used in the electrical transmission industry to locate bro-
ken or faulty components. For example, a broken insulator on a transmission 
tower has sharp edges where corona discharge is likely to occur. Similarly, corona 
discharge will occur at the sharp end of a broken conductor strand. Observation 
of these discharges is difficult because the visible radiation emitted is weak and 
most of the radiation is in the ultraviolet. (We will discuss ultraviolet radiation and 
other portions of the electromagnetic spectrum in Section 34.7.) Even use of tra-
ditional ultraviolet cameras is of little help because the radiation from the corona 

Solve for the ratio of charges on the spheres: (1)   
q1

q2
5

r1

r2

Write expressions for the magnitudes of the electric 
fields at the surfaces of the spheres:

E1 5 ke 
q1

r1
2 and E2 5 ke 

q2

r2
2

Evaluate the ratio of these two fields:
E 1

E 2
5

q1

q2
 

r2
2

r1
2

Substitute for the ratio of charges from Equation (1): (2)   
E 1

E 2
5

r1

r2
 

r2
2

r1
2 5

r2

r1

Finalize  The field is stronger in the vicinity of the smaller sphere even though the electric potentials at the surfaces of 
both spheres are the same. If r 2 S 0, then E 2 S ,̀ verifying the statement above that the electric field is very large at 
sharp points.

�

�

The electric field in the cavity is 
zero regardless of the charge on 
the conductor.

Figure 25.20  A conductor in 
electrostatic equilibrium contain-
ing a cavity.
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discharge is overwhelmed by ultraviolet radiation from the Sun. Newly developed 
dual- spectrum devices combine a narrow-band ultraviolet camera with a visible-
light camera to show a daylight view of the corona discharge in the actual location 
on the transmission tower or cable. The ultraviolet part of the camera is designed 
to operate in a wavelength range in which radiation from the Sun is very weak.

25.7 The Millikan Oil-Drop Experiment
Robert Millikan performed a brilliant set of experiments from 1909 to 1913 in 
which he measured e, the magnitude of the elementary charge on an electron, and 
demonstrated the quantized nature of this charge. His apparatus, diagrammed in 
Figure 25.21, contains two parallel metallic plates. Oil droplets from an atomizer 
are allowed to pass through a small hole in the upper plate. Millikan used x-rays 
to ionize the air in the chamber so that freed electrons would adhere to the oil 
drops, giving them a negative charge. A horizontally directed light beam is used to 
illuminate the oil droplets, which are viewed through a telescope whose long axis is 
perpendicular to the light beam. When viewed in this manner, the droplets appear 
as shining stars against a dark background and the rate at which individual drops 
fall can be determined.

Let’s assume a single drop having a mass m and carrying a charge q is being 
viewed and its charge is negative. If no electric field is present between the plates, 
the two forces acting on the charge are the gravitational force mgS acting down-
ward3 and a viscous drag force F

S
D  acting upward as indicated in Figure 25.22a. The 

drag force is proportional to the drop’s speed as discussed in Section 6.4. When the 
drop reaches its terminal speed vT the two forces balance each other (mg 5 FD).
 Now suppose a battery connected to the plates sets up an electric field between 
the plates such that the upper plate is at the higher electric potential. In this case, a 
third force q E

S
 acts on the charged drop. The particle in a field model applies twice 

to the particle: it is in a gravitational field and an electric field. Because q is negative 
and E

S
 is directed downward, this electric force is directed upward as shown in Fig-

ure 25.22b. If this upward force is strong enough, the drop moves upward and the 
drag force F

S
rD  acts downward. When the upward electric force q E

S
 balances the sum 

of the gravitational force and the downward drag force F
S
rD , the drop reaches a new 

terminal speed v9T in the upward direction.
 With the field turned on, a drop moves slowly upward, typically at rates of hun-
dredths of a centimeter per second. The rate of fall in the absence of a field is 
comparable. Hence, one can follow a single droplet for hours, alternately rising and 
falling, by simply turning the electric field on and off.

25.7

vS

Telescope with
scale in eyepiece

Oil droplets

Pinhole

d
q

� �

Figure 25.21 Schematic draw-
ing of the Millikan oil-drop 
apparatus.

3There is also a buoyant force on the oil drop due to the surrounding air. This force can be incorporated as a correc-
tion in the gravitational force mgS on the drop, so we will not consider it in our analysis.
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With the electric field off, the 
droplet falls at terminal velocity 
vT under the influence of the 
gravitational and drag forces.

S

When the electric field is turned 
on, the droplet moves upward at 
terminal velocity vT�  under the 
influence of the electric, 
gravitational, and drag forces.

S

Figure 25.22  The forces acting 
on a negatively charged oil drop-
let in the Millikan experiment.
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After recording measurements on thousands of droplets, Millikan and his 
coworkers found that all droplets, to within about 1% precision, had a charge equal 
to some integer multiple of the elementary charge e :

q 5 ne    n 5 0, 21, 22, 23, . . .

where e 5 1.60 3 10219 C. Millikan’s experiment yields conclusive evidence that 
charge is quantized. For this work, he was awarded the Nobel Prize in Physics in 1923.

25.8 Applications of Electrostatics
The practical application of electrostatics is represented by such devices as light-
ning rods and electrostatic precipitators and by such processes as xerography and 
the painting of automobiles. Scientific devices based on the principles of electro-
statics include electrostatic generators, the field-ion microscope, and ion-drive 
rocket engines. Details of two devices are given below.

The Van de Graaff Generator
Experimental results show that when a charged conductor is placed in contact with 
the inside of a hollow conductor, all the charge on the charged conductor is trans-
ferred to the hollow conductor. In principle, the charge on the hollow conductor 
and its electric potential can be increased without limit by repetition of the process.

In 1929, Robert J. Van de Graaff (1901–1967) used this principle to design and 
build an electrostatic generator, and a schematic representation of it is given in 
Figure 25.23. This type of generator was once used extensively in nuclear physics 
research. Charge is delivered continuously to a high-potential electrode by means 
of a moving belt of insulating material. The high-voltage electrode is a hollow metal 
dome mounted on an insulating column. The belt is charged at point � by means of 
a corona discharge between comb-like metallic needles and a grounded grid. The 
needles are maintained at a positive electric potential of typically 104 V. The positive 
charge on the moving belt is transferred to the dome by a second comb of needles at 
point �. Because the electric field inside the dome is negligible, the positive charge 
on the belt is easily transferred to the conductor regardless of its potential. In prac-
tice, it is possible to increase the electric potential of the dome until electrical dis-
charge occurs through the air. Because the “breakdown” electric field in air is about 
3 3 106 V/m, a sphere 1.00 m in radius can be raised to a maximum potential of  
3 3 106 V. The potential can be increased further by increasing the dome’s radius 
and placing the entire system in a container filled with high-pressure gas.
 Van de Graaff generators can produce potential differences as large as 20 mil-
lion volts. Protons accelerated through such large potential differences receive 
enough energy to initiate nuclear reactions between themselves and various target 
nuclei. Smaller generators are often seen in science classrooms and museums. If a 
person insulated from the ground touches the sphere of a Van de Graaff genera-
tor, his or her body can be brought to a high electric potential. The person’s hair 
acquires a net positive charge, and each strand is repelled by all the others as in the 
opening photograph of Chapter 23.

The Electrostatic Precipitator
One important application of electrical discharge in gases is the electrostatic precipi-
tator. This device removes particulate matter from combustion gases, thereby reduc-
ing air pollution. Precipitators are especially useful in coal-burning power plants 
and industrial operations that generate large quantities of smoke. Current systems 
are able to eliminate more than 99% of the ash from smoke.

Figure 25.24a (page 766) shows a schematic diagram of an electrostatic precipi-
tator. A high potential difference (typically 40 to 100 kV) is maintained between 
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The charge is deposited 
on the belt at point � and 
transferred to the hollow 
conductor at point �.
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Figure 25.23  Schematic dia-
gram of a Van de Graaff generator. 
Charge is transferred to the metal 
dome at the top by means of a 
moving belt. 
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a wire running down the center of a duct and the walls of the duct, which are 
grounded. The wire is maintained at a negative electric potential with respect to 
the walls, so the electric field is directed toward the wire. The values of the field 
near the wire become high enough to cause a corona discharge around the wire; 
the air near the wire contains positive ions, electrons, and such negative ions as 
O2

2. The air to be cleaned enters the duct and moves near the wire. As the electrons 
and negative ions created by the discharge are accelerated toward the outer wall by 
the electric field, the dirt particles in the air become charged by collisions and 
ion capture. Because most of the charged dirt particles are negative, they too are 
drawn to the duct walls by the electric field. When the duct is periodically shaken, 
the particles break loose and are collected at the bottom.
 In addition to reducing the level of particulate matter in the atmosphere (com-
pare Figs. 25.24b and c), the electrostatic precipitator recovers valuable materials in 
the form of metal oxides.

Figure 25.24  (a) Schematic diagram of an electrostatic precipitator. Compare the air pollution when the electrostatic precipi-
tator is (b) operating and (c) turned off.

The high negative electric 
potential maintained on the 
central wire creates a corona 
discharge in the vicinity
of the wire.
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Summary

 The potential difference DV between points � and � in an electric field E
S

 is 
defined as

 DV ;
DU
q

5 23
�

�

E
S
?d sS (25.3)

where DU is given by Equation 25.1 on page 767. The electric potential V 5 U/q 
is a scalar quantity and has the units of joules per coulomb, where 1 J/C ; 1 V.

 An equipotential surface 
is one on which all points are 
at the same electric potential. 
Equipotential surfaces are 
perpendicular to electric 
field lines.

Definitions
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Concepts and Principles

 When a positive charge q is moved between 
points � and � in an electric field E

S
, the change in 

the potential energy of the charge–field system is

 DU 5 2q 3
�

�

E
S
?d sS (25.1)

 If we define V 5 0 at r 5 ,̀ the electric potential due 
to a point charge at any distance r from the charge is

 V 5 ke 
q

r
 (25.11)

The electric potential associated with a group of point 
charges is obtained by summing the potentials due to 
the individual charges.

 If the electric potential is known as a function 
of coordinates x, y, and z, we can obtain the com-
ponents of the electric field by taking the negative 
derivative of the electric potential with respect to 
the coordinates. For example, the x component of 
the electric field is

 Ex 5 2
dV
dx

 (25.16)

 The electric potential energy associated with a pair 
of point charges separated by a distance r12 is

 U 5 ke 
q 1q 2

r 12
 (25.13)

We obtain the potential energy of a distribution of 
point charges by summing terms like Equation 25.13 
over all pairs of particles.

 The electric potential due to a continuous charge distri-
bution is

 V 5 ke 3 
dq

r
 (25.20)

Every point on the surface of a charged conductor in elec-
trostatic equilibrium is at the same electric potential. The 
potential is constant everywhere inside the conductor and 
equal to its value at the surface.

 The potential difference between two points separated 
by a distance d in a uniform electric field E

S
 is

 DV 5 2Ed (25.6)
if the direction of travel between the points is in the same 
direction as the electric field.

them? Choose from the same possibilities. Arnold 
Arons, the only physics teacher yet to have his picture 
on the cover of Time magazine, suggested the idea for 
this question.

 4. The electric potential at x 5 3.00 m is 120 V, and the 
electric potential at x 5 5.00 m is 190 V. What is the x 
component of the electric field in this region, assum-
ing the field is uniform? (a) 140 N/C (b) 2140 N/C 
(c) 35.0 N/C (d) 235.0 N/C (e) 75.0 N/C

 5. Rank the potential energies of the four systems of par-
ticles shown in Figure OQ25.5 from largest to smallest. 
Include equalities if appropriate.

��
r

�Q �Q

b

�

Q
�

2r
�Q

c

�2Q�Q

��
2r

d

� �

Q
r

2Q

a

Figure OQ25.5

 6. In a certain region of space, a uniform electric field 
is in the x direction. A particle with negative charge 
is carried from x 5 20.0 cm to x 5 60.0 cm. (i) Does 

 1. In a certain region of space, the electric field is zero. 
From this fact, what can you conclude about the elec-
tric potential in this region? (a) It is zero. (b) It does 
not vary with position. (c) It is positive. (d) It is nega-
tive. (e) None of those answers is necessarily true.

 2. Consider the equipotential surfaces shown in Figure 
25.4. In this region of space, what is the approximate 
direction of the electric field? (a) It is out of the page. 
(b) It is into the page. (c) It is toward the top of the 
page. (d) It is toward the bottom of the page. (e) The 
field is zero.

 3. (i) A metallic sphere A of radius 1.00 cm is several 
centimeters away from a metallic spherical shell B of 
radius 2.00 cm. Charge 450 nC is placed on A, with no 
charge on B or anywhere nearby. Next, the two objects 
are joined by a long, thin, metallic wire (as shown in 
Fig. 25.19), and finally the wire is removed. How is the 
charge shared between A and B? (a) 0 on A, 450 nC 
on B (b) 90.0 nC on A and 360 nC on B, with equal 
surface charge densities (c) 150 nC on A and 300 nC 
on B (d) 225 nC on A and 225 nC on B (e) 450 nC on A 
and 0 on B (ii) A metallic sphere A of radius 1 cm with 
charge 450 nC hangs on an insulating thread inside 
an uncharged thin metallic spherical shell B of radius 
2 cm. Next, A is made temporarily to touch the inner 
surface of B. How is the charge then shared between 

Objective Questions 1. denotes answer available in Student Solutions Manual/Study Guide
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at the center due to the four charges? (a) 18.0 3 104 V 
(b) 4.50 3 104 V (c) 0 (d) 24.50 3 104 V (e) 9.00 3 104 V

 11. A proton is released from rest at the origin in a uni-
form electric field in the positive x direction with 
magnitude 850 N/C. What is the change in the elec-
tric potential energy of the proton–field system when 
the proton travels to x 5 2.50 m? (a) 3.40 3 10216 J  
(b) 23.40 3 10216 J (c) 2.50 3 10216 J (d) 22.50 3 10216 J  
(e) 21.60 3 10219 J

 12. A particle with charge 240.0 nC is on the x axis at the 
point with coordinate x 5 0. A second particle, with 
charge 220.0 nC, is on the x axis at x 5 0.500 m. (i) Is the 
point at a finite distance where the electric field is zero 
(a) to the left of x 5 0, (b) between x 5 0 and x 5 0.500 m,  
or (c) to the right of x 5 0.500 m? (ii) Is the electric 
potential zero at this point? (a) No; it is positive. (b) Yes.  
(c) No; it is negative. (iii) Is there a point at a finite dis-
tance where the electric potential is zero? (a) Yes; it is to 
the left of x 5 0. (b) Yes; it is between x 5 0 and x 5  
0.500 m. (c) Yes; it is to the right of x 5 0.500 m. (d) No.

 13. A filament running along the x axis from the origin 
to x  5 80.0 cm carries electric charge with uniform 
density. At the point P with coordinates (x 5 80.0 cm,  
y 5 80.0 cm), this filament creates electric potential 
100 V. Now we add another filament along the y axis, 
running from the origin to y 5 80.0 cm, carrying the 
same amount of charge with the same uniform density. 
At the same point P, is the electric potential created by 
the pair of filaments (a) greater than 200 V, (b) 200 V, 
(c) 100 V, (d) between 0 and 200 V, or (e) 0?

 14. In different experimental trials, an electron, a proton, 
or a doubly charged oxygen atom (O22), is fired within a 
vacuum tube. The particle’s trajectory carries it through 
a point where the electric potential is 40.0 V and then 
through a point at a different potential. Rank each of 
the following cases according to the change in kinetic 
energy of the particle over this part of its flight from 
the largest increase to the largest decrease in kinetic 
energy. In your ranking, display any cases of equality. 
(a) An electron moves from 40.0 V to 60.0 V. (b) An elec-
tron moves from 40.0 V to 20.0 V. (c) A proton moves 
from 40.0 V to 20.0 V. (d) A proton moves from 40.0 V to 
10.0 V. (e) An O22 ion moves from 40.0 V to 60.0 V.

 15. A helium nucleus (charge 5 2e, mass 5 6.63 3 10227 kg)  
traveling at 6.20 3 105 m/s enters an electric field, trav-
eling from point �, at a potential of 1.50 3 103 V, to 
point �, at 4.00 3 103 V. What is its speed at point �? 
(a) 7.91 3 105 m/s (b) 3.78 3 105 m/s (c) 2.13 3 105 m/s  
(d) 2.52 3 106 m/s (e) 3.01 3 108 m/s

the electric potential energy of the charge–field system  
(a) increase, (b) remain constant, (c) decrease, or  
(d) change unpredictably? (ii) Has the particle moved 
to a position where the electric potential is (a) higher 
than before, (b) unchanged, (c) lower than before, or 
(d) unpredictable?

 7. Rank the electric poten-
tials at the four points 
shown in Figure OQ25.7 
from largest to smallest.

 8. An electron in an x-ray 
machine is accelerated 
through a potential dif-
ference of 1.00 3 104 V  
before it hits the tar-
get. What is the kinetic 
energy of the electron in 
electron volts? (a) 1.00 3 
104 eV (b) 1.60 3 10215 eV (c) 1.60 3 10222 eV (d) 6.25 3 
1022 eV (e) 1.60 3 10219 eV

 9. Rank the electric potential energies of the systems of 
charges shown in Figure OQ25.9 from largest to small-
est. Indicate equalities if appropriate.
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 10. Four particles are positioned on the rim of a circle. 
The charges on the particles are 10.500 mC, 11.50 mC, 
21.00  mC, and 20.500 mC. If the electric potential at 
the center of the circle due to the 10.500 mC charge 
alone is 4.50 3 104 V, what is the total electric potential 

Q 2Q
� �

A B

C
d

d

D

Figure OQ25.7

Conceptual Questions 1. denotes answer available in Student Solutions Manual/Study Guide

 1. What determines the maximum electric potential to 
which the dome of a Van de Graaff generator can be 
raised?

 2. Describe the motion of a proton (a) after it is released 
from rest in a uniform electric field. Describe the 

changes (if any) in (b) its kinetic energy and (c) the 
electric potential energy of the proton–field system.

 3. When charged particles are separated by an infinite 
distance, the electric potential energy of the pair is 
zero. When the particles are brought close, the elec-
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grounding wire is touched to the leftmost point on the 
sphere instead. (a) Will electrons still drain away, mov-
ing closer to the negatively charged rod as they do so? 
(b) What kind of charge, if any, remains on the sphere?

 5. Distinguish between electric potential and electric 
potential energy.

 6. Describe the equipotential surfaces for (a) an infinite 
line of charge and (b) a uniformly charged sphere.

tric potential energy of a pair with the same sign is 
positive, whereas the electric potential energy of a pair 
with opposite signs is negative. Give a physical explana-
tion of this statement.

 4. Study Figure 23.3 and the accompanying text discussion 
of charging by induction. When the grounding wire is 
touched to the rightmost point on the sphere in Fig-
ure 23.3c, electrons are drained away from the sphere 
to leave the sphere positively charged. Suppose the 

� are (20.200, 20.300) m, and those of point � are 
(0.400, 0.500) m. Calculate the electric potential differ-
ence V� 2 V� using the dashed-line path.

 6. Starting with the definition of work, prove that at every 
point on an equipotential surface, the surface must be 
perpendicular to the electric field there.

 7. An electron moving parallel to the x axis has an ini-
tial speed of 3.70 3 106 m/s at the origin. Its speed is 
reduced to 1.40 3 105 m/s at the point x 5 2.00 cm.  
(a) Calculate the electric potential difference between 
the origin and that point. (b) Which point is at the 
higher potential?

 8. (a) Find the electric potential difference DVe required 
to stop an electron (called a “stopping potential”) mov-
ing with an initial speed of 2.85 3 107 m/s. (b) Would 
a proton traveling at the same speed require a greater 
or lesser magnitude of electric potential difference? 
Explain. (c) Find a symbolic expression for the ratio 
of the proton stopping potential and the electron stop-
ping potential, DVp /DVe .

 9. A particle having charge q 5 12.00 mC and mass m 5 
0.010 0 kg is connected to a string that is L 5 1.50 m 
long and tied to the pivot point P in Figure P25.9. The 
particle, string, and pivot point all lie on a frictionless, 
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Section 25.1  Electric Potential and Potential Difference

Section 25.2  Potential Difference in a Uniform Electric Field

 1. Oppositely charged parallel plates are separated 
by 5.33 mm. A potential difference of 600 V exists 
between the plates. (a) What is the magnitude of the 
electric field between the plates? (b) What is the mag-
nitude of the force on an electron between the plates? 
(c) How much work must be done on the electron to 
move it to the negative plate if it is initially positioned 
2.90 mm from the positive plate?

 2. A uniform electric field of magnitude 250 V/m is 
directed in the positive x direction. A 112.0-mC charge 
moves from the origin to the point (x, y) 5 (20.0 cm,  
50.0 cm). (a) What is the change in the potential 
energy of the charge–field system? (b) Through what 
potential difference does the charge move?

 3. (a) Calculate the speed of a proton that is accelerated 
from rest through an electric potential difference of 
120 V. (b) Calculate the speed of an electron that is accel-
erated through the same electric potential difference.

 4. How much work is done (by a battery, generator, or 
some other source of potential difference) in moving 
Avogadro’s number of electrons from an initial point 
where the electric potential 
is 9.00 V to a point where the 
electric potential is 25.00 V? 
(The potential in each case is 
measured relative to a com-
mon reference point.)

 5. A uniform electric field 
of magnitude 325 V/m is 
directed in the negative y 
direction in Figure P25.5. 
The coordinates of point 
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horizontal table. The particle is released from rest 
when the string makes an angle u 5 60.08 with a uni-
form electric field of magnitude E 5 300 V/m. Deter-
mine the speed of the particle when the string is paral-
lel to the electric field.

 10. Review. A block having 
mass m and charge 1Q 
is connected to an insu-
lating spring having a 
force constant k. The 
block lies on a friction-
less, insulating, hori-
zontal track, and the 
system is immersed in a 
uniform electric field of magnitude E directed as shown 
in Figure P25.10. The block is released from rest when 
the spring is unstretched (at x 5 0). We wish to show that 
the ensuing motion of the block is simple harmonic. 
(a) Consider the system of the block, the spring, and the 
electric field. Is this system isolated or nonisolated?  
(b) What kinds of potential energy exist within this sys-
tem? (c) Call the initial configuration of the system that 
existing just as the block is released from rest. The final 
configuration is when the block momentarily comes to 
rest again. What is the value of x when the block comes 
to rest momentarily? (d) At some value of x  we will call  
x 5 x0, the block has zero net force on it. What analysis 
model describes the particle in this situation? (e) What 
is the value of x0? (f) Define a new coordinate system x9 
such that x9 5 x 2 x0. Show that x9 satisfies a differential 
equation for simple harmonic motion. (g) Find the 
period of the simple harmonic motion. (h) How does 
the period depend on the electric field magnitude?

 11. An insulating rod having linear 
charge density l  5 40.0 mC/m and 
linear mass density m 5 0.100 kg/m 
is released from rest in a uniform 
electric field E 5 100 V/m directed 
perpendicular to the rod (Fig. 
P25.11). (a) Determine the speed of 
the rod after it has traveled 2.00 m. 
(b) What If? How does your answer 
to part (a) change if the electric field is not perpen-
dicular to the rod? Explain.

Section 25.3  Electric Potential and Potential Energy  
Due to Point Charges

Note: Unless stated otherwise, assume the reference level 
of potential is V 5 0 at r 5 .̀

 12. (a) Calculate the electric potential 0.250 cm from an 
electron. (b) What is the electric potential difference 
between two points that are 0.250 cm and 0.750 cm 
from an electron? (c) How would the answers change if 
the electron were replaced with a proton?

 13. Two point charges are on the y axis. A 4.50-mC charge 
is located at y 5 1.25 cm, and a 22.24-mC charge is 
located at y 5 21.80 cm. Find the total electric poten-
tial at (a) the origin and (b) the point whose coordi-
nates are (1.50 cm, 0).
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 14. The two charges in Figure 
P25.14 are separated by d 5 
2.00  cm. Find the electric 
potential at (a) point A and 
(b)  point B, which is half-
way between the charges.

 15. Three positive charges are 
located at the corners of an 
equilateral triangle as in 
Figure P25.15. Find an expression 
for the electric potential at the cen-
ter of the triangle.

 16. Two point charges Q 1 5 15.00 nC 
and Q 2 5 23.00 nC are separated 
by 35.0 cm. (a) What is the elec-
tric potential at a point midway 
between the charges? (b) What is 
the potential energy of the pair of 
charges? What is the significance of the algebraic sign 
of your answer?

 17. Two particles, with 
charges of 20.0 nC and 
220.0 nC, are placed at 
the points with coordi-
nates (0, 4.00 cm) and 
(0, 24.00 cm) as shown 
in Figure P25.17. A par-
ticle with charge 10.0 nC  
is located at the origin. 
(a) Find the electric 
potential energy of the 
configuration of the 
three fixed charges.  
(b) A fourth particle, 
with a mass of 2.00 3 
10213 kg and a charge of  
40.0 nC, is released from 
rest at the point (3.00 cm,  
0). Find its speed after it has moved freely to a very 
large distance away.

 18. The two charges in Figure P25.18 are separated by a dis-
tance d 5 2.00 cm, and Q 5 15.00 nC. Find (a) the elec-
tric potential at A, (b)  the electric potential at B, and  
(c) the electric potential difference between B and A.
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 19. Given two particles with 2.00-mC charges as shown in 

Figure P25.19 and a particle with charge q 5 1.28 3 
10218 C at the origin, (a) what is the net force exerted 
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electric potential energy of 
the system as the particle 
at the lower left corner in 
Figure P25.27 is brought 
to this position from infi-
nitely far away. Assume the 
other three particles in Fig-
ure P25.27 remain fixed in 
position.

 28. Three particles with equal posi-
tive charges q are at the corners 
of an equilateral triangle of side a 
as shown in Figure P25.28. (a) At 
what point, if any, in the plane of 
the particles is the electric poten-
tial zero? (b) What is the electric 
potential at the position of one of 
the particles due to the other two 
particles in the triangle?

 29. Five particles with equal negative charges 2q are 
placed symmetrically around a circle of radius R. Cal-
culate the electric potential at the center of the circle.

 30. Review. A light, unstressed spring has length d. Two 
identical particles, each with charge q, are connected 
to the opposite ends of the spring. The particles are 
held stationary a distance d apart and then released at 
the same moment. The system then oscillates on a fric-
tionless, horizontal table. The spring has a bit of inter-
nal kinetic friction, so the oscillation is damped. The 
particles eventually stop vibrating when the distance 
between them is 3d. Assume the system of the spring 
and two charged particles is isolated. Find the increase 
in internal energy that appears in the spring during 
the oscillations.

 31. Review. Two insulating spheres have radii 0.300 cm 
and 0.500 cm, masses 0.100 kg and 0.700 kg, and uni-
formly distributed charges 22.00 mC and 3.00 mC. 
They are released from rest when their centers are 
separated by 1.00 m. (a) How fast will each be moving 
when they collide? (b) What If? If the spheres were 
conductors, would the speeds be greater or less than 
those calculated in part (a)? Explain.

 32. Review. Two insulating spheres have radii r1 and r2, 
masses m 1 and m 2, and uniformly distributed charges 
2q1 and q2. They are released from rest when their cen-
ters are separated by a distance d. (a) How fast is each 
moving when they collide? (b) What If? If the spheres 
were conductors, would their speeds be greater or less 
than those calculated in part (a)? Explain.

 33. How much work is required to assemble eight identical 
charged particles, each of magnitude q, at the corners 
of a cube of side s?

 34. Four identical particles, each having charge q and mass 
m, are released from rest at the vertices of a square of 
side L. How fast is each particle moving when their dis-
tance from the center of the square doubles?

 35. In 1911, Ernest Rutherford and his assistants Geiger 
and Marsden conducted an experiment in which they 
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by the two 2.00-mC charges on the charge q? (b) What 
is the electric field at the origin due to the two 2.00-mC 
particles? (c) What is the electric potential at the ori-
gin due to the two 2.00-mC particles?
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 20. At a certain distance from a charged particle, the mag-
nitude of the electric field is 500 V/m and the electric 
potential is 23.00 kV. (a) What is the distance to the 
particle? (b) What is the magnitude of the charge?

 21. Four point charges each having charge Q are located at 
the corners of a square having sides of length a. Find 
expressions for (a) the total electric potential at the 
center of the square due to the four charges and  
(b) the work required to bring a fifth charge q from 
infinity to the center of the square.

 22. The three charged particles in 
Figure P25.22 are at the vertices 
of an isosceles triangle (where d 5  
2.00  cm). Taking q  5 7.00 mC, 
calculate the electric potential at 
point A, the midpoint of the base.

 23. A particle with charge 1q is at 
the origin. A particle with charge 
22q is at x 5 2.00 m on the x axis.  
(a) For what finite value(s) of x 
is the electric field zero? (b) For 
what finite value(s) of x is the electric potential zero?

 24. Show that the amount of work required to assemble 
four identical charged particles of magnitude Q at the 
corners of a square of side s is 5.41keQ 2/s.

 25. Two particles each with charge 12.00 mC are located 
on the x axis. One is at x 5 1.00 m, and the other is at  
x 5 21.00 m. (a) Determine the electric potential on 
the y axis at y 5 0.500 m. (b) Calculate the change in 
electric potential energy of the system as a third 
charged particle of 23.00 mC is brought from infinitely 
far away to a position on the y axis at y 5 0.500 m.

 26. Two charged particles of equal mag-
nitude are located along the y axis 
equal distances above and below the 
x axis as shown in Figure P25.26. 
(a)  Plot a graph of the electric 
potential at points along the x axis 
over the interval 23a , x , 3a. You 
should plot the potential in units 
of keQ /a. (b) Let the charge of the 
particle located at y 5 2a be nega-
tive. Plot the potential along the y 
axis over the interval 24a , y , 4a.

 27. Four identical charged particles (q 5 110.0 mC) are 
located on the corners of a rectangle as shown in Fig-
ure P25.27. The dimensions of the rectangle are L 5 
60.0 cm and W 5 15.0 cm. Calculate the change in 
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 at B. (c) Represent what the electric field looks 
like by drawing at least eight field lines.

 41. The electric potential inside a charged spherical con-
ductor of radius R is given by V 5 keQ /R , and the 
potential outside is given by V 5 keQ /r. Using Er 5 
2dV/dr, derive the electric field (a) inside and (b) out-
side this charge distribution.

 42. It is shown in Example 25.7 that the potential at a point 
P a distance a above one end of a uniformly charged 
rod of length , lying along the x axis is

V 5 ke 
Q

,
  ln a, 1 "a 2 1 ,2

a
b

  Use this result to derive an expression for the y compo-
nent of the electric field at P.

Section 25.5  Electric Potential Due  
to Continuous Charge Distributions

 43. Consider a ring of radius R with the total charge Q 
spread uniformly over its perimeter. What is the poten-
tial difference between the point at the center of the ring 
and a point on its axis a distance 2R from the center?

 44. A uniformly charged insulating rod of 
length 14.0 cm is bent into the shape 
of a semicircle as shown in Figure 
P25.44. The rod has a total charge of 
27.50 mC. Find the electric potential 
at O, the center of the semicircle.

 45. A rod of length L (Fig. P25.45) lies 
along the x axis with its left end at the 
origin. It has a nonuniform charge 
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Figure P25.44
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scattered alpha particles (nuclei of helium atoms) from 
thin sheets of gold. An alpha particle, having charge 
12e and mass 6.64 3 10227 kg, is a product of certain 
radioactive decays. The results of the experiment led 
Rutherford to the idea that most of an atom’s mass is 
in a very small nucleus, with electrons in orbit around 
it. (This is the planetary model of the atom, which we’ll 
study in Chapter 42.) Assume an alpha particle, ini-
tially very far from a stationary gold nucleus, is fired 
with a velocity of 2.00 3 107 m/s directly toward the 
nucleus (charge 179e). What is the smallest distance 
between the alpha particle and the nucleus before the 
alpha particle reverses direction? Assume the gold 
nucleus remains stationary.

Section 25.4  Obtaining the Value of the Electric Field  
from the Electric Potential

 36. Figure P25.36 repre-
sents a graph of the 
electric potential in a 
region of space versus 
position x, where the 
electric field is paral-
lel to the x  axis. Draw 
a graph of the x  compo-
nent of the electric field 
versus x in this region.

 37. The potential in a region between x 5 0 and x 5 6.00 m  
is V 5 a 1 bx, where a 5 10.0 V and b 5 27.00 V/m. 
Determine (a) the potential at x 5 0, 3.00 m, and 6.00 m  
and (b)  the magnitude and direction of the electric 
field at x 5 0, 3.00 m, and 6.00 m.

 38. An electric field in a region of space is parallel to the 
x axis. The electric potential varies with position as 
shown in Figure P25.38. Graph the x  component of the 
electric field versus position in this region of space.
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Figure P25.38

 39. Over a certain region of space, the electric potential is 
V 5 5x 2 3x 2y 1 2yz2. (a) Find the expressions for the 
x, y, and z components of the electric field over this 
region. (b) What is the magnitude of the field at the 
point P that has coordinates (1.00, 0, 22.00) m?

 40. Figure P25.40 shows several equipotential lines, each 
labeled by its potential in volts. The distance between 
the lines of the square grid represents 1.00 cm. (a) Is 
the magnitude of the field larger at A or at B ? Explain 
how you can tell. (b) Explain what you can determine 
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dielectric strength of air. Any more charge leaks off in 
sparks as shown in Figure P25.52. Assume the dome has 
a diameter of 30.0 cm and is surrounded by dry air with 
a “breakdown” electric field of 3.00 3 106 V/m. (a) What 
is the maximum potential of the dome? (b) What is the 
maximum charge on the dome?

Additional Problems

 53. Why is the following situation impossible? In the Bohr model 
of the hydrogen atom, an electron moves in a circular 
orbit about a proton. The model states that the electron 
can exist only in certain allowed orbits around the pro-
ton: those whose radius r satisfies r 5 n2(0.052 9 nm), 
where n 5 1, 2, 3, . . . . For one of the possible allowed 
states of the atom, the electric potential energy of the 
system is 213.6 eV.

 54. Review. In fair weather, the electric field in the air at 
a particular location immediately above the Earth’s 
surface is 120 N/C directed downward. (a) What is the 
surface charge density on the ground? Is it positive or 
negative? (b) Imagine the surface charge density is 
uniform over the planet. What then is the charge of 
the whole surface of the Earth? (c) What is the Earth’s 
electric potential due to this charge? (d) What is the 
difference in potential between the head and the feet 
of a person 1.75 m tall? (Ignore any charges in the 
atmosphere.) (e) Imagine the Moon, with 27.3% of the 
radius of the Earth, had a charge 27.3% as large, with 
the same sign. Find the electric force the Earth would 
then exert on the Moon. (f) State how the answer to 
part (e) compares with the gravitational force the 
Earth exerts on the Moon.

 55. Review. From a large distance away, a particle of mass 
2.00 g and charge 15.0 mC is fired at 21.0 î  m/s straight 
toward a second particle, originally stationary but free 
to move, with mass 5.00 g and charge 8.50 mC. Both 
particles are constrained to move only along the x axis. 
(a) At the instant of closest approach, both particles 
will be moving at the same velocity. Find this velocity. 
(b) Find the distance of closest approach. After the 
interaction, the particles will move far apart again. At 
this time, find the velocity of (c)  the 2.00-g particle 
and (d) the 5.00-g particle.

 56. Review. From a large distance away, a particle of mass m1 
and positive charge q1 is fired at speed v in the positive 
x direction straight toward a second particle, originally 
stationary but free to move, with mass m2 and positive 
charge q2. Both particles are constrained to move only 
along the x axis. (a) At the instant of closest approach, 
both particles will be moving at the same velocity. Find 
this velocity. (b) Find the distance of closest approach. 
After the interaction, the particles will move far apart 
again. At this time, find the velocity of (c) the particle of 
mass m1 and (d) the particle of mass m2.

 57. The liquid-drop model of the atomic nucleus suggests 
high-energy oscillations of certain nuclei can split  
the nucleus into two unequal fragments plus a few  

Q/C

S

M

density l 5 ax, where a is a positive constant. (a) What 
are the units of a? (b) Calculate the electric potential 
at A.

 46. For the arrangement described in Problem 45, calcu-
late the electric potential at point B, which lies on the 
perpendicular bisector of the rod a distance b above 
the x axis.

 47. A wire having a uniform linear charge density l is bent 
into the shape shown in Figure P25.47. Find the elec-
tric potential at point O.

2R 2R
O

R

Figure P25.47

Section 25.6  Electric Potential Due to a Charged Conductor

 48. The electric field magnitude on the surface of an 
irregularly shaped conductor varies from 56.0 kN/C to 
28.0 kN/C. Can you evaluate the electric potential on the 
conductor? If so, find its value. If not, explain why not.

 49. How many electrons should be removed from an ini-
tially uncharged spherical conductor of radius 0.300 m 
to produce a potential of 7.50 kV at the surface?

 50. A spherical conductor has a radius of 14.0 cm and a 
charge of 26.0 mC. Calculate the electric field and the 
electric potential at (a) r 5 10.0 cm, (b) r 5 20.0 cm, 
and (c) r 5 14.0 cm from the center.

 51. Electric charge can accumulate on an airplane in flight. 
You may have observed needle-shaped metal extensions 
on the wing tips and tail of an airplane. Their purpose 
is to allow charge to leak off before much of it accu-
mulates. The electric field around the needle is much 
larger than the field around the body of the airplane 
and can become large enough to produce dielectric 
breakdown of the air, discharging the airplane. To 
model this process, assume two charged spherical con-
ductors are connected by a long conducting wire and 
a 1.20-mC charge is placed on the combination. One 
sphere, representing the body of the airplane, has a 
radius of 6.00 cm; the other, representing the tip of the 
needle, has a radius of 2.00 cm. (a) What is the electric 
potential of each sphere? (b) What is the electric field 
at the surface of each sphere?

Section 25.8  Applications of Electrostatics

 52. Lightning can be studied 
with a Van de Graaff gen-
erator, which consists of a 
spherical dome on which 
charge is continuously 
deposited by a moving 
belt. Charge can be added 
until the electric field at 
the surface of the dome 
becomes equal to the 
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neutrons. The fission products acquire kinetic energy 
from their mutual Coulomb repulsion. Assume the 
charge is distributed uniformly throughout the volume 
of each spherical fragment and, immediately before sep-
arating, each fragment is at rest and their surfaces are 
in contact. The electrons surrounding the nucleus can 
be ignored. Calculate the electric potential energy (in 
electron volts) of two spherical fragments from a ura-
nium nucleus having the following charges and radii: 
38e  and 5.50 3 10215 m, and 54e  and 6.20 3 10215 m.

 58. On a dry winter day, you scuff your leather-soled shoes 
across a carpet and get a shock when you extend the 
tip of one finger toward a metal doorknob. In a dark 
room, you see a spark perhaps 5 mm long. Make order-
of-magnitude estimates of (a) your electric potential 
and (b) the charge on your body before you touch the 
doorknob. Explain your reasoning.

 59. The electric potential immediately outside a charged 
conducting sphere is 200 V, and 10.0 cm farther 
from the center of the sphere the potential is 150 V. 
Determine (a) the radius of the sphere and (b) the 
charge on it. The electric potential immediately out-
side another charged conducting sphere is 210 V, and  
10.0 cm farther from the center the magnitude of the 
electric field is 400 V/m. Determine (c)  the radius of 
the sphere and (d) its charge on it. (e) Are the answers 
to parts (c) and (d) unique?

 60. (a) Use the exact result from Example 25.4 to find the 
electric potential created by the dipole described in 
the example at the point (3a, 0). (b) Explain how this 
answer compares with the result of the approximate 
expression that is valid when x is much greater than a.

 61. Calculate the work that must be done on charges 
brought from infinity to charge a spherical shell of 
radius R 5 0.100 m to a total charge Q 5 125 mC.

 62. Calculate the work that must be done on charges 
brought from infinity to charge a spherical shell of 
radius R to a total charge Q.

 63. The electric potential everywhere on the xy plane is

V 5
36

"1x 1 1 22 1 y 2
2

45

"x 2 1 1 y 2 2 22
  where V is in volts and x and y are in meters. Determine 

the position and charge on each of the particles that 
create this potential.

 64. Why is the following situ-
ation impossible? You set 
up an apparatus in your 
laboratory as follows. 
The x axis is the symme-
try axis of a stationary, 
uniformly charged ring 
of radius R 5 0.500 m 
and charge Q 5 50.0 mC 
(Fig. P25.64). You place 
a particle with charge 
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Figure P25.64

Q 5 50.0 mC and mass m 5 0.100 kg at the center of the 
ring and arrange for it to be constrained to move only 
along the x axis. When it is displaced slightly, the par-
ticle is repelled by the ring and accelerates along the x 
axis. The particle moves faster than you expected and 
strikes the opposite wall of your laboratory at 40.0 m/s.

 65. From Gauss’s law, the electric field set up by a uniform 
line of charge is

E
S

5 a l

2pP0r
b r̂

  where r̂ is a unit vector pointing radially away from 
the line and l is the linear charge density along the 
line. Derive an expression for the potential difference 
between r 5 r1 and r 5 r2.

 66. A uniformly charged filament lies along the x axis 
between x 5 a 5 1.00 m and x 5 a 1 , 5 3.00 m as 
shown in Figure P25.66. The total charge on the fila-
ment is 1.60 nC. Calculate successive approximations 
for the electric potential at the origin by modeling the 
filament as (a) a single charged particle at x 5 2.00 m, 
(b) two 0.800-nC charged particles at x 5 1.5 m and  
x 5 2.5 m, and (c) four 0.400-nC charged particles at  
x 5 1.25 m, x 5 1.75 m, x 5 2.25 m, and x 5 2.75 m.  
(d) Explain how the results compare with the potential 
given by the exact expression

V 5
ke Q

,
  ln a, 1 a
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Figure P25.66

 67. The thin, uniformly charged rod 
shown in Figure P25.67 has a lin-
ear charge density l. Find an 
expression for the electric poten-
tial at P.

 68. A Geiger–Mueller tube is a radia-
tion detector that consists of a 
closed, hollow, metal cylinder 
(the cathode) of inner radius ra 
and a coaxial cylindrical wire (the 
anode) of radius rb (Fig. P25.68a). 
The charge per unit length on the anode is l, and the 
charge per unit length on the cathode is 2l. A gas fills 
the space between the electrodes. When the tube is in 
use (Fig. P25.68b) and a high-energy elementary par-
ticle passes through this space, it can ionize an atom 
of the gas. The strong electric field makes the result-
ing ion and electron accelerate in opposite directions. 
They strike other molecules of the gas to ionize them, 
producing an avalanche of electrical discharge. The 
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is far from the dipole (r .. a), show that the electric 
potential is

V 5
ke p cos u

r 2

  (b) Calculate the radial compo-
nent Er and the perpendicular 
component E u of the associated 
electric field. Note that E u 5 
2(1/r)('V/'u). Do these results 
seem reasonable for (c) u 5 908 
and 08? (d) For r 5 0? (e) For 
the dipole arrangement shown 
in Figure P25.71, express V in 
terms of Cartesian coordinates 
using r 5 (x 2 1 y 2)1/2 and

  cos u 5
y1x 2 1 y 2 2 1/2

  (f) Using these results and again taking r .. a, calcu-
late the field components Ex and Ey.

 72. A solid sphere of radius R has a uniform charge density 
r and total charge Q. Derive an expression for its total 
electric potential energy. Suggestion: Imagine the 
sphere is constructed by adding successive layers of 
concentric shells of charge dq 5 (4pr 2 dr)r and use  
dU 5 V dq.

 73. A disk of radius R (Fig. 
P25.73) has a nonuniform 
surface charge density s 5 
Cr, where C is a constant 
and r is measured from the 
center of the disk to a point 
on the surface of the disk. 
Find (by direct integration) 
the electric potential at P.

 74. Four balls, each with mass m, are 
connected by four nonconducting 
strings to form a square with side 
a as shown in Figure P25.74. The 
assembly is placed on a noncon-
ducting, frictionless, horizontal sur-
face. Balls 1 and 2 each have charge 
q, and balls 3 and 4 are uncharged. 
After the string connecting balls 1 and 2 is cut, what is 
the maximum speed of balls 3 and 4?

 75. (a) A uniformly charged cylindrical shell with no end 
caps has total charge Q , radius R , and length h. Deter-
mine the electric potential at a point a distance d from 
the right end of the cylinder as shown in Figure P25.75. 

a

�q

a

�q

r1

r2

r

x

y
P

Er

Eu

u

�

�

Figure P25.71

S

x
P

R

Figure P25.73

S

1 2

a

a 43

��

Figure P25.74

S

S

pulse of electric current between the wire and the cyl-
inder is counted by an external circuit. (a) Show that 
the magnitude of the electric potential difference 
between the wire and the cylinder is

DV 5 2ke l ln ara

rb
b

  (b) Show that the magnitude of the electric field in the 
space between cathode and anode is

E 5
DV

ln 1ra /rb 2 a1
r
b

  where r is the distance from the axis of the anode to 
the point where the field is to be calculated.

Figure P25.68
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 69. Review. Two parallel plates having charges of equal 
magnitude but opposite sign are separated by 12.0 cm.  
Each plate has a surface charge density of 36.0 nC/m2.  
A proton is released from rest at the positive plate. Deter-
mine (a)  the magnitude of the electric field between 
the plates from the charge density, (b) the potential dif-
ference between the plates, (c) the kinetic energy of the 
proton when it reaches the negative plate, (d) the speed 
of the proton just before it strikes the negative plate,  
(e) the acceleration of the proton, and (f) the force on 
the proton. (g) From the force, find the magnitude of 
the electric field. (h) How does your value of the elec-
tric field compare with that found in part (a)?

 70. When an uncharged conducting sphere of radius a is 
placed at the origin of an xyz coordinate system that 
lies in an initially uniform electric field E

S
5 E 0 k̂ , the 

resulting electric potential is V(x, y, z) 5 V0 for points 
inside the sphere and

V 1x, y, z 2 5 V0 2 E 0 z 1
E 0a3z1x 2 1 y 2 1 z 2 23/2

  for points outside the sphere, where V0 is the (constant) 
electric potential on the conductor. Use this equation 
to determine the x, y, and z components of the result-
ing electric field (a) inside the sphere and (b) outside 
the sphere.

Challenge Problems

 71. An electric dipole is located along the y axis as shown 
in Figure P25.71. The magnitude of its electric dipole 
moment is defined as p 5 2aq. (a) At a point P, which 
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the equilibrium of the ball is 
unstable if V0 exceeds the criti-
cal value 3ked

2 mg/ 14RL 2 4 1/2. 
Suggestion: Consider the forces 
on the ball when it is displaced 
a distance x ,, L.

 77. A particle with charge q is 
located at x 5 2R , and a par-
ticle with charge 22q is located 
at the origin. Prove that the 
equipotential surface that has 
zero potential is a sphere centered at (24R/3, 0, 0) and 
having a radius r 5 2

3R.

S

Suggestion: Use the result of Example 25.5 by treating 
the cylinder as a collection of ring charges. (b) What 

If? Use the result of Example 25.6 to solve the same 
problem for a solid cylinder.

 76. As shown in Figure P25.76, two large, parallel, verti-
cal conducting plates separated by distance d are 
charged so that their potentials are 1V0 and 2V0. A 
small conducting ball of mass m and radius R (where  
R ,, d) hangs midway between the plates. The thread 
of length L supporting the ball is a conducting wire 
connected to ground, so the potential of the ball is 
fixed at V 5 0. The ball hangs straight down in stable 
equilibrium when V0 is sufficiently small. Show that 
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When a patient receives a shock 

from a defibrillator, the energy 

delivered to the patient is initially 

stored in a capacitor.  We will study 

capacitors and capacitance in this 

chapter. (Andrew Olney/Getty Images)
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In this chapter, we introduce the first of three simple circuit elements that can be 
connected with wires to form an electric circuit. Electric circuits are the basis for the vast 

majority of the devices used in our society. Here we shall discuss capacitors, devices that 

store electric charge. This discussion is followed by the study of resistors in Chapter 27 and 

inductors in Chapter 32. In later chapters, we will study more sophisticated circuit elements 

such as diodes and transistors.
Capacitors are commonly used in a variety of electric circuits. For instance, they are used 

to tune the frequency of radio receivers, as filters in power supplies, to eliminate sparking in 

automobile ignition systems, and as energy-storing devices in electronic flash units.

26.1 Definition of Capacitance
Consider two conductors as shown in Figure 26.1 (page 778). Such a combination 
of two conductors is called a capacitor. The conductors are called plates. If the con-
ductors carry charges of equal magnitude and opposite sign, a potential difference 
DV exists between them.

26.1

Capacitance and 
Dielectrics

777
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What determines how much charge is on the plates of a capacitor for a given volt-
age? Experiments show that the quantity of charge Q on a capacitor1 is linearly pro-
portional to the potential difference between the conductors; that is, Q ~ DV. The 
proportionality constant depends on the shape and separation of the conductors.2 
This relationship can be written as Q 5 C DV if we define capacitance as follows:

The capacitance C of a capacitor is defined as the ratio of the magnitude of 
the charge on either conductor to the magnitude of the potential difference 
between the conductors:

 C ;
Q

DV
 (26.1)

By definition capacitance is always a positive quantity. Furthermore, the charge Q and the 
potential difference DV are always expressed in Equation 26.1 as positive quantities.
 From Equation 26.1, we see that capacitance has SI units of coulombs per volt. 
Named in honor of Michael Faraday, the SI unit of capacitance is the farad (F):

 1 F 5 1 C/V  

The farad is a very large unit of capacitance. In practice, typical devices have capac-
itances ranging from microfarads (1026 F) to picofarads (10212 F). We shall use the 
symbol mF to represent microfarads. In practice, to avoid the use of Greek letters, 
physical capacitors are often labeled “mF” for microfarads and “mmF” for micromi-
crofarads or, equivalently, “pF” for picofarads.
 Let’s consider a capacitor formed from a pair of parallel plates as shown in Figure 
26.2. Each plate is connected to one terminal of a battery, which acts as a source of 
potential difference. If the capacitor is initially uncharged, the battery establishes 
an electric field in the connecting wires when the connections are made. Let’s focus 
on the plate connected to the negative terminal of the battery. The electric field in 
the wire applies a force on electrons in the wire immediately outside this plate; this 
force causes the electrons to move onto the plate. The movement continues until 
the plate, the wire, and the terminal are all at the same electric potential. Once this 
equilibrium situation is attained, a potential difference no longer exists between 
the terminal and the plate; as a result, no electric field is present in the wire and 

The capacitance C of a capacitor is defined as the ratio of the magnitude of C
the charge on either conductor to the magnitude of the potential difference 
between the conductors:

C ;
Q

DV
(26.1)Definition of capacitance 

Pitfall Prevention 26.1
Capacitance Is a Capacity To 
understand capacitance, think of 
similar notions that use a similar 
word. The capacity of a milk carton 
is the volume of milk it can store. 
The heat capacity of an object is 
the amount of energy an object 
can store per unit of temperature 
difference. The capacitance of a 
capacitor is the amount of charge 
the capacitor can store per unit of 
potential difference.

Pitfall Prevention 26.2
Potential Difference Is DV, Not V  
We use the symbol DV for the 
potential difference across a cir-
cuit element or a device because 
this notation is consistent with our 
definition of potential difference 
and with the meaning of the delta 
sign. It is a common but confus-
ing practice to use the symbol V 
without the delta sign for both a 
potential and a potential differ-
ence! Keep that in mind if you 
consult other texts.

1Although the total charge on the capacitor is zero (because there is as much excess positive charge on one conduc-
tor as there is excess negative charge on the other), it is common practice to refer to the magnitude of the charge on
either conductor as “the charge on the capacitor.” 
2The proportionality between Q and DV can be proven from Coulomb’s law or by experiment.

�Q

�Q

When the capacitor is charged, the 
conductors carry charges of equal 
magnitude and opposite sign.

Figure 26.1  A capacitor 
consists of two conductors. 

d

�Q
�Q

Area � A

� �

When the capacitor is connected 
to the terminals of a battery, 
electrons transfer between the 
plates and the wires so that the 
plates become charged.

Figure 26.2  A parallel-plate 
capacitor consists of two parallel 
conducting plates, each of area A, 
separated by a distance d. 
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the electrons stop moving. The plate now carries a negative charge. A similar pro-
cess occurs at the other capacitor plate, where electrons move from the plate to the 
wire, leaving the plate positively charged. In this final configuration, the potential 
difference across the capacitor plates is the same as that between the terminals of 
the battery.

Q uick Quiz 26.1  A capacitor stores charge Q at a potential difference DV. What 
happens if the voltage applied to the capacitor by a battery is doubled to 2 DV ? 
(a) The capacitance falls to half its initial value, and the charge remains the 
same. (b) The capacitance and the charge both fall to half their initial values. 
(c) The capacitance and the charge both double. (d) The capacitance remains 
the same, and the charge doubles.

26.2 Calculating Capacitance
We can derive an expression for the capacitance of a pair of oppositely charged 
conductors having a charge of magnitude Q in the following manner. First we cal-
culate the potential difference using the techniques described in Chapter 25. We 
then use the expression C 5 Q /DV to evaluate the capacitance. The calculation is 
relatively easy if the geometry of the capacitor is simple.

Although the most common situation is that of two conductors, a single con-
ductor also has a capacitance. For example, imagine a single spherical, charged 
conductor. The electric field lines around this conductor are exactly the same as 
if there were a conducting, spherical shell of infinite radius, concentric with the 
sphere and carrying a charge of the same magnitude but opposite sign. Therefore, 
we can identify the imaginary shell as the second conductor of a two-conductor 
capacitor. The electric potential of the sphere of radius a is simply keQ /a (see Sec-
tion 25.6), and setting V 5 0 for the infinitely large shell gives

 C 5
Q

DV
5

Q

keQ /a
5

a
ke

5 4pP0a  (26.2)

This expression shows that the capacitance of an isolated, charged sphere is pro-
portional to its radius and is independent of both the charge on the sphere and its 
potential, as is the case with all capacitors. Equation 26.1 is the general definition 
of capacitance in terms of electrical parameters, but the capacitance of a given 
capacitor will depend only on the geometry of the plates.
 The capacitance of a pair of conductors is illustrated below with three familiar 
geometries, namely, parallel plates, concentric cylinders, and concentric spheres. In 
these calculations, we assume the charged conductors are separated by a vacuum.

Parallel-Plate Capacitors
Two parallel, metallic plates of equal area A are separated by a distance d as shown 
in Figure 26.2. One plate carries a charge 1Q , and the other carries a charge 2Q . 
The surface charge density on each plate is s 5 Q /A. If the plates are very close 
together (in comparison with their length and width), we can assume the electric 
field is uniform between the plates and zero elsewhere. According to the What If? 
feature of Example 24.5, the value of the electric field between the plates is

 E 5
s

P0
5

Q

P0A
 

Because the field between the plates is uniform, the magnitude of the potential dif-
ference between the plates equals Ed (see Eq. 25.6); therefore,

 DV 5 Ed 5
Qd

P0A
 

Q

26.2

 Capacitance of an isolated 
charged sphere

Pitfall Prevention 26.3
Too Many Cs Do not confuse an 
italic C for capacitance with a non-
italic C for the unit coulomb.
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Example 26.1   The Cylindrical Capacitor

A solid cylindrical conductor of radius a and charge 
Q is coaxial with a cylindrical shell of negligible thick-
ness, radius b . a, and charge 2Q (Fig. 26.4a). Find the 
capacitance of this cylindrical capacitor if its length 
is ,.

Conceptualize  Recall that any pair of conductors 
qualifies as a capacitor, so the system described in this 
example therefore qualifies. Figure 26.4b helps visual-
ize the electric field between the conductors. We expect 
the capacitance to depend only on geometric factors, 
which, in this case, are a, b, and ,.

Categorize  Because of the cylindrical symmetry of the 
system, we can use results from previous studies of cylin-
drical systems to find the capacitance.

S O L U T I O N

Substituting this result into Equation 26.1, we find that the capacitance is

C 5
Q

DV
5

Q

Qd/P0A
 

C 5
P0A
d

 (26.3)

That is, the capacitance of a parallel-plate capacitor is proportional to the area of 
its plates and inversely proportional to the plate separation.
 Let’s consider how the geometry of these conductors influences the capacity of 
the pair of plates to store charge. As a capacitor is being charged by a battery, elec-
trons flow into the negative plate and out of the positive plate. If the capacitor 
plates are large, the accumulated charges are able to distribute themselves over a 
substantial area and the amount of charge that can be stored on a plate for a given 
potential difference increases as the plate area is increased. Therefore, it is reason-
able that the capacitance is proportional to the plate area A as in Equation 26.3.
 Now consider the region that separates the plates. Imagine moving the plates 
closer together. Consider the situation before any charges have had a chance to 
move in response to this change. Because no charges have moved, the electric field 
between the plates has the same value but extends over a shorter distance. There-
fore, the magnitude of the potential difference between the plates DV 5 Ed (Eq. 
25.6) is smaller. The difference between this new capacitor voltage and the terminal 
voltage of the battery appears as a potential difference across the wires connecting 
the battery to the capacitor, resulting in an electric field in the wires that drives 
more charge onto the plates and increases the potential difference between the 
plates. When the potential difference between the plates again matches that of the 
battery, the flow of charge stops. Therefore, moving the plates closer together causes 
the charge on the capacitor to increase. If d is increased, the charge decreases. As a 
result, the inverse relationship between C and d in Equation 26.3 is reasonable.

Q uick Quiz 26.2  Many computer keyboard buttons are constructed of capacitors 
as shown in Figure 26.3. When a key is pushed down, the soft insulator between 
the movable plate and the fixed plate is compressed. When the key is pressed, 
what happens to the capacitance? (a) It increases. (b) It decreases. (c) It changes 
in a way you cannot determine because the electric circuit connected to the key-
board button may cause a change in DV.

C 5
P0A
d

Capacitance of parallel plates 

Q

Key
B

Movable plate

Insulator
Fixed plate

Figure 26.3  (Quick Quiz 26.2) 
One type of computer keyboard 
button.

b
a

�

Gaussian
surface

�Q

�Q

a
Q

Q

b

r

a b

Figure 26.4  (Example 26.1) (a) A cylindrical capacitor consists 
of a solid cylindrical conductor of radius a and length , sur-
rounded by a coaxial cylindrical shell of radius b. (b) End view. 
The electric field lines are radial. The dashed line represents the 
end of a cylindrical gaussian surface of radius r and length ,.
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Apply Equation 24.7 for the electric field outside a cylin-
drically symmetric charge distribution and notice from 
Figure 26.4b that E

S
 is parallel to d sS along a radial line:

Vb 2 Va 5 2 3
b

a
 Erdr 5 22ke l 3

b

a
 
dr
r

5 22ke l ln a b
a
b

Substitute the absolute value of DV into Equation 26.1 
and use l 5 Q /,:

C 5
Q

DV
5

Q12keQ /, 2  ln 1b/a 2 5
,

2ke ln 1b/a 2  (26.4)

Finalize  The capacitance depends on the radii a and b and is proportional to the length of the cylinders. Equation 
26.4 shows that the capacitance per unit length of a combination of concentric cylindrical conductors is

C
,

5
1

2ke ln 1b/a 2   (26.5)

An example of this type of geometric arrangement is a coaxial cable, which consists of two concentric cylindrical conduc-
tors separated by an insulator. You probably have a coaxial cable attached to your television set if you are a subscriber 
to cable television. The coaxial cable is especially useful for shielding electrical signals from any possible external 
influences.

 Suppose b 5 2.00a for the cylindrical capacitor. You would like to increase the capacitance, and you can 
do so by choosing to increase either , by 10% or a by 10%. Which choice is more effective at increasing the capacitance?

Answer  According to Equation 26.4, C is proportional to ,, so increasing , by 10% results in a 10% increase in C. For 
the result of the change in a, let’s use Equation 26.4 to set up a ratio of the capacitance C9 for the enlarged cylinder 
radius a9 to the original capacitance:

C r
C

5
,/2ke ln 1b/a r 2
,/2ke ln 1b/a 2 5

ln 1b/a 2
ln 1b/a r 2

We now substitute b 5 2.00a and a9 5 1.10a, representing a 10% increase in a:

C r
C

5
ln 12.00a/a 2

ln 12.00a/1.10a 2 5
ln 2.00
ln 1.82

5 1.16

which corresponds to a 16% increase in capacitance. Therefore, it is more effective to increase a than to increase ,.
 Note two more extensions of this problem. First, it is advantageous to increase a only for a range of relationships 
between a and b. If b . 2.85a, increasing , by 10% is more effective than increasing a (see Problem 70). Second, if b 
decreases, the capacitance increases. Increasing a or decreasing b has the effect of bringing the plates closer together, 
which increases the capacitance.

WHAT IF ?

Write an expression for the potential difference between 
the two cylinders from Equation 25.3:

Vb 2 Va 5 2 3
b

a
E
S
?d sS

Analyze  Assuming , is much greater than a and b, we can neglect end effects. In this case, the electric field is perpen-
dicular to the long axis of the cylinders and is confined to the region between them (Fig. 26.4b).

 

▸ 26.1 c o n t i n u e d

continued

Example 26.2   The Spherical Capacitor

A spherical capacitor consists of a spherical conducting shell of radius b and charge 2Q concentric with a smaller con-
ducting sphere of radius a and charge Q (Fig. 26.5, page 782). Find the capacitance of this device.

Conceptualize  As with Example 26.1, this system involves a pair of conductors and qualifies as a capacitor. We expect 
the capacitance to depend on the spherical radii a and b.

S O L U T I O N
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26.3 Combinations of Capacitors
Two or more capacitors often are combined in electric circuits. We can calculate 
the equivalent capacitance of certain combinations using methods described in 
this section. Throughout this section, we assume the capacitors to be combined are 
initially uncharged.

In studying electric circuits, we use a simplified pictorial representation called a 
circuit diagram. Such a diagram uses circuit symbols to represent various circuit 
elements. The circuit symbols are connected by straight lines that represent the 
wires between the circuit elements. The circuit symbols for capacitors, batteries, 
and switches as well as the color codes used for them in this text are given in Fig-
ure 26.6. The symbol for the capacitor reflects the geometry of the most common 
model for a capacitor, a pair of parallel plates. The positive terminal of the battery 
is at the higher potential and is represented in the circuit symbol by the longer line.

Parallel Combination
Two capacitors connected as shown in Figure 26.7a are known as a parallel combi-

nation of capacitors. Figure 26.7b shows a circuit diagram for this combination of 
capacitors. The left plates of the capacitors are connected to the positive terminal of 
the battery by a conducting wire and are therefore both at the same electric potential 

26.3

Substitute the absolute value of DV into Equation 26.1: C 5
Q

DV
5

Q0 Vb 2 Va 0 5
ab

ke 1b 2 a 2  (26.6)

Apply the result of Example 24.3 for the electric field 
outside a spherically symmetric charge distribution  
and note that E

S
 is parallel to d sS along a radial line:

Vb 2 Va 5 2 3
b

a
 Er dr 5 2keQ 3

b

a
 
dr
r 2 5 keQ c1

r
d b

a

(1)   Vb 2 Va 5 keQ a1
b

2
1
a
b 5 keQ 

a 2 b
ab

Write an expression for the potential difference between 
the two conductors from Equation 25.3:

Vb 2 Va 5 2 3
b

a
E
S
?d sS

Finalize  The capacitance depends on a and b as expected. The potential difference between the spheres in Equation 
(1) is negative because Q is positive and b . a. Therefore, in Equation 26.6, when we take the absolute value, we change 
a 2 b to b 2 a. The result is a positive number.

If the radius b of the outer sphere approaches infinity, what does the capacitance become?

Answer  In Equation 26.6, we let b S `:

C 5 lim
b S `

  ab
ke 1b 2 a 2 5

ab
ke 1b 2 5

a
ke

5 4pP0a

Notice that this expression is the same as Equation 26.2, the capacitance of an isolated spherical conductor.

WHAT IF ?

Capacitor
symbol

Battery
symbol

symbol
Switch Open

Closed

�

�

Figure 26.6  Circuit symbols for 
capacitors, batteries, and switches. 
Notice that capacitors are in 
blue, batteries are in green, and 
switches are in red. The closed 
switch can carry current, whereas 
the open one cannot.

 

▸ 26.2 c o n t i n u e d

Categorize  Because of the spherical symmetry of the sys-
tem, we can use results from previous studies of spherical 
systems to find the capacitance.

Analyze  As shown in Chapter 24, the direction of the 
electric field outside a spherically symmetric charge 
distribution is radial and its magnitude is given by the 
expression E 5 keQ /r 2. In this case, this result applies to 
the field between the spheres (a , r , b).

a

b

�Q

�Q

Figure 26.5  (Example 26.2) 
A spherical capacitor consists of 
an inner sphere of radius a sur-
rounded by a concentric spherical 
shell of radius b. The electric field 
between the spheres is directed 
radially outward when the inner 
sphere is positively charged.
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as the positive terminal. Likewise, the right plates are connected to the negative ter-
minal and so are both at the same potential as the negative terminal. Therefore, the 
individual potential differences across capacitors connected in parallel are the same 
and are equal to the potential difference applied across the combination. That is,

DV1 5 DV2 5 DV  

where DV is the battery terminal voltage.
 After the battery is attached to the circuit, the capacitors quickly reach their 
maximum charge. Let’s call the maximum charges on the two capacitors Q 1 and 
Q 2, where Q 1 5 C 1DV1 and Q 2 5 C 2DV2. The total charge Q tot stored by the two 
capacitors is the sum of the charges on the individual capacitors:

 Q tot 5 Q 1 1 Q 2  5 C 1DV1 1 C 2DV2 (26.7)

 Suppose you wish to replace these two capacitors by one equivalent capacitor hav-
ing a capacitance Ceq as in Figure 26.7c. The effect this equivalent capacitor has 
on the circuit must be exactly the same as the effect of the combination of the two 
individual capacitors. That is, the equivalent capacitor must store charge Q tot when 
connected to the battery. Figure 26.7c shows that the voltage across the equivalent 
capacitor is DV because the equivalent capacitor is connected directly across the 
battery terminals. Therefore, for the equivalent capacitor,

 Q tot 5 C eq DV  

Substituting this result into Equation 26.7 gives

 C eq DV 5 C1 DV1 1 C2 DV2  

  C eq 5 C1 1 C2 1parallel combination 2  

where we have canceled the voltages because they are all the same. If this treat-
ment is extended to three or more capacitors connected in parallel, the equivalent 

capacitance is found to be

 C eq 5 C1 1 C2 1 C3 1 c  1parallel combination 2  (26.8)

Therefore, the equivalent capacitance of a parallel combination of capacitors is 
(1)  the algebraic sum of the individual capacitances and (2) greater than any of 

C eq 5 C1 1 C2 1 C3 1 c 1parallel combination 2  Equivalent capacitance for 
capacitors in parallel 

C2

C1

V

Q2

C2

Q1

C1

VV� �

V1�

�

� �� �

�Q 1 �Q 1

V2�

�Q 2 �Q 2

� �

� �

� �

Ceq C1 C2 �  �

A pictorial 
representation of two 
capacitors connected in 
parallel to a battery

A circuit diagram 
showing the two 
capacitors connected 
in parallel to a battery

A circuit diagram 
showing the equivalent 
capacitance of the 
capacitors in parallel

a b c

Figure 26.7 Two capacitors 
connected in parallel. All three 
diagrams are equivalent.
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the individual capacitances. Statement (2) makes sense because we are essentially 
combining the areas of all the capacitor plates when they are connected with con-
ducting wire, and capacitance of parallel plates is proportional to area (Eq. 26.3).

Series Combination
Two capacitors connected as shown in Figure 26.8a and the equivalent circuit dia-
gram in Figure 26.8b are known as a series combination of capacitors. The left 
plate of capacitor 1 and the right plate of capacitor 2 are connected to the termi-
nals of a battery. The other two plates are connected to each other and to nothing 
else; hence, they form an isolated system that is initially uncharged and must con-
tinue to have zero net charge. To analyze this combination, let’s first consider the 
uncharged capacitors and then follow what happens immediately after a battery is 
connected to the circuit. When the battery is connected, electrons are transferred 
out of the left plate of C1 and into the right plate of C 2. As this negative charge 
accumulates on the right plate of C 2, an equivalent amount of negative charge is 
forced off the left plate of C 2, and this left plate therefore has an excess positive 
charge. The negative charge leaving the left plate of C 2 causes negative charges 
to accumulate on the right plate of C1. As a result, both right plates end up with a 
charge 2Q  and both left plates end up with a charge 1Q . Therefore, the charges 
on capacitors connected in series are the same:

 Q 1 5 Q 2 5 Q  

where Q  is the charge that moved between a wire and the connected outside plate 
of one of the capacitors.
 Figure 26.8a shows the individual voltages DV 1 and DV 2 across the capacitors. 
These voltages add to give the total voltage DVtot across the combination:

 DVtot 5 DV1 1 DV2 5
Q 1

C1
1

Q 2

C 2
 (26.9)

In general, the total potential difference across any number of capacitors connected 
in series is the sum of the potential differences across the individual capacitors.
 Suppose the equivalent single capacitor in Figure 26.8c has the same effect on 
the circuit as the series combination when it is connected to the battery. After it is 
fully charged, the equivalent capacitor must have a charge of 2Q  on its right plate 
and a charge of 1Q  on its left plate. Applying the definition of capacitance to the 
circuit in Figure 26.8c gives

 DVtot 5
Q

C eq
 

� �

C2

�V

C1
�V1 �V2

�V

C1 C2

�V1 �V2
�Q �Q �Q �Q

� �
�V

C2Ceq     C1     
11 1

� �

� �

A pictorial 
representation of two 
capacitors connected in 
series to a battery

A circuit diagram 
showing the two 
capacitors connected 
in series to a battery

A circuit diagram 
showing the equivalent 
capacitance of the 
capacitors in series

a b c

Figure 26.8 Two capacitors 
connected in series. All three dia-
grams are equivalent.
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Substituting this result into Equation 26.9, we have

Q

C eq
5

Q 1

C 1
1

Q 2

C 2
 

Canceling the charges because they are all the same gives

 
1

C eq
5

1
C1

1
1

C 2
 1series combination 2  

When this analysis is applied to three or more capacitors connected in series, the 
relationship for the equivalent capacitance is

 
1

C eq
5

1
C 1

1
1

C 2
1

1
C3

1 c  1series combination 2  (26.10)

This expression shows that (1) the inverse of the equivalent capacitance is the alge-
braic sum of the inverses of the individual capacitances and (2) the equivalent 
capacitance of a series combination is always less than any individual capacitance 
in the combination.

Q uick Quiz 26.3  Two capacitors are identical. They can be connected in series or 
in parallel. If you want the smallest equivalent capacitance for the combination, 
how should you connect them? (a) in series (b) in parallel (c) either way because 
both combinations have the same capacitance

 Equivalent capacitance for 
capacitors in series

1
C eq

5
1

C 1
1

1
C 2

1
1

C3
1 c 1series combination 2

Q

Example 26.3   Equivalent Capacitance

Find the equivalent capacitance between a and b for the 
combination of capacitors shown in Figure 26.9a. All 
capacitances are in microfarads.

Conceptualize  Study Figure 26.9a carefully and make 
sure you understand how the capacitors are connected. 
Verify that there are only series and parallel connec-
tions between capacitors.

Categorize  Figure 26.9a shows that the circuit contains 
both series and parallel connections, so we use the 
rules for series and parallel combinations discussed in 
this section.

Analyze  Using Equations 26.8 and 26.10, we reduce the combination step by step as indicated in the figure. As you 
follow along below, notice that in each step we replace the combination of two capacitors in the circuit diagram with a 
single capacitor having the equivalent capacitance.

S O L U T I O N

4.0
4.0

8.0
8.0

ba

4.0

ba

2.0

6.0 ba

4.0

8.0

ba

2.0

6.0

3.0

1.0

a b c d

Figure 26.9  (Example 26.3) To find the equivalent capacitance 
of the capacitors in (a), we reduce the various combinations in 
steps as indicated in (b), (c), and (d), using the series and parallel 
rules described in the text. All capacitances are in microfarads.

The 1.0-mF and 3.0-mF capacitors (upper red-brown 
circle in Fig. 26.9a) are in parallel. Find the equivalent 
capacitance from Equation 26.8:

Ceq 5 C1 1 C 2 5 4.0 mF

The 2.0-mF and 6.0-mF capacitors (lower red-brown 
circle in Fig. 26.9a) are also in parallel:

Ceq 5 C1 1 C 2 5 8.0 mF 

The circuit now looks like Figure 26.9b. The two 4.0-mF 
capacitors (upper green circle in Fig. 26.9b) are in series. 
Find the equivalent capacitance from Equation 26.10:

 
1

C eq
5

1
C 1

1
1

C 2
5

1
4.0 mF

1
1

4.0 mF
5

1
2.0 mF

 C eq 5 2.0 mF

continued



786 Chapter 26 Capacitance and Dielectrics

26.4 Energy Stored in a Charged Capacitor
Because positive and negative charges are separated in the system of two conduc-
tors in a capacitor, electric potential energy is stored in the system. Many of those 
who work with electronic equipment have at some time verified that a capacitor can 
store energy. If the plates of a charged capacitor are connected by a conductor such 
as a wire, charge moves between each plate and its connecting wire until the capaci-
tor is uncharged. The discharge can often be observed as a visible spark. If you 
accidentally touch the opposite plates of a charged capacitor, your fingers act as a 
pathway for discharge and the result is an electric shock. The degree of shock you 
receive depends on the capacitance and the voltage applied to the capacitor. Such 
a shock could be dangerous if high voltages are present as in the power supply of a 
home theater system. Because the charges can be stored in a capacitor even when 
the system is turned off, unplugging the system does not make it safe to open the 
case and touch the components inside.

Figure 26.10a shows a battery connected to a single parallel-plate capacitor with 
a switch in the circuit. Let us identify the circuit as a system. When the switch is 
closed (Fig. 26.10b), the battery establishes an electric field in the wires and charges 

26.4

Finalize  This final value is that of the single equivalent capacitor shown in Figure 26.9d. For further practice in treat-
ing circuits with combinations of capacitors, imagine a battery is connected between points a and b in Figure 26.9a so 
that a potential difference DV is established across the combination. Can you find the voltage across and the charge on 
each capacitor?

�V �V

+
+
+
+
+
+

–
–
–
–
–
–

Electric
field in
wire

Electric field 
between plates

Chemical potential
energy in the
battery is reduced.

Electrons move 
from the wire to 
the plate.

Electrons move 
from the plate 
to the wire, 
leaving the 
plate positively 
charged.

Separation 
of charges 
represents 
potential 
energy.

� �� �

E
S

a b

Electric
field in
wire

With the switch 
open, the capacitor 
remains uncharged.

Figure 26.10 (a) A circuit con-
sisting of a capacitor, a battery, 
and a switch. (b) When the switch 
is closed, the battery establishes 
an electric field in the wire and 
the capacitor becomes charged.

 

▸ 26.3 c o n t i n u e d

The two 8.0-mF capacitors (lower green circle in Fig. 
26.9b) are also in series. Find the equivalent capacitance 
from Equation 26.10:

1
C eq

5
1

C 1
1

1
C 2

5
1

8.0 mF
1

1
8.0 mF

5
1

4.0 mF

C eq 5 4.0 mF

The circuit now looks like Figure 26.9c. The 2.0-mF and 
4.0-mF capacitors are in parallel:

Ceq 5 C1 1 C 2 5   6.0 mF 
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flow between the wires and the capacitor. As that occurs, there is a transformation 
of energy within the system. Before the switch is closed, energy is stored as chemi-
cal potential energy in the battery. This energy is transformed during the chemical 
reaction that occurs within the battery when it is operating in an electric circuit. 
When the switch is closed, some of the chemical potential energy in the battery is 
transformed to electric potential energy associated with the separation of positive 
and negative charges on the plates.

To calculate the energy stored in the capacitor, we shall assume a charging pro-
cess that is different from the actual process described in Section 26.1 but that gives 
the same final result. This assumption is justified because the energy in the final 
configuration does not depend on the actual charge-transfer process.3 Imagine the 
plates are disconnected from the battery and you transfer the charge mechanically 
through the space between the plates as follows. You grab a small amount of posi-
tive charge on one plate and apply a force that causes this positive charge to move 
over to the other plate. Therefore, you do work on the charge as it is transferred 
from one plate to the other. At first, no work is required to transfer a small amount 
of charge dq from one plate to the other,4 but once this charge has been trans-
ferred, a small potential difference exists between the plates. Therefore, work must 
be done to move additional charge through this potential difference. As more and 
more charge is transferred from one plate to the other, the potential difference 
increases in proportion and more work is required. The overall process is described 
by the nonisolated system model for energy. Equation 8.2 reduces to W 5 DUE ; the 
work done on the system by the external agent appears as an increase in electric 
potential energy in the system.
 Suppose q is the charge on the capacitor at some instant during the charging pro-
cess. At the same instant, the potential difference across the capacitor is DV 5 q/C. 
This relationship is graphed in Figure 26.11. From Section 25.1, we know that the 
work necessary to transfer an increment of charge dq from the plate carrying charge 
2q to the plate carrying charge q (which is at the higher electric potential) is

 dW 5 DV dq 5
q

C
 dq  

The work required to transfer the charge dq is the area of the tan rectangle in Fig-
ure 26.11. Because 1 V 5 1 J/C, the unit for the area is the joule. The total work 
required to charge the capacitor from q 5 0 to some final charge q 5 Q  is

 W 5  3
Q

0
 
q

C
 dq 5

1
C

 3
Q

0
q dq 5

Q 2

2C
 

The work done in charging the capacitor appears as electric potential energy UE
stored in the capacitor. Using Equation 26.1, we can express the potential energy 
stored in a charged capacitor as

UE 5
Q 2

2C
5 1

2Q DV 5 1
2C 1DV 22  (26.11)

Because the curve in Figure 26.11 is a straight line, the total area under the curve is 
that of a triangle of base Q and height DV.
 Equation 26.11 applies to any capacitor, regardless of its geometry. For a given 
capacitance, the stored energy increases as the charge and the potential difference 
increase. In practice, there is a limit to the maximum energy (or charge) that can 
be stored because, at a sufficiently large value of DV, discharge ultimately occurs 

UEUU 5
Q 2

2C
5 1

2Q DV 5 1
2C 1DV 22  Energy stored in a charged 

capacitor

3This discussion is similar to that of state variables in thermodynamics. The change in a state variable such as tem-
perature is independent of the path followed between the initial and final states. The potential energy of a capacitor 
(or any system) is also a state variable, so its change does not depend on the process followed to charge the capacitor.
4We shall use lowercase q for the time-varying charge on the capacitor while it is charging to distinguish it from 
uppercase Q , which is the total charge on the capacitor after it is completely charged.

V

dq

q
Q

�

The work required to move charge 
dq through the potential 
difference �V across the capacitor 
plates is given approximately by 
the area of the shaded rectangle.

Figure 26.11  A plot of potential 
difference versus charge for a 
capacitor is a straight line having 
slope 1/C.
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Example 26.4   Rewiring Two Charged Capacitors

Two capacitors C1 and C 2 (where C1 . C 2) are charged to the 
same initial potential difference DVi . The charged capacitors 
are removed from the battery, and their plates are connected 
with opposite polarity as in Figure 26.12a. The switches S1 
and S2 are then closed as in Figure 26.12b.

(A)  Find the final potential difference DVf between a and b 
after the switches are closed.

Conceptualize  Figure 26.12 helps us understand the initial 
and final configurations of the system. When the switches 
are closed, the charge on the system will redistribute 
between the capacitors until both capacitors have the same 
potential difference. Because C 1 . C 2, more charge exists 
on C 1 than on C 2, so the final configuration will have positive charge on the left plates as shown in Figure 26.12b.

Categorize  In Figure 26.12b, it might appear as if the capacitors are connected in parallel, but there is no battery in 
this circuit to apply a voltage across the combination. Therefore, we cannot categorize this problem as one in which 
capacitors are connected in parallel. We can categorize it as a problem involving an isolated system for electric charge. 
The left-hand plates of the capacitors form an isolated system because they are not connected to the right-hand plates 
by conductors.

S O L U T I O N

between the plates. For this reason, capacitors are usually labeled with a maximum 
operating voltage.

We can consider the energy in a capacitor to be stored in the electric field cre-
ated between the plates as the capacitor is charged. This description is reason-
able because the electric field is proportional to the charge on the capacitor. For 
a  parallel-plate capacitor, the potential difference is related to the electric field 
through the relationship DV 5 Ed. Furthermore, its capacitance is C 5 P0A/d (Eq. 
26.3). Substituting these expressions into Equation 26.11 gives

 UE 5 1
2 a P0 A

d
b 1Ed 2 2 5 1

2 1P0Ad 2E 2  (26.12)

Because the volume occupied by the electric field is Ad, the energy per unit volume  
uE 5 UE/Ad, known as the energy density, is

 uE 5 1
2 P0 E 2 (26.13)

Although Equation 26.13 was derived for a parallel-plate capacitor, the expression 
is generally valid regardless of the source of the electric field. That is, the energy 
density in any electric field is proportional to the square of the magnitude of the 
electric field at a given point.

Q uick Quiz 26.4  You have three capacitors and a battery. In which of the follow-
ing combinations of the three capacitors is the maximum possible energy stored 
when the combination is attached to the battery? (a) series (b) parallel (c) no 
difference because both combinations store the same amount of energy

uE 5 1
2 P0 E 2Energy density in 

an electric field

Q

� �

Q1i
�

ba

�

C1

Q 2i
� �

C2

S1 S2

�

ba

�

S1 S2

Q1f
C1

Q 2f C2

a b

Figure 26.12  (Example 26.4) (a) Two capacitors are 
charged to the same initial potential difference and con-
nected together with plates of opposite sign to be in contact 
when the switches are closed. (b) When the switches are 
closed, the charges redistribute.

Analyze  Write an expression for the total charge on the 
left-hand plates of the system before the switches are 
closed, noting that a negative sign for Q 2i is necessary 
because the charge on the left plate of capacitor C 2 is 
negative:

(1)   Q i 5 Q 1i 1 Q 2i 5 C1 DVi 2 C 2 DVi 5 (C1 2 C 2)DVi

Pitfall Prevention 26.4
Not a New Kind of Energy  
The energy given by Equation 
26.12 is not a new kind of energy. 
The equation describes familiar 
electric potential energy associ-
ated with a system of separated 
source charges. Equation 26.12 
provides a new interpretation, or a 
new way of modeling the energy. 
Furthermore, Equation 26.13 cor-
rectly describes the energy density 
associated with any electric field, 
regardless of the source.
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 One device in which capacitors have an important role is the portable defibrillator 
(see the chapter-opening photo on page 777). When cardiac fibrillation (random 
contractions) occurs, the heart produces a rapid, irregular pattern of beats. A fast dis-
charge of energy through the heart can return the organ to its normal beat pattern. 
Emergency medical teams use portable defibrillators that contain batteries capable 
of charging a capacitor to a high voltage. (The circuitry actually permits the capacitor 
to be charged to a much higher voltage than that of the battery.) Up to 360 J is stored 

Because the system is isolated, the initial and 
final charges on the system must be the same. 
Use this condition and Equations (1) and (2) to 
solve for DVf :

Q f 5 Q i   S   1C 1 1 C 2 2  DVf 5 1C 1 2 C 2 2  DVi

(3)   DVf 5 aC 1 2 C 2

C 1 1 C 2
b DVi

(B)  Find the total energy stored in the capacitors before and after the switches are closed and determine the ratio of 
the final energy to the initial energy.

S O L U T I O N

Divide Equation (5) by Equation (4) to obtain the 
ratio of the energies stored in the system:

Uf

Ui
5

1
2 1C 1 2 C 2 22 1DVi 22/ 1C 1 1 C 2 2

1
2 1C 1 1 C 2 2 1DVi 22

(6)   
Uf

Ui
5 aC 1 2 C 2

C 1 1 C 2
b2

Use the results of part (A) to rewrite this expres-
sion in terms of DVi :

(5)   Uf 5 1
2 1C 1 1 C 2 2 c aC 1 2 C 2

C 1 1 C 2
b DVi d 2

5 1
2 
1C 1 2 C 2 22 1DVi 22

C 1 1 C 2

Write an expression for the total energy stored in 
the capacitors after the switches are closed:

Uf 5 1
2C 1 1DVf 22 1 1

2C 2 1DVf 22 5 1
2 1C 1 1 C 2 2 1DVf 22

Use Equation 26.11 to find an expression for the 
total energy stored in the capacitors before the 
switches are closed:

(4)   Ui 5 1
2C 1 1DVi 22 1 1

2C 2 1DVi 22 5 1
2 1C 1 1 C 2 2 1DVi 22

Finalize  The ratio of energies is less than unity, indicating that the final energy is less than the initial energy. At first, 
you might think the law of energy conservation has been violated, but that is not the case. The “missing” energy is 
transferred out of the system by the mechanism of electromagnetic waves (TER in Eq. 8.2), as we shall see in Chapter 34. 
Therefore, this system is isolated for electric charge, but nonisolated for energy.

What if the two capacitors have the same capacitance? What would you expect to happen when the 
switches are closed?

Answer  Because both capacitors have the same initial potential difference applied to them, the charges on the identical 
capacitors have the same magnitude. When the capacitors with opposite polarities are connected together, the equal- 
magnitude charges should cancel each other, leaving the capacitors uncharged.
 Let’s test our results to see if that is the case mathematically. In Equation (1), because the capacitances are equal, 
the initial charge Q i on the system of left-hand plates is zero. Equation (3) shows that DVf 5 0, which is consistent with 
uncharged capacitors. Finally, Equation (5) shows that Uf 5 0, which is also consistent with uncharged capacitors.

WHAT IF ?

After the switches are closed, the charges on 
the individual capacitors change to new values 
Q 1f   and Q 2f   such that the potential difference 
is again the same across both capacitors, with 
a value of DVf . Write an expression for the total 
charge on the left-hand plates of the system  
after the switches are closed:

(2)   Q f 5 Q 1f 1 Q 2f 5 C1 DVf 1 C 2 DVf 5 (C1 1 C 2)DVf

 

▸ 26.4 c o n t i n u e d
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in the electric field of a large capacitor in a defibrillator when it is fully charged. The 
stored energy is released through the heart by conducting electrodes, called paddles, 
which are placed on both sides of the victim’s chest. The defibrillator can deliver 
the energy to a patient in about 2 ms (roughly equivalent to 3 000 times the power 
delivered to a 60-W lightbulb!). The paramedics must wait between applications of 
the energy because of the time interval necessary for the capacitors to become fully 
charged. In this application and others (e.g., camera flash units and lasers used for 
fusion experiments), capacitors serve as energy reservoirs that can be slowly charged 
and then quickly discharged to provide large amounts of energy in a short pulse.

26.5 Capacitors with Dielectrics
A dielectric is a nonconducting material such as rubber, glass, or waxed paper. We 
can perform the following experiment to illustrate the effect of a dielectric in a 
capacitor. Consider a parallel-plate capacitor that without a dielectric has a charge 
Q 0 and a capacitance C 0. The potential difference across the capacitor is DV0 5 
Q 0/C0. Figure 26.13a illustrates this situation. The potential difference is measured 
by a device called a voltmeter. Notice that no battery is shown in the figure; also, we 
must assume no charge can flow through an ideal voltmeter. Hence, there is no 
path by which charge can flow and alter the charge on the capacitor. If a dielectric 
is now inserted between the plates as in Figure 26.13b, the voltmeter indicates that 
the voltage between the plates decreases to a value DV. The voltages with and with-
out the dielectric are related by a factor k as follows:

 DV 5
DV0

k
 

Because DV , DV0, we see that k . 1. The dimensionless factor k is called the dielec-

tric constant of the material. The dielectric constant varies from one material to 
another. In this section, we analyze this change in capacitance in terms of electrical 
parameters such as electric charge, electric field, and potential difference; Section 
26.7 describes the microscopic origin of these changes.
 Because the charge Q 0 on the capacitor does not change, the capacitance must 
change to the value

 C 5
Q 0

DV
5

Q 0

DV0/k
5 k 

Q 0

DV0
 

 C 5 kC 0  (26.14)

26.5

C 5 kC 0Capacitance of a capacitor 
filled with a material of 

dielectric constant k

Pitfall Prevention 26.5
Is the Capacitor Connected  
to a Battery? For problems in 
which a capacitor is modified 
(by insertion of a dielectric, for 
example), you must note whether 
modifications to the capacitor are 
being made while the capacitor is 
connected to a battery or after it 
is disconnected. If the capacitor 
remains connected to the battery, 
the voltage across the capacitor 
necessarily remains the same. If 
you disconnect the capacitor from 
the battery before making any 
modifications to the capacitor, 
the capacitor is an isolated system 
for electric charge and its charge 
remains the same.

C0 Q 0

�
�

C Q 0

Dielectric

VV0

�
�

� �

The potential 
difference across the 
charged capacitor is 
initially �V0.

After the dielectric is inserted between 
the plates, the charge remains the same, 
but the potential difference decreases 
and the capacitance increases.

a b

Figure 26.13 A charged capaci-
tor (a) before and (b) after  
insertion of a dielectric between 
the plates.
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That is, the capacitance increases by the factor k when the dielectric completely fills 
the region between the plates.5 Because C0 5 P0A/d (Eq. 26.3) for a parallel-plate 
capacitor, we can express the capacitance of a parallel-plate capacitor filled with a 
dielectric as

 C 5 k 
P0A
d

 (26.15)

 From Equation 26.15, it would appear that the capacitance could be made very 
large by inserting a dielectric between the plates and decreasing d. In practice, the 
lowest value of d is limited by the electric discharge that could occur through the 
dielectric medium separating the plates. For any given separation d, the maximum 
voltage that can be applied to a capacitor without causing a discharge depends on 
the dielectric strength (maximum electric field) of the dielectric. If the magnitude 
of the electric field in the dielectric exceeds the dielectric strength, the insulating 
properties break down and the dielectric begins to conduct.
 Physical capacitors have a specification called by a variety of names, including 
working voltage, breakdown voltage, and rated voltage. This parameter represents the 
largest voltage that can be applied to the capacitor without exceeding the dielectric 
strength of the dielectric material in the capacitor. Consequently, when selecting 
a capacitor for a given application, you must consider its capacitance as well as the 
expected voltage across the capacitor in the circuit, making sure the expected volt-
age is smaller than the rated voltage of the capacitor.
 Insulating materials have values of k greater than unity and dielectric strengths 
greater than that of air as Table 26.1 indicates. Therefore, a dielectric provides the 
following advantages:

An increase in capacitance
An increase in maximum operating voltage
Possible mechanical support between the plates, which allows the plates to be 
close together without touching, thereby decreasing d and increasing C

Table 26.1 Approximate Dielectric Constants and Dielectric Strengths  

of Various Materials at Room Temperature
Material Dielectric Constant k Dielectric Strengtha (106 V/m)

Air (dry) 1.000 59  3
Bakelite 4.9 24
Fused quartz 3.78  8
Mylar 3.2  7
Neoprene rubber 6.7 12
Nylon 3.4 14
Paper 3.7 16
Paraffin-impregnated paper 3.5 11
Polystyrene 2.56 24
Polyvinyl chloride 3.4 40
Porcelain 6 12
Pyrex glass 5.6 14
Silicone oil 2.5 15
Strontium titanate 233  8
Teflon 2.1 60
Vacuum 1.000 00 —
Water 80 —

aThe dielectric strength equals the maximum electric field that can exist in a dielectric without electrical breakdown. 
These values depend strongly on the presence of impurities and flaws in the materials.

5 If the dielectric is introduced while the potential difference is held constant by a battery, the charge increases to 
a value Q 5 kQ 0. The additional charge comes from the wires attached to the capacitor, and the capacitance again 
increases by the factor k.
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Types of Capacitors
Many capacitors are built into integrated circuit chips, but some electrical devices 
still use stand-alone capacitors. Commercial capacitors are often made from metal-
lic foil interlaced with thin sheets of either paraffin-impregnated paper or Mylar 
as the dielectric material. These alternate layers of metallic foil and dielectric are 
rolled into a cylinder to form a small package (Fig. 26.14a). High-voltage capacitors 
commonly consist of a number of interwoven metallic plates immersed in silicone 
oil (Fig. 26.14b). Small capacitors are often constructed from ceramic materials.

Often, an electrolytic capacitor is used to store large amounts of charge at relatively 
low voltages. This device, shown in Figure 26.14c, consists of a metallic foil in con-
tact with an electrolyte, a solution that conducts electricity by virtue of the motion of 
ions contained in the solution. When a voltage is applied between the foil and the 
electrolyte, a thin layer of metal oxide (an insulator) is formed on the foil, and this 
layer serves as the dielectric. Very large values of capacitance can be obtained in 
an electrolytic capacitor because the dielectric layer is very thin and therefore the 
plate separation is very small.

Electrolytic capacitors are not reversible as are many other capacitors. They 
have a polarity, which is indicated by positive and negative signs marked on the 
device. When electrolytic capacitors are used in circuits, the polarity must be cor-
rect. If the polarity of the applied voltage is the opposite of what is intended, the 
oxide layer is removed and the capacitor conducts electricity instead of storing 
charge.

Variable capacitors (typically 10 to 500 pF) usually consist of two interwoven sets 
of metallic plates, one fixed and the other movable, and contain air as the dielec-
tric (Fig. 26.15). These types of capacitors are often used in radio tuning circuits.

Q uick Quiz 26.5  If you have ever tried to hang a picture or a mirror, you know it 
can be difficult to locate a wooden stud in which to anchor your nail or screw. A 
carpenter’s stud finder is a capacitor with its plates arranged side by side instead 
of facing each other as shown in Figure 26.16. When the device is moved over a 
stud, does the capacitance (a) increase or (b) decrease?

Q

Plates

Electrolyte

Case

Metallic foil � oxide layer

Contacts

Metal foil

Paper

An electrolytic 
capacitor

Oil

a b c

A tubular capacitor 
whose plates are 
separated by paper 
and then rolled into 
a cylinder

A high-voltage 
capacitor consisting 
of many parallel 
plates separated by 
insulating oil

Figure 26.14  Three commercial capacitor designs.

When one set of metal plates is 
rotated so as to lie between a fixed 
set of plates, the capacitance of the 
device changes.

Figure 26.15  A variable capacitor. 
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The materials between the 
plates of the capacitor are 
the wallboard and air.

When the capacitor moves across 
a stud in the wall, the materials 
between the plates are the 
wallboard and the wood stud. 
The change in the dielectric 
constant causes a signal light to 
illuminate.

Figure 26.16  (Quick Quiz 26.5)  
A stud finder.

Example 26.5   Energy Stored Before and After 

A parallel-plate capacitor is charged with a battery to a charge Q 0. The battery is then removed, and a slab of material 
that has a dielectric constant k is inserted between the plates. Identify the system as the capacitor and the dielectric. 
Find the energy stored in the system before and after the dielectric is inserted.

AM
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Conceptualize  Think about what happens when the dielectric is inserted between the plates. Because the battery has 
been removed, the charge on the capacitor must remain the same. We know from our earlier discussion, however, that 
the capacitance must change. Therefore, we expect a change in the energy of the system.

Categorize  Because we expect the energy of the system to change, we model it as a nonisolated system for energy involv-
ing a capacitor and a dielectric. 

S O L U T I O N

Use Equation 26.14 to replace the capacitance C : U 5
Q 0

2

2kC 0
5

U0

k

Find the energy stored in the capacitor after the dielec-
tric is inserted between the plates:

U 5
Q 0

2

2C

Analyze  From Equation 26.11, find the energy stored in 
the absence of the dielectric:

U0 5
Q 0

2

2C 0

Finalize  Because k . 1, the final energy is less than the initial energy. We can account for the decrease in energy 
of the system by performing an experiment and noting that the dielectric, when inserted, is pulled into the device. 
To keep the dielectric from accelerating, an external agent must do negative work on the dielectric. Equation 8.2 
becomes DU 5 W, where both sides of the equation are negative.

26.6 Electric Dipole in an Electric Field
We have discussed the effect on the capacitance of placing a dielectric between the 
plates of a capacitor. In Section 26.7, we shall describe the microscopic origin of 
this effect. Before we can do so, however, let’s expand the discussion of the electric 
dipole introduced in Section 23.4 (see Example 23.6). The electric dipole consists 
of two charges of equal magnitude and opposite sign separated by a distance 2a as 
shown in Figure 26.17. The electric dipole moment of this configuration is defined 
as the vector pS directed from 2q toward 1q along the line joining the charges and 
having magnitude
 p ; 2aq (26.16)

 Now suppose an electric dipole is placed in a uniform electric field E
S

 and makes 
an angle u with the field as shown in Figure 26.18. We identify E

S
 as the field external 

to the dipole, established by some other charge distribution, to distinguish it from 
the field due to the dipole, which we discussed in Section 23.4.
 Each of the charges is modeled as a particle in an electric field. The electric 
forces acting on the two charges are equal in magnitude (F 5 qE) and opposite in 
direction as shown in Figure 26.18. Therefore, the net force on the dipole is zero. 
The two forces produce a net torque on the dipole, however; the dipole is there-
fore described by the rigid object under a net torque model. As a result, the dipole 
rotates in the direction that brings the dipole moment vector into greater alignment 
with the field. The torque due to the force on the positive charge about an axis 
through O in Figure 26.18 has magnitude Fa sin u, where a sin u is the moment arm 
of F about O. This force tends to produce a clockwise rotation. The torque about O 
on the negative charge is also of magnitude Fa sin u; here again, the force tends to 
produce a clockwise rotation. Therefore, the magnitude of the net torque about O is

 t 5 2Fa sin u 

Because F 5 qE and p 5 2aq, we can express t as

 t 5 2aqE sin u 5 pE sin u (26.17)

26.6

�q

�q

2a

p
S �

�

The electric dipole moment p 
is directed from �q toward �q.

S

Figure 26.17  An electric dipole 
consists of two charges of equal 
magnitude and opposite sign 
separated by a distance of 2a.
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S

The dipole moment p is at an 
angle u to the field, causing the 
dipole to experience a torque.

S

Figure 26.18  An electric dipole 
in a uniform external electric field.
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Based on this expression, it is convenient to express the torque in vector form as the 
cross product of the vectors pS and E

S
:

 t
S

5 pS 3 E
S

 (26.18)

 We can also model the system of the dipole and the external electric field as an 
isolated system for energy. Let’s determine the potential energy of the system as a 
function of the dipole’s orientation with respect to the field. To do so, recognize 
that work must be done by an external agent to rotate the dipole through an angle 
so as to cause the dipole moment vector to become less aligned with the field. The 
work done is then stored as electric potential energy in the system. Notice that this 
potential energy is associated with a rotational configuration of the system. Previ-
ously, we have seen potential energies associated with translational configurations: 
an object with mass was moved in a gravitational field, a charge was moved in an 
electric field, or a spring was extended. The work dW required to rotate the dipole 
through an angle du is dW 5 t du (see Eq. 10.25). Because t 5 pE sin u and the work 
results in an increase in the electric potential energy U, we find that for a rotation 
from ui to uf , the change in potential energy of the system is

  Uf 2 Ui 5 3
uf

ui

t du 5 3
uf

ui

pE sin u du 5 pE 3
uf

ui

sin u du 

  5 pE 32cos u 4 uf
ui

5 pE 1cos ui 2 cos uf 2  

The term that contains cos ui is a constant that depends on the initial orientation of 
the dipole. It is convenient to choose a reference angle of ui 5 908 so that cos ui 5 
cos 908 5 0. Furthermore, let’s choose Ui 5 0 at ui 5 908 as our reference value of 
potential energy. Hence, we can express a general value of UE 5 Uf   as

 UE 5 2pE cos u  (26.19)

We can write this expression for the potential energy of a dipole in an electric field 
as the dot product of the vectors pS and E

S
:

 UE 5 2pS ? E
S

 (26.20)

 To develop a conceptual understanding of Equation 26.19, compare it with the 
expression for the potential energy of the system of an object in the Earth’s gravi-
tational field, Ug 5 mgy (Eq. 7.19). First, both expressions contain a parameter of 
the entity placed in the field: mass for the object, dipole moment for the dipole. 
Second, both expressions contain the field, g for the object, E for the dipole. Finally, 
both expressions contain a configuration description: translational position y for 
the object, rotational position u for the dipole. In both cases, once the configura-
tion is changed, the system tends to return to the original configuration when the 
object is released: the object of mass m falls toward the ground, and the dipole 
begins to rotate back toward the configuration in which it is aligned with the field.
 Molecules are said to be polarized when a separation exists between the average 
position of the negative charges and the average position of the positive charges 
in the molecule. In some molecules such as water, this condition is always present; 
such molecules are called polar molecules. Molecules that do not possess a perma-
nent polarization are called nonpolar molecules.

 We can understand the permanent polarization of water by inspecting the geom-
etry of the water molecule. The oxygen atom in the water molecule is bonded to the 
hydrogen atoms such that an angle of 1058 is formed between the two bonds (Fig. 
26.19). The center of the negative charge distribution is near the oxygen atom, and 
the center of the positive charge distribution lies at a point midway along the line 
joining the hydrogen atoms (the point labeled 3 in Fig. 26.19). We can model the 
water molecule and other polar molecules as dipoles because the average positions 
of the positive and negative charges act as point charges. As a result, we can apply 
our discussion of dipoles to the behavior of polar molecules.

Torque on an electric dipole 
in an external electric field

UEUU 5 2pS ? E
S

Potential energy of the 
system of an electric dipole 
in an external electric field

O

HH 105�

�

� �

The center of the positive charge 
distribution is at the point    .

Figure 26.19  The water mol-
ecule, H2O, has a permanent 
polarization resulting from its 
nonlinear geometry. 
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Washing with soap and water is a household scenario in which the dipole struc-
ture of water is exploited. Grease and oil are made up of nonpolar molecules, which 
are generally not attracted to water. Plain water is not very useful for removing this 
type of grime. Soap contains long molecules called surfactants. In a long molecule, 
the polarity characteristics of one end of the molecule can be different from those 
at the other end. In a surfactant molecule, one end acts like a nonpolar molecule 
and the other acts like a polar molecule. The nonpolar end can attach to a grease 
or oil molecule, and the polar end can attach to a water molecule. Therefore, the 
soap serves as a chain, linking the dirt and water molecules together. When the 
water is rinsed away, the grease and oil go with it.

A symmetric molecule (Fig. 26.20a) has no permanent polarization, but polar-
ization can be induced by placing the molecule in an electric field. A field directed 
to the left as in Figure 26.20b causes the center of the negative charge distribution 
to shift to the right relative to the positive charges. This induced polarization is the 
effect that predominates in most materials used as dielectrics in capacitors.

��

� �

�

�

E
S

 

a

b

Figure 26.20  (a) A linear sym-
metric molecule has no perma-
nent polarization. (b) An external 
electric field induces a polariza-
tion in the molecule.

Example 26.6   The H2O Molecule 

The water (H2O) molecule has an electric dipole moment of 6.3 3 10230 C ? m. A sample contains 1021 water molecules, 
with the dipole moments all oriented in the direction of an electric field of magnitude 2.5 3 105 N/C. How much work 
is required to rotate the dipoles from this orientation (u 5 08) to one in which all the moments are perpendicular to 
the field (u 5 908)?

Conceptualize  When all the dipoles are aligned with the electric field, the dipoles–electric field system has the mini-
mum potential energy. This energy has a negative value given by the product of the right side of Equation 26.19, evalu-
ated at 08, and the number N of dipoles.

Categorize  The combination of the dipoles and the electric field is identified as a system. We use the nonisolated system 
model because an external agent performs work on the system to change its potential energy.

AM

S O L U T I O N

Analyze Write the appropriate reduction of the conserva-
tion of energy equation, Equation 8.2, for this situation:

(1)   DUE 5 W

Use Equation 26.19 to evaluate the initial and final 
potential energies of the system and Equation (1) to cal-
culate the work required to rotate the dipoles:

W 5 U908 2 U08 5 (2NpE cos 908) 2 (2NpE cos 08)

5 NpE 5 (1021)(6.3 3 10230 C ? m)(2.5 3 105 N/C)

5   1.6 3 1023 J

26.7 An Atomic Description of Dielectrics
In Section 26.5, we found that the potential difference DV0 between the plates of a 
capacitor is reduced to DV0/k when a dielectric is introduced. The potential differ-
ence is reduced because the magnitude of the electric field decreases between the 
plates. In particular, if E

S
0 is the electric field without the dielectric, the field in the 

presence of a dielectric is

 E
S

5
E
S

0

k
 (26.21)

First consider a dielectric made up of polar molecules placed in the electric field 
between the plates of a capacitor. The dipoles (that is, the polar molecules making 

26.7

Finalize Notice that the work done on the system is positive because the potential energy of the system has been raised 
from a negative value to a value of zero.
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up the dielectric) are randomly oriented in the absence of an electric field as shown 
in Figure 26.21a. When an external field E

S
0 due to charges on the capacitor plates 

is applied, a torque is exerted on the dipoles, causing them to partially align with 
the field as shown in Figure 26.21b. The dielectric is now polarized. The degree of 
alignment of the molecules with the electric field depends on temperature and the 
magnitude of the field. In general, the alignment increases with decreasing tem-
perature and with increasing electric field.
 If the molecules of the dielectric are nonpolar, the electric field due to the plates 
produces an induced polarization in the molecule. These induced dipole moments 
tend to align with the external field, and the dielectric is polarized. Therefore, a 
dielectric can be polarized by an external field regardless of whether the molecules 
in the dielectric are polar or nonpolar.
 With these ideas in mind, consider a slab of dielectric material placed between 
the plates of a capacitor so that it is in a uniform electric field E

S
0 as shown in Fig-

ure 26.21b. The electric field due to the plates is directed to the right and polarizes 
the dielectric. The net effect on the dielectric is the formation of an induced positive 
surface charge density sind on the right face and an equal-magnitude negative sur-
face charge density 2sind on the left face as shown in Figure 26.21c. Because we can 
model these surface charge distributions as being due to charged parallel plates, 
the induced surface charges on the dielectric give rise to an induced electric field 
E
S

ind  in the direction opposite the external field E
S

0. Therefore, the net electric field 
E
S

 in the dielectric has a magnitude

 E 5 E 0 2 E ind  (26.22)

 In the parallel-plate capacitor shown in Figure 26.22, the external field E 0 is 
related to the charge density s on the plates through the relationship E 0 5 s/P0. 
The induced electric field in the dielectric is related to the induced charge density 
sind through the relationship E ind 5 sind/P0. Because E 5 E 0/k 5 s/kP0, substitu-
tion into Equation 26.22 gives

  
s

kP0
5

s

P0
2

sind

P0
 

  sind 5 ak 2 1
k

bs  (26.23)

Because k . 1, this expression shows that the charge density sind induced on the 
dielectric is less than the charge density s on the plates. For instance, if k 5 3, the 
induced charge density is two-thirds the charge density on the plates. If no dielec-
tric is present, then k 5 1 and sind 5 0 as expected. If the dielectric is replaced by 
an electrical conductor for which E 5 0, however, Equation 26.22 indicates that 
E 0 5 E ind, which corresponds to sind 5 s. That is, the surface charge induced on 
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Polar molecules are 
randomly oriented in 
the absence of an 
external electric field.

When an external 
electric field is applied, 
the molecules partially 
align with the field.

The charged edges of the dielectric 
can be modeled as an additional 
pair of parallel plates establishing 
an electric field Eind in the 
direction opposite that of E0.

S

S

Figure 26.21  (a) Polar mol-
ecules in a dielectric. (b) An elec-
tric field is applied to the dielec-
tric. (c) Details of the electric field 
inside the dielectric.
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The induced charge density sind 
on the dielectric is less than the 
charge density s on the plates.

Figure 26.22 Induced charge 
on a dielectric placed between the 
plates of a charged capacitor.



 26.7 An Atomic Description of Dielectrics 797

Example 26.7   Effect of a Metallic Slab

A parallel-plate capacitor has a plate separation d and plate 
area A. An uncharged metallic slab of thickness a is inserted 
midway between the plates.

(A)  Find the capacitance of the device.

Conceptualize  Figure 26.23a shows the metallic slab between 
the plates of the capacitor. Any charge that appears on one 
plate of the capacitor must induce a charge of equal magni-
tude and opposite sign on the near side of the slab as shown 
in Figure 26.23a. Consequently, the net charge on the slab 
remains zero and the electric field inside the slab is zero.

Categorize  The planes of charge on the metallic slab’s upper 
and lower edges are identical to the distribution of charges 
on the plates of a capacitor. The metal between the slab’s 
edges serves only to make an electrical connection between 
the edges. Therefore, we can model the edges of the slab as 
conducting planes and the bulk of the slab as a wire. As a result, the capacitor in Figure 26.23a is equivalent to two 
capacitors in series, each having a plate separation (d 2 a)/2 as shown in Figure 26.23b.

S O L U T I O N

d a

(d � a)/2

s

s �  �  �  �  ��  �  �  �  �
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�s

�s

a b

(d � a)/2

(d � a)/2

(d � a)/2

Figure 26.23  (Example 26.7) (a) A parallel-plate capaci-
tor of plate separation d partially filled with a metallic slab 
of thickness a. (b) The equivalent circuit of the device in 
(a) consists of two capacitors in series, each having a plate 
separation (d 2 a)/2.

Analyze  Use Equation 26.3 and the rule for adding two 
capacitors in series (Eq. 26.10) to find the equivalent 
capacitance in Figure 26.23b:

1
C

5
1

C 1
 1

1
C 2

5
1
P0A1d 2 a 2/2

1
1
P0A1d 2 a 2/2

C 5 
P0A

d 2 a

(B)  Show that the capacitance of the original capacitor is unaffected by the insertion of the metallic slab if the slab is 
infinitesimally thin.

S O L U T I O N

In the result for part (A), let a S 0: C 5 lim
a S 0

a P0A
d 2 a

b 5
P0A
d

Finalize  The result of part (B) is the original capacitance before the slab is inserted, which tells us that we can insert 
an infinitesimally thin metallic sheet between the plates of a capacitor without affecting the capacitance. We use this 
fact in the next example.

What if the metallic slab in part (A) is not midway between the plates? How would that affect the capacitance?

Answer  Let’s imagine moving the slab in Figure 26.23a upward so that the distance between the upper edge of the 
slab and the upper plate is b. Then, the distance between the lower edge of the slab and the lower plate is d 2 b 2 a. As 
in part (A), we find the total capacitance of the series combination:

 
1
C

5
1

C 1
1

1
C 2

5
1

P0A/b
1

1
P0A/ 1d 2 b 2 a 2

 5
b
P0A

1
d 2 b 2 a

P0A
5

d 2 a
P0A

   S   C 5
P0A

d 2 a

which is the same result as found in part (A). The capacitance is independent of the value of b, so it does not matter 
where the slab is located. In Figure 26.23b, when the central structure is moved up or down, the decrease in plate sepa-
ration of one capacitor is compensated by the increase in plate separation for the other.

WHAT IF ?

the conductor is equal in magnitude but opposite in sign to that on the plates, 
resulting in a net electric field of zero in the conductor (see Fig. 24.16).
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Example 26.8   A Partially Filled Capacitor

A parallel-plate capacitor with a plate separation d has a 
capacitance C0 in the absence of a dielectric. What is the 
capacitance when a slab of dielectric material of dielectric 
constant k and thickness fd is inserted between the plates 
(Fig. 26.24a), where f is a fraction between 0 and 1?

Conceptualize  In our previous discussions of dielectrics 
between the plates of a capacitor, the dielectric filled the 
volume between the plates. In this example, only part of the 
volume between the plates contains the dielectric material.

Categorize  In Example 26.7, we found that an infinitesi-
mally thin metallic sheet inserted between the plates of a 
capacitor does not affect the capacitance. Imagine sliding 
an infinitesimally thin metallic slab along the bottom face 
of the dielectric shown in Figure 26.24a. We can model this 
system as a series combination of two capacitors as shown 
in Figure 26.24b. One capacitor has a plate separation fd and is filled with a dielectric; the other has a plate separation 
(1 2 f )d and has air between its plates.

S O L U T I O N

fd

(1 � f )d
d

C 1

C 2(1 � f )d

k

k

a b

fd

Figure 26.24 (Example 26.8) (a) A parallel-plate capacitor 
of plate separation d partially filled with a dielectric of thick-
ness fd. (b) The equivalent circuit of the capacitor consists of 
two capacitors connected in series.

Invert and substitute for the capacitance without the 
dielectric, C 0 5 P0A/d :

C 5
k

f 1 k 11 2 f 2  P0A
d

5
k

f 1 k 11 2 f 2  C 0

Find the equivalent capacitance C from Equation 26.10 
for two capacitors combined in series:

 
1
C

5
1

C 1
1

1
C 2

5
fd

kP0A
1
11 2 f 2d
P0 A

 
1
C

5
fd

kP0A
1

k 11 2 f 2d
kP0A

5
f 1 k 11 2 f 2

k
 

d
P0A

Analyze  Evaluate the two capacitances in Figure 26.24b 
from Equation 26.15:

C 1 5
kP0A

fd
 and C 2 5

P0A11 2 f 2d

Finalize  Let’s test this result for some known limits. If f S 0, the dielectric should disappear. In this limit, C S C 0, 
which is consistent with a capacitor with air between the plates. If f S 1, the dielectric fills the volume between the 
plates. In this limit, C S kC 0, which is consistent with Equation 26.14.

 

Summary

 A capacitor consists of two conductors carrying charges of equal 
magnitude and opposite sign. The capacitance C of any capacitor is the 
ratio of the charge Q on either conductor to the potential difference DV 
between them:

 C ;
Q

DV
 (26.1)

The capacitance depends only on the geometry of the conductors and 
not on an external source of charge or potential difference. The SI unit 
of capacitance is coulombs per volt, or the farad (F): 1 F 5 1 C/V.

 The electric dipole moment pS of 
an electric dipole has a magnitude

 p ; 2aq (26.16)

where 2a is the distance between the 
charges q and 2q. The direction of the 
electric dipole moment vector is from 
the negative charge toward the posi-
tive charge.

Definitions
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Concepts and Principles

 If two or more capacitors are connected in parallel, the poten-
tial difference is the same across all capacitors. The equivalent 
capacitance of a parallel combination of capacitors is

 C eq 5 C 1 1 C 2 1 C 3 1 . . .  (26.8)

If two or more capacitors are connected in series, the charge is 
the same on all capacitors, and the equivalent capacitance of the 
series combination is given by

 
1

C eq
5

1
C 1

1
1

C 2
1

1
C 3

1 c  (26.10)

These two equations enable you to simplify many electric circuits by 
replacing multiple capacitors with a single equivalent capacitance.

 When a dielectric material is inserted between the 
plates of a capacitor, the capacitance increases by a 
dimensionless factor k, called the dielectric constant:

 C 5 kC 0  (26.14)

where C 0 is the capacitance in the absence of the 
dielectric.

 The torque acting on an electric dipole in a uniform 
electric field E

S
 is

 t
S

5 pS 3 E
S

 (26.18)

The potential energy of the system of an electric dipole 
in a uniform external electric field E

S
 is

 UE 5 2pS ? E
S

 (26.20)

 Energy is stored in a charged capacitor 
because the charging process is equivalent 
to the transfer of charges from one conduc-
tor at a lower electric potential to another 
conductor at a higher potential. The energy 
stored in a capacitor of capacitance C with 
charge Q and potential difference DV is

 UE 5
Q 2

2C
5 1

2Q DV 5 1
2C 1DV 22  (26.11)

 6. Assume a device is designed to obtain a large potential 
difference by first charging a bank of capacitors con-
nected in parallel and then activating a switch arrange-
ment that in effect disconnects the capacitors from 
the charging source and from each other and recon-
nects them all in a series arrangement. The group of 
charged capacitors is then discharged in series. What 
is the maximum potential difference that can be 
obtained in this manner by using ten 500-mF capacitors 
and an 800-V charging source? (a) 500 V (b) 8.00 kV  
(c) 400 kV (d) 800 V (e) 0

 7. (i) What happens to the magnitude of the charge on 
each plate of a capacitor if the potential difference 
between the conductors is doubled? (a) It becomes 
four times larger. (b) It becomes two times larger.  
(c) It is unchanged. (d)  It becomes one-half as large. 
(e) It becomes one-fourth as large. (ii) If the potential 
difference across a capacitor is doubled, what happens 
to the energy stored? Choose from the same possibili-
ties as in part (i).

 8. A capacitor with very large capacitance is in series 
with another capacitor with very small capacitance. 
What is the equivalent capacitance of the combina-
tion? (a)  slightly greater than the capacitance of the 
large capacitor (b) slightly less than the capacitance of 
the large capacitor (c) slightly greater than the capaci-
tance of the small capacitor (d) slightly less than the 
capacitance of the small capacitor

 1. A fully charged parallel-plate capacitor remains con-
nected to a battery while you slide a dielectric between 
the plates. Do the following quantities (a) increase, 
(b) decrease, or (c) stay the same? (i) C (ii) Q (iii) DV 
(iv) the energy stored in the capacitor

 2. By what factor is the capacitance of a metal sphere mul-
tiplied if its volume is tripled? (a) 3 (b) 31/3 (c) 1 (d) 321/3  
(e) 13

 3. An electronics technician wishes to construct a 
 parallel-plate capacitor using rutile (k 5 100) as the 
dielectric. The area of the plates is 1.00 cm2. What is 
the capacitance if the rutile thickness is 1.00 mm?  
(a) 88.5 pF (b) 177 pF (c) 8.85 mF (d) 100 mF (e) 35.4 mF

 4. A parallel-plate capacitor is connected to a battery. 
What happens to the stored energy if the plate separa-
tion is doubled while the capacitor remains connected 
to the battery? (a) It remains the same. (b) It is dou-
bled. (c) It decreases by a factor of 2. (d) It decreases by 
a factor of 4. (e) It increases by a factor of 4.

 5. If three unequal capacitors, initially uncharged, are 
connected in series across a battery, which of the follow-
ing statements is true? (a) The equivalent capacitance is 
greater than any of the individual capacitances. (b) The  
largest voltage appears across the smallest capacitance. 
(c) The largest voltage appears across the largest capaci-
tance. (d)  The capacitor with the largest capacitance 
has the greatest charge. (e) The capacitor with the 
smallest capacitance has the smallest charge.

Objective Questions 1. denotes answer available in Student Solutions Manual/Study Guide
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becomes two times larger. (c) It stays the same. (d) It 
becomes one-half as large. (e) It becomes one-fourth 
as large.

 12. (i) Rank the following five capacitors from greatest to 
smallest capacitance, noting any cases of equality. (a) a 
20-mF capacitor with a 4-V potential difference between 
its plates (b) a 30-mF capacitor with charges of magni-
tude 90 mC on each plate (c) a capacitor with charges 
of magnitude 80 mC on its plates, differing by 2 V in 
potential, (d) a 10-mF capacitor storing energy 125 mJ 
(e) a capacitor storing energy 250 mJ with a 10-V poten-
tial difference (ii) Rank the same capacitors in part  
(i) from largest to smallest according to the potential 
difference between the plates. (iii) Rank the capaci-
tors in part (i) in the order of the magnitudes of the 
charges on their plates. (iv) Rank the capacitors in part 
(i) in the order of the energy they store.

 13. True or False? (a) From the definition of capacitance  
C 5 Q /DV, it follows that an uncharged capacitor has a 
capacitance of zero. (b) As described by the definition 
of capacitance, the potential difference across an 
uncharged capacitor is zero.

 14. You charge a parallel-plate capacitor, remove it from the 
battery, and prevent the wires connected to the plates 
from touching each other. When you increase the plate 
separation, do the following quantities (a) increase, 
(b)  decrease, or (c) stay the same? (i) C (ii) Q (iii) E 
between the plates (iv) DV

 9. A parallel-plate capacitor filled with air carries a 
charge Q . The battery is disconnected, and a slab 
of material with dielectric constant k 5 2 is inserted 
between the plates. Which of the following statements 
is true? (a) The voltage across the capacitor decreases 
by a factor of 2. (b) The voltage across the capacitor 
is doubled. (c) The charge on the plates is doubled.  
(d) The charge on the plates decreases by a factor of 2. 
(e) The electric field is doubled.

 10. (i) A battery is attached to several different capacitors 
connected in parallel. Which of the following statements 
is true? (a) All capacitors have the same charge, and the 
equivalent capacitance is greater than the capacitance 
of any of the capacitors in the group. (b) The capacitor 
with the largest capacitance carries the smallest charge. 
(c) The potential difference across each capacitor is the 
same, and the equivalent capacitance is greater than 
any of the capacitors in the group. (d) The capacitor 
with the smallest capacitance carries the largest charge.  
(e) The potential differences across the capacitors are 
the same only if the capacitances are the same. (ii) The 
capacitors are reconnected in series, and the combina-
tion is again connected to the battery. From the same 
choices, choose the one that is true.

 11. A parallel-plate capacitor is charged and then is dis-
connected from the battery. By what factor does the 
stored energy change when the plate separation is 
then doubled? (a) It becomes four times larger. (b) It 

Conceptual Questions 1. denotes answer available in Student Solutions Manual/Study Guide

 1. (a) Why is it dangerous to touch the terminals of a 
high-voltage capacitor even after the voltage source 
that charged the capacitor is disconnected from the 
capacitor? (b) What can be done to make the capaci-
tor safe to handle after the voltage source has been 
removed?

 2. Assume you want to increase the maximum operating 
voltage of a parallel-plate capacitor. Describe how you 
can do that with a fixed plate separation.

 3. If you were asked to design a capacitor in which small 
size and large capacitance were required, what would 
be the two most important factors in your design?

 4. Explain why a dielectric increases the maximum oper-
ating voltage of a capacitor even though the physical 
size of the capacitor doesn’t change.

 5. Explain why the work needed to move a particle with 
charge Q through a potential difference DV is W 5  
Q DV, whereas the energy stored in a charged capacitor 
is UE 5 1

2Q DV. Where does the factor 12 come from?

 6. An air-filled capacitor is charged, then disconnected 
from the power supply, and finally connected to a 
voltmeter. Explain how and why the potential differ-
ence changes when a dielectric is inserted between the 
plates of the capacitor.

 7. The sum of the charges on both plates of a capacitor is 
zero. What does a capacitor store?

 8. Because the charges on the plates of a parallel-plate 
capacitor are opposite in sign, they attract each other. 
Hence, it would take positive work to increase the plate 
separation. What type of energy in the system changes 
due to the external work done in this process?

Problems

 
The problems found in this  
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AMT   Analysis Model tutorial available in 

Enhanced WebAssign

 GP  Guided Problem

 M   Master It tutorial available in Enhanced 
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Enhanced WebAssign
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 Problems 801

 10. A variable air capacitor 
used in a radio tuning cir-
cuit is made of N semicircu-
lar plates, each of radius R 
and positioned a distance 
d from its neighbors, to 
which it is electrically con-
nected. As shown in Figure 
P26.10, a second identical 
set of plates is enmeshed 
with the first set. Each plate 
in the second set is halfway 
between two plates of the 
first set. The second set can rotate as a unit. Determine 
the capacitance as a function of the angle of rotation u, 
where u 5 0 corresponds to the maximum capacitance.

 11. An isolated, charged conducting sphere of radius  
12.0 cm creates an electric field of 4.90 3 104 N/C at a 
distance 21.0 cm from its center. (a) What is its surface 
charge density? (b) What is its capacitance?

 12. Review. A small object of mass m carries a charge q and 
is suspended by a thread between the vertical plates of 
a  parallel-plate capacitor. The plate separation is d. If 
the thread makes an angle u with the vertical, what is 
the potential difference between the plates?

Section 26.3  Combinations of Capacitors

 13. Two capacitors, C1 5 5.00 mF and C2 5 12.0 mF, are 
connected in parallel, and the resulting combination 
is connected to a 9.00-V battery. Find (a) the equiva-
lent capacitance of the combination, (b) the potential 
difference across each capacitor, and (c) the charge 
stored on each capacitor.

 14. What If? The two capacitors of Problem 13 (C1 5 5.00 mF  
and C2 5 12.0 mF) are now connected in series and to 
a 9.00-V battery. Find (a) the equivalent capacitance of 
the combination, (b) the potential difference across 
each capacitor, and (c) the charge on each capacitor.

 15. Find the equivalent capacitance of a 4.20-mF capaci-
tor and an 8.50-mF capacitor when they are connected  
(a) in series and (b) in parallel.

 16. Given a 2.50-mF capacitor, a 6.25-mF capacitor, and a 
6.00-V battery, find the charge on each capacitor if you 
connect them (a) in series across the battery and (b) in 
parallel across the battery.

 17. According to its design specification, the timer cir-
cuit delaying the closing of an elevator door is to have 
a capacitance of 32.0 mF between two points A and B. 
When one circuit is being constructed, the inexpen-
sive but durable capacitor installed between these 
two points is found to have capacitance 34.8 mF. To 
meet the specification, one additional capacitor can 
be placed between the two points. (a) Should it be 
in series or in parallel with the 34.8-mF capacitor?  
(b) What should be its capacitance? (c) What If? The 
next circuit comes down the assembly line with capaci-
tance 29.8 mF between A and B. To meet the specifica-
tion, what additional capacitor should be installed in 
series or in parallel in that circuit?

S

S

W

W

Section 26.1  Definition of Capacitance

 1. (a) When a battery is connected to the plates of a  
3.00-mF capacitor, it stores a charge of 27.0 mC. What is  
the voltage of the battery? (b) If the same capacitor is 
connected to another battery and 36.0 mC of charge  
is stored on the capacitor, what is the voltage of the 
battery?

 2. Two conductors having net charges of 110.0 mC and 
210.0 mC have a potential difference of 10.0 V between 
them. (a) Determine the capacitance of the system. 
(b) What is the potential difference between the two 
conductors if the charges on each are increased to 
1100 mC and 2100 mC?

 3. (a) How much charge is on each plate of a 4.00-mF 
capacitor when it is connected to a 12.0-V battery?  
(b) If this same capacitor is connected to a 1.50-V bat-
tery, what charge is stored?

Section 26.2  Calculating Capacitance

 4. An air-filled spherical capacitor is constructed with 
inner- and outer-shell radii of 7.00 cm and 14.0 cm, 
respectively. (a) Calculate the capacitance of the device. 
(b)  What potential difference between the spheres 
results in a 4.00-mC charge on the capacitor?

 5. A 50.0-m length of coaxial cable has an inner con-
ductor that has a diameter of 2.58 mm and carries a 
charge of 8.10 mC. The surrounding conductor has an 
inner diameter of 7.27 mm and a charge of 28.10 mC.  
Assume the region between the conductors is air.  
(a) What is the capacitance of this cable? (b) What is 
the potential difference between the two conductors?

 6. (a) Regarding the Earth and a cloud layer 800 m 
above the Earth as the “plates” of a capacitor, calcu-
late the capacitance of the Earth–cloud layer system. 
Assume the cloud layer has an area of 1.00 km2 and 
the air between the cloud and the ground is pure 
and dry. Assume charge builds up on the cloud and  
on the ground until a uniform electric field of 3.00 3 
106 N/C throughout the space between them makes 
the air break down and conduct electricity as a light-
ning bolt. (b) What is the maximum charge the cloud 
can hold?

 7. When a potential difference of 150 V is applied to the 
plates of a parallel-plate capacitor, the plates carry a 
surface charge density of 30.0 nC/cm2. What is the 
spacing between the plates?

 8. An air-filled parallel-plate capacitor has plates of area 
2.30 cm2 separated by 1.50 mm. (a) Find the value of its 
capacitance. The capacitor is connected to a 12.0-V bat-
tery. (b) What is the charge on the capacitor? (c) What 
is the magnitude of the uniform electric field between 
the plates?

 9. An air-filled capacitor consists of two parallel plates, 
each with an area of 7.60 cm2, separated by a dis-
tance of 1.80  mm. A 20.0-V potential difference is 
applied to these plates. Calculate (a) the electric field 
between the plates, (b) the surface charge density,  
(c) the capacitance, and (d) the charge on each plate.
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Figure P26.10
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is first charged by clos-
ing switch S1. Switch S1 
is then opened, and the 
charged capacitor is con-
nected to the uncharged 
capacitor by closing S2. 
Calculate (a) the initial 
charge acquired by C1 
and (b) the final charge 
on each capacitor.

 25. Find the equivalent capaci-
tance between points a and b 
in the combination of capaci-
tors shown in Figure P26.25.

 26. Find (a) the equivalent capac-
itance of the capacitors in 
Figure P26.26, (b) the charge on each capacitor, and 
(c) the potential difference across each capacitor.

9.00 V

8.00   Fμ8.00   Fμ 2.00   Fμ

6.00   Fμ

� �

Figure P26.26

 27. Two capacitors give an equivalent capacitance of  
9.00 pF when connected in parallel and an equivalent 
capacitance of 2.00 pF when connected in series. What 
is the capacitance of each capacitor?

 28. Two capacitors give an equivalent capacitance of Cp 
when connected in parallel and an equivalent capaci-
tance of Cs when connected in series. What is the 
capacitance of each capacitor?

 29. Consider three capacitors C1, C2, and C3 and a battery. 
If only C1 is connected to the battery, the charge on C1 
is 30.8  mC. Now C1 is disconnected, discharged, and 
connected in series with C2. When the series combina-
tion of C2 and C1 is connected across the battery, the 
charge on C1 is 23.1 mC. The circuit is disconnected, 
and both capacitors are discharged. Next, C3, C1, 
and the battery are connected in series, resulting in a 
charge on C1 of 25.2 mC. If, after being disconnected 
and discharged, C1, C2, and C3 are connected in series 
with one another and with the battery, what is the 
charge on C1?

Section 26.4  Energy Stored in a Charged Capacitor

 30. The immediate cause of many deaths is ventricular 
fibrillation, which is an uncoordinated quivering of 
the heart. An electric shock to the chest can cause 
momentary paralysis of the heart muscle, after which 
the heart sometimes resumes its proper beating. One 
type of defibrillator (chapter- opening photo, page 777) 
applies a strong electric shock to the chest over a time 
interval of a few milliseconds. This device contains a 

S
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 18. Why is the following situation impossible? A technician is 
testing a circuit that contains a capacitance C. He real-
izes that a better design for the circuit would include a 
capacitance 7

3C  rather than C. He has three additional 
capacitors, each with capacitance C. By combining 
these additional capacitors in a certain combination 
that is then placed in parallel with the original capaci-
tor, he achieves the desired capacitance.

 19. For the system of four capaci-
tors shown in Figure P26.19, 
find (a) the equivalent capac-
itance of the system, (b) the 
charge on each capacitor, 
and (c) the potential differ-
ence across each capacitor.

 20. Three capacitors are con-
nected to a battery as shown 
in Figure P26.20. Their 
capacitances are C1 5 3C, 
C 2 5 C, and C3 5 5C. (a) What  
is the equivalent capacitance 
of this set of capacitors?  
(b) State the ranking of the 
capacitors according to the 
charge they store from larg-
est to smallest. (c) Rank the 
capacitors according to the 
potential differences across 
them from largest to smallest. (d)  What If? Assume 
C3 is increased. Explain what happens to the charge 
stored by each capacitor.

 21. A group of identical capacitors is connected first in 
series and then in parallel. The combined capacitance 
in parallel is 100 times larger than for the series con-
nection. How many capacitors are in the group?

 22. (a) Find the equivalent capacitance 
between points a and b for the 
group of capacitors connected as 
shown in Figure P26.22. Take C1 5  
5.00 mF, C2  5 10.0 mF, and C3 5 
2.00 mF. (b) What charge is stored 
on C3 if the potential difference 
between points a and b is 60.0 V?

 23. Four capacitors are connected as 
shown in Figure P26.23. (a)  Find 
the equivalent capacitance between 
points a and b. (b) Calculate the 
charge on each capacitor, taking DVab 5 15.0 V.

6.00 mF

20.0 mF

3.00 mF15.0 

a 

mF

b 

Figure P26.23

 24. Consider the circuit shown in Figure P26.24, where C1 5  
6.00 mF, C2 5 3.00 mF, and DV 5 20.0 V. Capacitor C1 

90.0 V

4.00   Fμ

6.00   Fμ

2.00   Fμ

3.00   Fμ

� �

Figure P26.19  
Problems 19 and 56.
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doubled. (b) Find the potential difference across each 
capacitor after the plate separation is doubled. (c) Find 
the total energy of the system after the plate separation is 
doubled. (d) Reconcile the difference in the answers to 
parts (a) and (c) with the law of conservation of energy.

 37. Two capacitors, C1 5 25.0 mF and C2 5 5.00 mF, are 
connected in parallel and charged with a 100-V power 
supply. (a) Draw a circuit diagram and (b) calculate 
the total energy stored in the two capacitors. (c) What 
If? What potential difference would be required across 
the same two capacitors connected in series for the 
combination to store the same amount of energy as 
in part (b)? (d) Draw a circuit diagram of the circuit 
described in part (c).

 38. A parallel-plate capacitor has a charge Q and plates of 
area A. What force acts on one plate to attract it toward 
the other plate? Because the electric field between the 
plates is E 5 Q /AP0, you might think the force is F 5  
QE 5 Q 2/AP0. This conclusion is wrong because the 
field E includes contributions from both plates, and 
the field created by the positive plate cannot exert any 
force on the positive plate. Show that the force exerted 
on each plate is actually F 5 Q 2/2AP0. Suggestion: Let 
C 5 P0A/x for an arbitrary plate separation x and note 
that the work done in separating the two charged 
plates is W 5 e F dx.

 39. Review. A storm cloud and the ground represent the 
plates of a capacitor. During a storm, the capacitor has 
a potential difference of 1.00 3 108 V between its plates 
and a charge of 50.0 C. A lightning strike delivers 1.00% 
of the energy of the capacitor to a tree on the ground. 
How much sap in the tree can be boiled away? Model 
the sap as water initially at 30.08C. Water has a specific 
heat of 4 186 J/kg ? 8C, a boiling point of 1008C, and a 
latent heat of vaporization of 2.26 3 106 J/kg.

 40. Consider two conducting spheres with radii R1 and 
R 2 separated by a distance much greater than either 
radius. A total charge Q is shared between the spheres. 
We wish to show that when the electric potential 
energy of the system has a minimum value, the poten-
tial difference between the spheres is zero. The total 
charge Q is equal to q1 1 q2, where q1 represents the 
charge on the first sphere and q2 the charge on the sec-
ond. Because the spheres are very far apart, you can 
assume the charge of each is uniformly distributed 
over its surface. (a) Show that the energy associated 
with a single conducting sphere of radius R and charge 
q surrounded by a vacuum is U 5 keq 2/2R. (b) Find the 
total energy of the system of two spheres in terms of 
q1, the total charge Q , and the radii R 1 and R 2. (c) To 
minimize the energy, differentiate the result to part 
(b) with respect to q1 and set the derivative equal to 
zero. Solve for q1 in terms of Q and the radii. (d) From 
the result to part (c), find the charge q2. (e) Find the 
potential of each sphere. (f) What is the potential dif-
ference between the spheres?

 41. Review. The circuit in Figure P26.41 (page 804) con-
sists of two identical, parallel metal plates connected to 
identical metal springs, a switch, and a 100-V battery.  
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capacitor of several microfarads, charged to several 
thousand volts. Electrodes called paddles are held 
against the chest on both sides of the heart, and the 
capacitor is discharged through the patient’s chest. 
Assume an energy of 300 J is to be delivered from a 
30.0-mF capacitor. To what potential difference must it 
be charged?

 31. A 12.0-V battery is connected to a capacitor, result-
ing in 54.0 mC of charge stored on the capacitor. How 
much energy is stored in the capacitor?

 32. (a) A 3.00-mF capacitor is connected to a 12.0-V battery.  
How much energy is stored in the capacitor? (b) Had 
the capacitor been connected to a 6.00-V battery, how 
much energy would have been stored?

 33. As a person moves about in a dry environment, elec-
tric charge accumulates on the person’s body. Once 
it is at high voltage, either positive or negative, the 
body can discharge via sparks and shocks. Consider 
a human body isolated from ground, with the typical 
capacitance 150 pF. (a) What charge on the body will 
produce a potential of 10.0 kV? (b) Sensitive electronic 
devices can be destroyed by electrostatic discharge 
from a person. A particular device can be destroyed by 
a discharge releasing an energy of 250 mJ. To what volt-
age on the body does this situation correspond?

 34. Two capacitors, C1 5 18.0 mF and C2 5 36.0 mF, are con-
nected in series, and a 12.0-V battery is connected across 
the two capacitors. Find (a) the equivalent capacitance 
and (b) the energy stored in this equivalent capaci-
tance. (c) Find the energy stored in each individual  
capacitor. (d) Show that the sum of these two energies 
is the same as the energy found in part (b). (e) Will 
this equality always be true, or does it depend on the 
number of capacitors and their capacitances? (f) If 
the same capacitors were connected in parallel, what 
potential difference would be required across them so 
that the combination stores the same energy as in part 
(a)? (g) Which capacitor stores more energy in this sit-
uation, C1 or C2?

 35. Two identical parallel-plate capacitors, each with 
capacitance 10.0 mF, are charged to potential differ-
ence 50.0 V and then disconnected from the battery. 
They are then connected to each other in parallel with 
plates of like sign connected. Finally, the plate separa-
tion in one of the capacitors is doubled. (a) Find the 
total energy of the system of two capacitors before the 
plate separation is doubled. (b) Find the potential dif-
ference across each capacitor after the plate separation 
is doubled. (c) Find the total energy of the system after 
the plate separation is doubled. (d) Reconcile the dif-
ference in the answers to parts (a) and (c) with the law 
of conservation of energy.

 36. Two identical parallel-plate capacitors, each with capaci-
tance C, are charged to potential difference DV and 
then disconnected from the battery. They are then 
connected to each other in parallel with plates of like 
sign connected. Finally, the plate separation in one of 
the capacitors is doubled. (a) Find the total energy of 
the system of two capacitors before the plate separation is 
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With the switch open, the 
plates are uncharged, are 
separated by a distance d 5  
8.00 mm, and have a capaci-
tance C 5 2.00 mF. When the 
switch is closed, the distance 
between the plates decreases 
by a factor of 0.500. (a) How 
much charge collects on each 
plate? (b) What is the spring 
constant for each spring?

Section 26.5  Capacitors with Dielectrics

 42. A supermarket sells rolls of aluminum foil, plastic wrap, 
and waxed paper. (a) Describe a capacitor made from 
such materials. Compute order-of-magnitude estimates 
for (b) its capacitance and (c) its breakdown voltage.

 43. (a) How much charge can be placed on a capacitor with 
air between the plates before it breaks down if the area 
of each plate is 5.00 cm2? (b) What If? Find the maxi-
mum charge if polystyrene is used between the plates 
instead of air.

 44. The voltage across an air-filled parallel-plate capacitor 
is measured to be 85.0 V. When a dielectric is inserted 
and completely fills the space between the plates as in 
Figure P26.44, the voltage drops to 25.0 V. (a) What 
is the dielectric constant of the inserted material? 
(b) Can you identify the dielectric? If so, what is it? 
(c) If the dielectric does not completely fill the space 
between the plates, what could you conclude about the 
voltage across the plates?

C0 C

Dielectric

VV0� �

a b

Figure P26.44

 45. Determine (a) the capacitance and (b) the maximum 
potential difference that can be applied to a Teflon-
filled parallel-plate capacitor having a plate area of 
1.75 cm2 and a plate separation of 0.040 0 mm.

 46. A commercial capacitor is to be constructed as shown 
in Figure P26.46. This particular capacitor is made 
from two strips of aluminum foil separated by a strip 
of paraffin-coated paper. Each strip of foil and paper 
is 7.00 cm wide. The foil is 0.004 00 mm thick, and the 
paper is 0.025 0 mm thick and has a dielectric constant 
of 3.70. What length should the strips have if a capaci-
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tance of 9.50 3 1028 F is desired before the capacitor is 
rolled up? (Adding a second strip of paper and rolling 
the capacitor would effectively double its capacitance 
by allowing charge storage on both sides of each strip 
of foil.)

Aluminum

Paper
7.00 cm

Figure P26.46

 47. A parallel-plate capacitor in air has a plate separation 
of 1.50 cm and a plate area of 25.0 cm2. The plates are 
charged to a potential difference of 250 V and discon-
nected from the source. The capacitor is then immersed 
in distilled water. Assume the liquid is an insulator. 
Determine (a) the charge on the plates before and 
after immersion, (b) the capacitance and potential dif-
ference after immersion, and (c) the change in energy 
of the capacitor.

 48. Each capacitor in the combination shown in Figure 
P26.48 has a breakdown voltage of 15.0 V. What is the 
breakdown voltage of the combination?

20.0 mF

10.0 mF

20.0 mF

20.0 mF

20.0 mF

Figure P26.48

 49. A 2.00-nF parallel-plate capacitor is charged to an ini-
tial potential difference DVi 5 100 V and is then iso-
lated. The dielectric material between the plates is 
mica, with a dielectric constant of 5.00. (a) How much 
work is required to withdraw the mica sheet? (b) What 
is the potential difference across the capacitor after 
the mica is withdrawn?

Section 26.6  Electric Dipole in an Electric Field

 50. A small, rigid object carries positive and negative  
3.50-nC charges. It is oriented so that the positive 
charge has  coordinates (21.20 mm, 1.10 mm) and the 
negative charge is at the point (1.40 mm, 21.30 mm). 
(a) Find the electric dipole moment of the object. The 
object is placed in an electric field E

S
5 17.80 3 103 î 2

4.90 3 103 ĵ 2  N/C. (b)  Find the torque acting on the 
object. (c) Find the potential energy of the object–field 
system when the object is in this orientation. (d) Assum-
ing the orientation of the object can change, find 
the difference between the maximum and minimum 
potential energies of the system.

 51. An infinite line of positive charge lies along the y axis, 
with charge density l 5 2.00 mC/m. A dipole is placed 
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Figure P26.41
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with its center along the x axis at x 5 25.0 cm. The 
dipole consists of two charges 610.0 mC separated by 
2.00 cm. The axis of the dipole makes an angle of 35.08 
with the x axis, and the positive charge is farther from 
the line of charge than the negative charge. Find the 
net force exerted on the dipole.

 52. A small object with electric dipole moment pS is placed 
in a nonuniform electric field E

S
5 E 1x 2 î. That is, the 

field is in the x direction, and its magnitude depends 
only on the coordinate x. Let u represent the angle 
between the dipole moment and the x direction. Prove 
that the net force on the dipole is

F 5 p adE
dx
b cos u

  acting in the direction of increasing field.

Section 26.7  An Atomic Description of Dielectrics

 53. The general form of Gauss’s law describes how a 
charge creates an electric field in a material, as well as 
in vacuum:

3 E
S
?d A

S
5

qin

P
  where P 5 kP0 is the permittivity of the material. (a) A 

sheet with charge Q uniformly distributed over its area 
A is surrounded by a dielectric. Show that the sheet 
creates a uniform electric field at nearby points with 
magnitude E 5 Q /2AP. (b) Two large sheets of area A, 
carrying opposite charges of equal magnitude Q , are a 
small distance d apart. Show that they create uniform 
electric field in the space between them with magni-
tude E 5 Q /AP. (c) Assume the negative plate is at zero 
potential. Show that the positive plate is at potential 
Qd/AP. (d) Show that the capacitance of the pair of 
plates is given by C 5 AP/d 5 kAP0/d.

Additional Problems

 54. Find the equivalent capacitance of the group of capaci-
tors shown in Figure P26.54.

5.00 Fμ

4.00 Fμ

6.00 Fμ

3.00 Fμ

3.00 Fμ

7.00 Fμ

2.00 Fμ

� �

Figure P26.54

 55. Four parallel metal plates P1, P2, P3, and P4, each of 
area 7.50  cm2, are separated successively by a dis-
tance d 5 1.19  mm as shown in Figure P26.55. Plate 
P1 is connected to the negative terminal of a battery, 
and P2 is connected to the positive terminal. The 

S

S

battery maintains a potential difference of 12.0 V. 
(a) If P3 is connected to the negative terminal, what 
is the capacitance of the three-plate system P1P2P3?  
(b) What is the charge on P2? (c) If P4 is now connected 
to the positive terminal, what is the capacitance of 
the four-plate system P1P2P3P4? (d) What is the charge  
on P4?

12.0 V

P2 P3 P4P1

d d d

�

�

Figure P26.55

 56. For the system of four capacitors shown in Figure 
P26.19, find (a) the total energy stored in the system 
and (b) the energy stored by each capacitor. (c) Com-
pare the sum of the answers in part (b) with your result 
to part (a) and explain your observation.

 57. A uniform electric field E 5 3 000 V/m exists within 
a certain region. What volume of space contains an 
energy equal to 1.00 3 1027 J? Express your answer in 
cubic meters and in liters.

 58. Two large, parallel metal plates, each of area A, are 
oriented horizontally and separated by a distance 3d. 
A grounded conducting wire joins them, and initially 
each plate carries no charge. Now a third identical 
plate carrying charge Q is inserted between the two 
plates, parallel to them and located a distance d from 
the upper plate as shown in Figure P26.58. (a) What 
induced charge appears on each of the two original 
plates? (b) What potential difference appears between 
the middle plate and each of the other plates?

2d

d

Figure P26.58

 59. A parallel-plate capacitor is constructed using a 
dielectric material whose dielectric constant is 3.00 
and whose dielectric strength is 2.00 3 108 V/m. The 
desired capacitance is 0.250 mF, and the capacitor must 
withstand a maximum potential difference of 4.00 kV. 
Find the minimum area of the capacitor plates.

 60. Why is the following situation impossible? A 10.0-mF capaci-
tor has plates with vacuum between them. The capaci-
tor is charged so that it stores 0.050 0 J of energy. A  
particle with charge 23.00 mC is fired from the positive 
plate toward the negative plate with an initial kinetic 
energy equal to 1.00 3 1024  J. The particle arrives at 
the negative plate with a reduced kinetic energy.
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 61. A model of a red blood cell portrays the cell as a capac-
itor with two spherical plates. It is a positively charged 
conducting liquid sphere of area A, separated by 
an insulating membrane of thickness t from the sur-
rounding negatively charged conducting fluid. Tiny 
electrodes introduced into the cell show a potential 
difference of 100 mV across the membrane. Take the 
membrane’s thickness as 100 nm and its dielectric con-
stant as 5.00. (a) Assume that a typical red blood cell 
has a mass of 1.00 3 10212 kg and density 1 100 kg/m3.  
Calculate its volume and its surface area. (b) Find the 
capacitance of the cell. (c) Calculate the charge on 
the surfaces of the membrane. How many electronic 
charges does this charge represent?

 62. A parallel-plate capacitor with vacuum between its  
horizontal plates has a capacitance of 25.0 mF. A non-
conducting liquid with dielectric constant 6.50 is 
poured into the space between the plates, filling up a 
fraction f of its volume. (a) Find the new capacitance 
as a function of f. (b)  What should you expect the 
capacitance to be when f 5 0? Does your expression 
from part (a) agree with your answer? (c) What capaci-
tance should you expect when f 5 1? Does the expres-
sion from part (a) agree with your answer?

 63. A 10.0-mF capacitor is charged 
to 15.0 V. It is next connected in 
series with an uncharged 5.00-mF 
capacitor. The series combina-
tion is finally connected across 
a 50.0-V battery as diagrammed 
in Figure P26.63. Find the new 
potential differences across the 
5.00-mF and 10.0-mF capacitors 
after the switch is thrown closed.

 64. Assume that the internal diameter of the Geiger– 
Mueller tube described in Problem 68 in Chapter 25 is 
2.50 cm and that the wire along the axis has a diameter 
of 0.200 mm. The dielectric strength of the gas between 
the central wire and the cylinder is 1.20 3 106 V/m.  
Use the result of that problem to calculate the maxi-
mum potential difference that can be applied between 
the wire and the cylinder before breakdown occurs in 
the gas.

 65. Two square plates of sides , are placed parallel to 
each other with separation d as suggested in Figure 
P26.65. You may assume d is much less than ,. The 
plates carry uniformly distributed static charges 1Q 0 
and 2Q 0. A block of metal has width ,, length ,, and 
thickness slightly less than d. It is inserted a distance 
x into the space between the plates. The charges on 
the plates remain uniformly distributed as the block 
slides in. In a static situation, a metal prevents an 
electric field from penetrating inside it. The metal 
can be thought of as a perfect dielectric, with k S .̀  
(a) Calculate the stored energy in the system as a 
function of x. (b) Find the direction and magnitude 
of the force that acts on the metallic block. (c) The 
area of the advancing front face of the block is essen-
tially equal to ,d. Considering the force on the block 
as acting on this face, find the stress (force per area) 
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Figure P26.63
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on it. (d) Express the energy density in the electric 
field between the charged plates in terms of Q 0, ,, d, 
and P0. (e) Explain how the answers to parts (c) and 
(d) compare with each other.

x
d

�

�  �  �  �  �

�  �  �  �  �

�Q 0

�Q 0

Figure P26.65

 66. (a) Two spheres have radii a and b, and their centers  
are a distance d apart. Show that the capacitance of 
this system is

C 5
4pP0

1
a

1
1
b

2
2
d

  provided d is large compared with a and b. Suggestion: 
Because the spheres are far apart, assume the poten-
tial of each equals the sum of the potentials due to 
each sphere. (b) Show that as d approaches infinity, 
the above result reduces to that of two spherical capaci-
tors in series.

 67. A capacitor of unknown capacitance has been charged 
to a potential difference of 100 V and then discon-
nected from the battery. When the charged capacitor 
is then connected in parallel to an uncharged 10.0-mF 
capacitor, the potential difference across the combina-
tion is 30.0 V. Calculate the unknown capacitance.

 68. A parallel-plate capacitor of plate separation d is 
charged to a potential difference DV0. A dielectric slab 
of thickness d and dielectric constant k is introduced 
between the plates while the battery remains con-
nected to the plates. (a) Show that the ratio of energy 
stored after the dielectric is introduced to the energy 
stored in the empty capacitor is U/U0 5 k. (b) Give a 
physical explanation for this increase in stored energy. 
(c) What happens to the charge on the capacitor? Note: 
This situation is not the same as in Example 26.5, in 
which the battery was removed from the circuit before 
the dielectric was introduced.

 69. Capacitors C1 5 6.00 mF and C2 5 2.00 mF are charged 
as a parallel combination across a 250-V battery. The 
capacitors are disconnected from the battery and from 
each other. They are then connected positive plate to 
negative plate and negative plate to positive plate. Cal-
culate the resulting charge on each capacitor.

 70. Example 26.1 explored a cylindrical capacitor of 
length , with radii a and b for the two conductors. In 
the What If? section of that example, it was claimed 
that increasing , by 10% is more effective in terms of 
increasing the capacitance than increasing a by 10% if 
b . 2.85a. Verify this claim mathematically.

 71. To repair a power supply for a stereo amplifier, an elec-
tronics technician needs a 100-mF capacitor capable of 
withstanding a potential difference of 90 V between the 
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 76. A parallel-plate capacitor with plates of area LW and 
plate separation t has the region between its plates 
filled with wedges of two dielectric materials as shown 
in Figure P26.76. Assume t is much less than both L 
and W. (a) Determine its capacitance. (b) Should the 
capacitance be the same if the labels k1 and k2 are 
interchanged? Demonstrate that your expression does 
or does not have this property. (c) Show that if k1 and 
k2 approach equality to a common value k, your result 
becomes the same as the capacitance of a capacitor 
containing a single dielectric: C 5 kP0LW/t.

k2
k1t

L
W

Figure P26.76

 77. Calculate the equivalent capacitance between points 
a and b in Figure P26.77. Notice that this system is 
not a simple series or parallel combination. Sug-
gestion: Assume a potential difference DV  between 
points a and b. Write expressions for DVab in terms 
of the charges and capacitances for the various pos-
sible pathways from a to b and require conservation of 
charge for those capacitor plates that are connected 
to each other.

a

b2.00 mF

4.00 mF

2.00 mF 4.00 mF8.00 mF

Figure P26.77

 78. A capacitor is constructed from two square, metal-
lic plates of sides , and separation d. Charges 1Q 
and 2Q are placed on the plates, and the power sup-
ply is then removed. A material of dielectric constant 
k is inserted a distance x into the capacitor as shown 
in Figure P26.78. Assume d is much smaller than x.  
(a) Find the equivalent capacitance of the device.  
(b) Calculate the energy stored in the capacitor. (c) Find 
the direction and magnitude of the force exerted by the 
plates on the dielectric. (d) Obtain a numerical value 
for the force when x 5 ,/2, assuming , 5 5.00 cm, d 5  
2.00 mm, the dielectric is glass (k 5 4.50), and the 
capacitor was charged to 2.00 3 103 V before the 
dielectric was inserted. Suggestion: The system can be 
considered as two capacitors connected in parallel.
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plates. The immediately available supply is a box of five  
100-mF capacitors, each having a maximum voltage 
capability of 50 V. (a) What combination of these 
capacitors has the proper electrical characteristics? 
Will the technician use all the capacitors in the box? 
Explain your answers. (b) In the combination of capac-
itors obtained in part (a), what will be the maximum 
voltage across each of the capacitors used?

Challenge Problems

 72. The inner conductor of a coaxial cable has a radius of 
0.800 mm, and the outer conductor’s inside radius is 
3.00 mm. The space between the conductors is filled 
with polyethylene, which has a dielectric constant of 
2.30 and a dielectric strength of 18.0 3 106 V/m. What 
is the maximum potential difference this cable can 
withstand?

 73. Some physical systems possessing capacitance continu-
ously distributed over space can be modeled as an infi-
nite array of discrete circuit elements. Examples are 
a microwave waveguide and the axon of a nerve cell. 
To practice analysis of an infinite array, determine the 
equivalent capacitance C  between terminals X and Y 
of the infinite set of capacitors represented in Figure 
P26.73. Each capacitor has capacitance C0. Suggestions: 
Imagine that the ladder is cut at the line AB and note 
that the equivalent capacitance of the infinite section 
to the right of AB is also C.

C0

C0

C0

X

Y

A

B

Figure P26.73

 74. Consider two long, parallel, and oppositely charged 
wires of radius r with their centers separated by a 
distance D that is much larger than r. Assuming the 
charge is distributed uniformly on the surface of each 
wire, show that the capacitance per unit length of this 
pair of wires is

C
,

5
pP0

ln 1D/r 2
 75. Determine the equivalent capacitance of the combina-

tion shown in Figure P26.75. Suggestion: Consider the 
symmetry involved.
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