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Summary of Lecture 22 – ELECTROSTATICS I 

1. Like charges repel, unlike charges attract. But by how much? Coulomb's Law says that
    this depends both upon the strength of the two charges and the distance between them. 

    In mathematical ter 1 2 1 2
2 2ms,  which can be converted into an equality, . 

    The constant of proportionality will take different values depending upon the units we

    choose. In the MKS system, charge is meas

q q q qF F k
r r

0
12 2 2 9 2 2

0

1ured in Coulombs (C) and  with
4

    8.85 10 /  and hence 8.99 10 / .

2. The situation is quite similar to that of gravity, except that electric charges and not masses

    are the sou

k

C Nm k Nm C

1 2
12 122

0 12

12 1 2
12 21 212

12 0 12

1 ˆrce of force. In vector form,  is the force exerted by 2 on 1,
4

1ˆ ˆ    where the unit vector is . On the other hand,  is the force exerted
4

    by 1 on

q qF r
r

r q qr F r
r r

12 21

1 12 13 14

 2. By Newton's Third Law, . For many charges, the force on charge 1 is 

    given by, 

3. Charge is quantized. This means that charge comes in certain units only. So th

F F

F F F F

19

e size of a
    charge can only be 0, , 2 , 3 ,  where 1.602 10  is the value of the 
    charge present on a proton. By definition we call the charge on a proton positive. This
    makes the c

e e e e C

harge on an electron negative. 

4. Charge is conserved. This means that charge is never created or destroyed. Equivalently,
    in any possible situation, the total charge at an earlier time is equal to the charge at a 
    later time. For example, in any of the reactions below the initial charge = final charge:
                         (electron and positron annihilate into neutral photons)
 

e e
0

2 2 3

                                (neutral pion annihilates into neutral photons)
                   (two deuterons turn into tritium and proton)

5.  this a quantity that has a defin

H H H p

Field : ite value at any point in space and at any time. The 
    simplest example is that of a scalar field, which is a  for any value of  , , , . 
    Examples: temperature inside a room ( , ,

single number x y z t
T x y z, ) , density in a blowing wind ( , , , ),  

    There are also which comprise of  three numbers at each value of  , , , . 
    Examples: the velocity of wind, the pressure inside a fl

t x y z t
vector fields, x y z t

uid, or even a sugarcane field. In  
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1 2 3      every case, there are 3 numbers: ( , , , ) { ( , , , ), ( , , , ), ( , , , ) }.

6. The electric field is also an example of a vector field, and will be the most important for
    our purpose. 

V x y z t V x y z t V x y z t V x y z t

0
0

It is defined as the force on a unit charge. Or, since we don't want the charge 
    to disturb the field it is placed in, we should properly define it as the force on a "test" 

    charge ,  . HFq E
q 0

0
2

0

2
0 0

ere  is very very small. The electric field due to a point charge can

1    be calculated by considering two charges. The force between them is  and so 
4

1    . A way to visualiz
4

q

qqF
r

F qE
q r

e E fields is to think of lines starting on positive charges 

    and ending on negative charges. The number of lines leaving/entering gives the amount of
    charge. 

7. Typical values for the maginitud
11

5

e of the electric field :
                                                Inside an atom-     10  N/C
                                                Inside TV tube-    10   N/C
                       

E

2

-2
                         In atmosphere-     10   N/C

                                                Inside a wire-       10   N/C

8. Measuring charge. One way to do this is to balance the gravitational force pulling a 
    charged particle with mass m with the force exerted on it by a known electric field 
    (see below).  For equilibrium, the two forces must be equal and so . The 

    unknown 

mg qE

charge  can then be found from .mgq q
E

                                                      

1 2 3

9. Given several charges, one can find the total electric field at any point as the sum of the 

    fields produced by the charges at that point individually,   or

    i
i

i i

E E E E
qE E k
r 2 ˆ ˆ  1,2,3, . Here  is the unit vector pointing from the charge to 

    the point of observation. 

i i
i

r i r

E

eE

mg

y
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10. Let us apply the principle we have just learned to a system of two charges  and -  

     which are separated by a distance  (see diagram). Then,  . Just to make
     things easier (not 

q q

d E E E

22 2
0 0

necessary; one can do it for any point) I have taken a point that lies
     on the x-axis. The magnitudes of the electric field due to the two charges are equal;  

1 1     . The
4 4 / 2

q qE E
r x d

22

 vertical components cancel out, and the net

     electric field is directed downwards with magnitude, cos cos 2 cos .
/ 2     From the diagram below you can see that cos . Substituting

/ 2

E E E E
d

x d

2 3 / 22 2 22 20 0

 this, we 

1 / 2 1    find:   2 .
4 4/ 2 / 2 / 2

q d qdE
x d x d x d

 
                                              

11. The result above is so important that we need to discuss it further. In particular, what
      happens if we are very far away from the dipole, meaning ?   Let us first define 
      the 

x d
dipole  

3 / 22

3 / 23 3 32
0 0 0

 as the product of the charge  the separation between them . 

1 1 1 1      Then,  1 . In the above,
4 4 2 41 / 2

      / 2  has been neglected in 

moment p qd

p p d pE
x x x xd x

d x

3
0

comparison to 1. So finally, we have found that for ,  
1      .

4

12. It is easy to find the torque experienced by an electric dipole that is placed in a uniform

     electric field: The magni

x d
pE
x

tude is sin sin sin ,  and the direction is
2 2

     perpendicular and into the plane. Here  is the angle between the dipole and the electric
     field. So sin sin . 

d dF F Fd

qE d pE
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QUESTIONS AND EXERCISES – 22 

1. What will be the  of  the electric field in each of  the following circumstances : 
    (a) In the middle of  a square with four equal positive charges at the corners?
    (b) In the middle of  a

direction

 square with 3 equally positive and one negative charge at the corners?
    (c) At the centre of  a hollow sphere with charges distributed uniformly on the surface?
    (d) At the centre of  a hollow sphere with the charge on one hemisphere is positive, and the
         charge on the other hemisphere is negative.

2.  How could you experimentally investigate (as a matter of  principle) where the lines of  

2

    electric force are? Why can two lines of  electric force never cross each other?

13. (a) The electric field of  a dipole does not fall off  as . Why?

   (b) Instead of calculating the electric field 
r

of the dipole, use the figure on the previous
         page to calculate the electric potential on the -axis. 
 
4.  Work is done by an electric field acting upon a dipole because the dipole is turned 

 

x

0 0

0

    through a certain angle. So, . .

    (a) Why is there a negative sign in the last equality?
    (b) Show that cos cos

    (c) Show that the change in potential energy is

W dW d d

W pE

0 

    (d) Show that the potential energy can also be written as .

U U U W

U p E
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cosdE

dE

R
x

y

z

ds

P

Summary of Lecture 23 – ELECTROSTATICS II 

1. In the last lecture we learned how to calculate the electric field if there are any number 
    of point charges. But how to calculate this when charges are continuously distributed over
    some reg

1 2 3

ion of space? For this, we need to break up the region into little pieces so that 

    each piece is small enough to be like a point charge. So,  , or 

     is the total eli

E E E E

E E ectric field. Remember that  is a vector that can be resolved
ˆˆ ˆ    into components, . In the limit where the pieces are small enough, 

    we can write it as an integral,   (or 
x y z

E

E E i E j E k

E dE  ,  ,    ) 

2. Charge Density: when the charges are continuously distributed over a region - a line, the
    surface of a material, or inside a sphere - we must specify the 

x x y y z zE dE E dE E dE

charge de . Depending
    upon how many dimensions the region has, we define:
                 (a) For linear charge distribution:   
                 (b) For surface charge distribution: 
        

nsity

dq ds
dq dA

         (c) For volume charge distribution: 
   The dimensions of , ,  are determined from the above definitions. 

3. As an example of how we work out the electric field coming from a continuous

dq dV

 charge 
    distribution, let us work out the electric field from a uniform ring of charge at the point P. 

2 2 2
0 0

  The small amount of charge  gives rise to an electric field whose magnitude is
1                                        

4 4

   The component in the z direction is cos   z

ds
ds dsdE

r z R

dE dE 1/ 22 2
with cos .z z

r z R
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3 / 22 2
0

3 / 2 3 / 2 3 / 22 2 2 2 2 2
0 0 0

    So . Since , which is the arc length, does not depend upon  or ,
4

2
    .  Answer!!

4 4 4

    Note that if you are very far away, t

z

z

z dsdE s z R
z R

z Rz qzE ds
z R z R z R

2
0

1he ring looks like a point: ,   .
4

4. As another example, consider a continuous distribution of charges along a wire that lies 
    along the -axis, as shown below. We want to know the ele

z
qE z R
z

z ctric field at a distance  from
    the wire. By symmetry, the only non-cancelling component lies along the -axis.

x
y

                                  

                                        
 

2 2 2
0 0

Applying Coulomb's law to the small amount of charge  along the  axis gives, 
1 1                                       

4 4
    the component along the  direction is cos .y

dz z
dq dzdE
r y z

y dE dE

2 2
00 0

2

Integrating this gives,

                      cos 2 cos cos .
2

    The rest is just technical: to solve the integral, put tan sec . And so,

    

z z z

y
z z z

dzE dE dE dE
y z

z y dz y d

E
/ 2

0 00

cos . Now, we could have equally well taken the x axis. The
2 2

    only thing that matters is the distance from the wire, and so the answer is better written as:

                    

d
y y

0

                                               .
2

5. The  of any vector field is a particularly important concept. It is the measure of the
    "flow" or penetration of the field vectors thro

E
r

flux
ugh an imaginary fixed surface. So, if there

     is a uniform electric field that is normal to a surface of area , the flux is  . More
    generally, for any surface, we divide the surface up into

A EA
 little pieces and take the

 

zdE

ydE

dE
yy

r
P

dqdz

z

z

x
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    component of the electric field normal to each little piece, . If the pieces

    are made small enough, then in this limit,   .

5. Let us apply the above concept of flux to calc

E i iE A

E dA

2
0

ulate the flux leaving a sphere which has
    a charge at its centre. The electric field at any point on the sphere has magnitude equal

1    to  and it is directed radially outwards. Let us now d
4

q
r

2
2

0

0

ivide up the surface of the 

1    sphere into small areas. Then 4 . So we end up with
4

    the important result that the flux leaving this closed surface is .

6. : the

qE A E A r
r

q

Gauss's Law

0

 total electric flux leaving a closed surface is equal to the charge 
    enclosed by the surface divided by . We can express this directly in terms of the 

    mathematics we have learned,  E dA
0

0

. Actually, we have already seen

    why this law is equivalent to Coulomb's Law in point 5 above, but let's see it again. So,

    applying Gauss's Law to a sphere containing charge, 

enclosedq

E d 0

0

2
0 2

0

. If

    the surface is a sphere, then  is constant on the surface and  and from this

1    4 . This is Coulomb's Law again, but the power of Gauss's
4

    law i

enclosedA EdA q

E E dA q

qE r q E
r

s that it holds for any shape of the (closed) surface and for any distribution of charge.

7. Let us apply Gauss's Law to a hollow sphere that has charges only on the surface. At any

    distance  from r 2
0the centre, Gauss's Law is 4 . Now, if we are inside the

    sphere then 0 and there is no electric field. But if we are outside, then the total

    charge is  and 

enclosed

enclosed

enclosed

E r q

q

q q E 2
0

1 , which is as if all the charge was concentrated at the 
4

    centre. 

8. Unfortunately, it will not be possible for me to prove Gauss's Law in the short amount of 
    time and space available bu

q
r

t the general method can be outlined as follows:  take any 
    volume and divide it up into little cubes. Each little cube may contain some small amount
    of charge. Then show that for each little cube, Gauss's Law follows from Coulomb's Law. 
    Finally, add up the results. For details, consult any good book on electromagnetism.  
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L R
Gaussian surface

   QUESTIONS AND EXERCISES – 23 

Q.1 As we all know, everything is made up of atoms and the only charges present inside
       matter reside on atoms or electrons. So everything is ultimately "bumpy". When then 
       is the concept of a continuous distribution of charge used in this lecture? Under what
       conditions would this become inadequate, or even wrong?

Q.2 Give the dimensions of  , ,  using their definitions. In 1,2,3 dimensions write the 
       expression for the total charge.

Q.3 In the diagram below you see two parallel plates with surface charge density  and
       -  respectively. We would like to calculate the electric field everywhere using Gauss's
      theorem, and the assumption that the plates are infinitely long in the vertical direction. 

 
                                                                  
 
 
 
 
 
 
 
 
  a) Show that the electric field vanishes everywhere except in between the two plates. Use
      Gauss's Law to show this. [Hint: draw a suitable gaussian surface that extends both to 
      the left and right, and use the fact that the total enclosed charge is zero.]
  b) Look at the gaussian surface that has been drawn in the diagram and evaluate each of 

      terms defining the flux, E dA E
outer inner side
cap cap walls

0

  c) Show that the field between the plates is given by .

  d) Suppose that one plate is totally removed and that the charge density is +  on the 
    

dA E dA E dA

E

  remaining plate. What is the electric field now?
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q 1q

r

Summary of Lecture 24 – ELECTRIC POTENTIAL ENERGY 

1. You are already familiar with the concept of gravitational potential energy. When you 
    lift a weight, you have to do work against the downwards pull of the Earth. That work

    is stored as potential energy.  Suppose a force   acts on something and displaces it by .

    Then the work done is . The work done in going from point  to point  (call it ) 

    is then got by adding tog

ab

F ds

F ds a b W

ether the little bits of work, = .  The change in 

    potential energy is defined as . Remember always that we can only
    define the potential  at a point if the force is co

b

ab a

b a ab

W F ds

U U U W
U nservative.

2. The electrostatic force is conservative and can be represented by a potential. Let us see 
    how to calculate the potential. So consider two charges separated by a distance as below.
 
 
 
 
 
    Let us take the point  very far from the fixed charge , and the unit charge at the point  
    to be at a distance  from . Then the work you did in bringing the unit charge from infinity 

    t

a q b
R q

2
0 0 0

1 1 1 1 1o  is, ( ) .  Since the charges
4 4 4

    repel each other, it is clear that you had to do work in pushing the two charges closer 
    together. So where 

R R

ab
q qR W qE dr dr q
r R R

did the negative sign come from? Answer: the force you exert on the
    unit charge is directed  the charge , i.e. is in the negative direction. This is why 

    ( ) . Now ( ) - ( )

towards q

F ds qE dr U U R U
0

0

1 . If we take the potential at  to be
4

1    zero, then the electric potential due to a charge  at the point  is ( ) .
4

    Remember that we know how to calculate the force given the poten

q
R

qq r U r
r

2
0

1 2

tial: . Apply

1    this here and you see that ,  (which also has the correct repulsive sign).
4

3. From the above, it is quite obvious that the potential energy of two charges ,  is,

   

dUF
dr

qF
r

q q

U 1 2 1 2

0

1 . Compare this with the formula for gravitational energy, .
4

   What is the difference? From here, you can see that the gravitational force is always
   negative (which means attrac

q q m mr U r G
r r

tive), whereas the electrostatic force can be both attractive
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    or repulsive because we have both + and - charges in nature.  

3. The electric potential (or simply potential) is the energy of a unit charge in an electric field.

     So, in our MKS units, the uni Joulet of potential is  1 1 Volt. Another useful unit is 
Coulomb

     "electron volt" or eV. The definition is: 
      

 

One electron - volt = energy gained by moving one electron charge through one Volt 
19 19

3

6

                                   1.6 10 1 1.6 10
     It is useful to note that 1 Kev  = 10   (kilo-electron-volt)
                                          1 Mev = 10  (million-electron

C V J
eV
eV

9

12

-volt)
                                          1 Gev  = 10   (giga-electron-volt)
                                          1 Tev  = 10   (tera-electron-volt)

4. Every system seeks to minimize its

eV
eV

 potential energy (that is why a stone falls down!). 
    So, positive charges accelerate toward regions of lower potential, but negative charges 
    accelerate toward regions of higher potential. Note that only the potential difference
    matters - even if a charge is placed in a region where there is a high potential, it will not
    want to move unless there is some other place where the potential is higher/lower.

5. Given a system of charges, we can always compute the force - and hence the potential - 
     that arises from them. Here are some important general statements: 
     a)Potentials are more positive in regions which have more positive charge.
     b)The electric potential is a scalar quantity (a scalar field, actually). 

     c)The electric potential determines the force through F , and hence the electric 

         field because .
     d)The electric potential exists only because  the electrostatic force is conservative. 

dU
dr

F qE

1 2
1 10

6. To compute the potential at a point, the potentials 
    arising from charges 1, 2, N must be added up:  

1    . Here  is 
4

    the distance of the i'th charge fr

N N
i

N i i
i i i

qV V V V V r
r

1 2 1 3 2 3

0 12 0 13 0 23

om the point where 
    the potential is being calculated or measured. As an 
    example, the potential from the three charges is: 

1 1 1    V .
4 4 4

q q q q q qr
r r r

  

1q

2q
12r

13r

23r

3q
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R
x

y

z

P

ds

2 1
1 2

0 1 2 0 1 2

7. Let us apply these concepts to the dipole system considered earlier. With two charges, 

1    . We are particularly interested in the situation
4 4

    where 

P
q q q r rV V V
r r r r

r d 2
2 1 1 2

2 2
0 0

. from the diagram you can see that cos  and that . Hence,
cos 1 cos    . So we have calculated the potential at any  with such 

4 4

    little difficulty. Note that 0 at 

r r d r r r
q d pV

r r

V .
2

 
 
                            
 
 
 
 
 

 

 
 

 
  QUESTIONS AND EXERCISES – 24 

Q.1 How much work (in joules) is done by a force that moves a charge of 2 coulombs 
      through a distance of 10cm in a constant electric field of 7 V/cm?

Q.2 It is common to call the potential of the earth as zero. Is this necessary? Is it okay to 
       do so, and why?

Q.3 There are two hollow metal spheres each with one coulomb of charge upon it. One has
       radius 4cm and the other 14cm. Find the ratio of the electric fields on the two surfaces.
       Repeat if instead they have the same charge density  on the surfaces. 
 

P
1r

2r

d r
q

q 2 1 cosr r d

8. Now let us calculate the potential which comes 
    from charges that are uniformly spread over a 
    ring. This is the same problem as in the previous
    lecture, but simpler. Give the small amount

2
0

2 2 2
0 0

 of 
    potential coming from the small amount of charge 

1     some name, . Then obviously
4

1 1    .
4 4

dqdq ds dV
r

dq qV dV
r R z
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+  +  + +  +  +

Gaussian surfaced

Summary of Lecture 25 – CAPACITORS AND CURRENTS 

1. Two conductors isolated from one another and from their surroundings, form a .
    These conductors may be of any shape and size, and at any distance from each other. If
    a potential diff

capacitor

erence is created between the conductors (say, by connecting the terminals 
    of a battery to them), then there is an electric field in the space between them. The electric 
    field comes from the charges that have been pushed to the plates by the battery. The 
    amount of charge pushed on to the conductors is proportional to the potential difference 
    between the battery terminals (which is the same as between the capacitor plates). Hence,
    . To convert this into an equality, we write . This provides the definition of 

    capacitance, .

2. Using the above definition, let us c

Q V Q CV
QC
V

alculate the capacitance of two parallel plates separated
    by a distance  as in the figure below. d

0

0

    Recall Gauss's Law: . Draw any Gaussian surface. Since the electric

    field is zero above the top plate, the flux through the area A of the plate is ,  

    where  is 

enclosedqE dA

QEA

Q
0

0

the total charge on the plate. Thus,  is the electric field in the gap

    between the plates. The potential difference is ,  and so . You can see

    that the capacitance will be larg

QE
A

E Q AV C
d V d

e if the plates are close to each other, and if the plates 
    have a large area. We have simplified the calculation here by assuming that the electric
    field is strictly directed downwards. This is only true if the plates are infinitely long. But
    we can usually neglect the side effects. Note that any arrangement with two plates forms
    a capacitor: plane, cylindrical, spherical, etc. The capacitance depends upon the geometry,
    the size of plates and the gap between them.
 

q

q
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eqC
V

1C

2C

3. One can take two (or more) capacitors in various ways and thus change the amount of 
    charge they can contain. Consider first two capacitors connected in parallel with each
    other. The same vol 1 1 2 2

1 2 1 2

tage exists across both. For each capacitor, ,   where 
     is the potential between terminals  and .  The total charge is:  
                                             

q C V q C V
V a b

Q q q C V C V 1 2

1 2

( )

    Now, let us define an "effective" or "equivalent" capacitance as . Then we can

    immediately see that for 2 capacitors ,  and  for  capacitors .

eq

eq eq n

C C V
QC
V

C C C C C n

1 2 1 2

4. We can repeat the analysis above when the capacitors are put in series. Here the difference
    is that now we must start with ,  where  and  are the voltages across the two.
    Clearly th

V V V V V

1 2
1 2 1 2

1 2

e same charge had to cross both the capacitors. Hence,
1 1                                        ( ).

1 1 1     From our definition, , it follows that . The total capaceq
eq

Q QV V V Q
C C C C

QC
V C C C

itance is now

1 1     less than if they were in parallel. In general,   for  capacitors . 
eq n

n
C C

5. When a battery is connected to a capacitor, positive and negative charges appear on the
     opposite plates. Some energy has been transferred from the battery to the capacitor, and
     now been stored in it. When the capacitor is discharged, the energy is recovered. Now 
     let us calculate the energy required to charge a capacitor from zero to  volts. 
     Begin: the amount of energy require

V
d to transfer a small charge  to the plates is

     v ,  where v is the voltage at a time when the charge is v. As time goes on,
     the total charge increases until it reaches the final charge

dq
dU dq q C

2
2

0

Q (at which point the voltage
     becomes ). So,

1                         v       .
2 2

Q

V

q q QdU dq dq U dU dq CV
C C C

eqC

V
1C 2C

V

1V 2V
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    But where in the capacitor is the energy stored? Answer, it is present in the electric field
    in the volume between the two plates. We can calculate the energy density: 

                         
2 2

20
0

0

2

1
energy stored in capacitor 12        .

volume of capacitor 2 2

    In the above we have used , derived earlier. The important result here is that 

    . Turning it ar

CVU Vu E
Ad Ad d

AC
d

u E

2
0

ound, wherever there is an electric field, there is energy available.

16.  Consider a free charge . Around it is an electric field, .
4

    Now suppose this charge is placed among
r

QQ E
r

Dielectrics.

 water molecules. These molecules will polarise, 
    i.e. the centre of positive charge and centre of negative charge will be slightly displaced. 
    The negative part of the water molecule will be at

2
0

tracted toward the positive charge .  
1 1    So, in effect, the electric field is weakened by  and becomes,  . Here I have

4
    introduced a new quantity  called "dielectric constant". Thi

r r

r

Q
Q
r

s is a number that is usually
    bigger than one and measures the strength of the polarization induced in the material. For
    air, 1.0003 while 80 for pure water. The effect of a dielectric is r r

0 0

to increase the 
    capacitance of a capacitor: if the air between the plates of a capacitor is replaced by a

    dielectric, .r
A AC

d d

QUESTIONS AND EXERCISES – 25 

Q.1 Suppose a dielectric material is inserted between the plates of a parallel plate capacitor. 
      What will happen to the electric field in the gap between plates? To the total stored
       energy in the capacitor?

Q.2 Two capacitors of 10 F and 15 F are joined together in parallel. A third capacitor of
       15 F is placed in series with these two. What is the total capacitance? 

1 2Q.3 Two metal spheres of radius  (small) and  (large) 
       have the same charge  initially. When connected 
       by a wire, how much charge will flow in it? 

R R
Q

1R 2R


