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Course Qutline

* Intro to path integral ¥
_ * |Imaginary time
Instantons in * Instantons in a symmetric double well
particle QM * Decay of metastable states
* The functional determinant

e Basic QFT for a scalar field
* Tunneling of field configurations
Tunneling of  The O(4) instanton
quantum fields e Gauge fields and tunneling
» Effective action
* How/when will the universe end?



Review of functional analysis
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@ f(x)=2"—f =22

® Usual Taylor expansion: f(x + dx)

Similarly there’s
a Taylor expansion
for functionals
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= f(z) + dz f'(z) + 502 f"(z) + - - -
OFg(x)]

Flg(a) +89(x)] = Flo(a)] + / ! 0 (e

% / dz’ / d:c" 5g($,,)59(56’)59(f6”)+



Real Time Feynman Path Integral (derived in lecture 1)
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paths

= 4 lim 1_‘[d513z

n—oo

S[:(:]:/O dt.ZL (x,T)
L.,

L(x, ) = 53: — Vi(x)

For h — 0 the phase oscillates wildly!




Imaginary time path integral - 1

, dz\* dx 2_ .9 i/dt:lde
Put ¢t = —irmmp (E) = _(E> =T h R
A = /Cé)x] exp(—%), Slx] = / b dT(%jjg + V(fL‘)) Euclidean action

Let z.(7) be the classically determined path from a to b.

General path is z(7) = z.(7) + &(7) with £(7,) = £(1) = 0.
3 ‘/ Expand S[z] around z. in a functional Taylor series:

Sla) = Slad + [ dr(-i+V'@)6(r)  ( First order variation
L Y g2 vanishes at minimum msp
+ 5/ dr &(7) ( —oa T V”(%))ﬁ(ﬂ Tl #.=V'(z.) (Newton’s Law))
; 1 [T d? )
[ Sla] = Slze] + 5 / dr £(7) ( — =5+ V"(;cc))g(T) = iSRRG

(Action at 2nd order for an arbitrary path z. + &)



Imaginary time path integral -
1 g(2 — e 15
Lg—sp = /[daz] Slz] — o= — 15Oz, /[daz] e_ﬁs( 2] = ¢ 15(0)[,] /[df] 15(2) [, 4]

Note: we are only integrating over fluctuations. Hence, |dz] = [d{].

Some low hanging fruit

E 1
® o = Y. 22+ V(x| = —dede + V(zo)de = (—Fe + V'(2:))Ee = 0
dr  dr 2

Hence the “energy” FE is conserved on z.(7) (but not away from it!).

1 1
® z.(7) fixes S((;O) 7] = /dT(§x'cz T V(:Ec)) and this fixes e~ %% @]

® If / [d€le ~#5lE g g, independent then it’s just a normalization constant!



Recapitulation of achievements so far

Stotal — S(O) + S(Q)

classical fluctuation
_ 7(0) (2)
%ota,l o ‘Q/cla,ssica,l X ‘Q{fluctuation
Tb 1
0 . 2
Sélczssical :/ dT(i'TC +V($C)) d
Ta

S tuation =3 | 4 €)= oy + V() &l
fluctuation 9 _ dT2 C
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Work out S.jassical @and Acjassica) for free particle and SHO
1. Free Particle: V =0 BC’s are (z,0) — (z',T)

d2 -z
ﬁxczﬂ C.xe(T) ~ e+ d T.(T) =2+ 77
-
T / 2 (a:/—:r:)2
L. 9 (" — ) - -
o = —Z, — L = @ 2hT
S /O dT(QCL‘ +0) 7 A,
1
2. SHO: V(x) = §w2x2 with same BC’s as for free particle
d2
3% = w?xe . xe(T) ~ce®T +de " (Fix ¢,d by BC’s)
=

! Lo, 155
SC:/O d7(5566+§w:6)

W
2h sinh wT’

A, = exp [ — (2% + 2%)cosh wT — 22’ ]



Imaginary time path integral - 3

How to compute S = % [F Y g(r)( - dd—i + V"(acc))f('r) ? Let’s expand £(7) in an
orthonormal basis {¢, ()}, a(jz+v"(;cc))¢n( ) = An®n (1) with ¢ (14) = ¢n(75) = 0.
® (1) =x.(r) + &) = (7 +§j%@L $”=%§Mw%

. S(z) n=0

(2e+8) where [dz] = [d€] =

1
W d: [|d N’ —d
® We nee /[ £le” ?;_:10 N

Note: Integrating over paths is the same as integrating over ¢,

e Y

C/1/;!
Nl 17 d2 " d p — 6_%8(0) [:cc]
= Jaeg Vrere S=—gm Vi) T Vdet S




Work out Afuctuation for free particle

1. Free Particle: V =0 BC’s are (2,0) — (2',T)
2

EV problem: ( . + ‘/{((L‘c)) On(T) = Apodn(7) with ¢,(0) = ¢ (T) = 0.

dT? 0
: i 2 . hm n2m?
Normalized solution: ¢, (7) = 4/ T SIH?T, A\, = -
2) 1 —
1
LA — [[dzle "% =N || — = N il
o = |l [ 5 =~11{5
| 1
The first factor is infinite and the second is N =
2mh'T

zero. How to make sense out of this total
mathematical nonsense?

Answer: we know the product because we have earlier
on calculated the normalization for a free particle!



Work out  Aquctuation for SHO

1
1. SHO: V(z) = ingz, V"(x) = w® and BC’s are as in free particle case.

EV problem: ( - d—2 + wQ)qbn(T) = A&y (7) with ¢,(0) = ¢, (T) = 0.

dT?2
5 2 2 7722 2T
Solution: ¢, (7) = 4/ T sin%'r, Ap = nTZ 4+ w2 = = (1 + n27r2)
1 o(2) = 1
A flue :/dxe_ﬁs =N’
fluce = | [da] Il 7=

— /T -~ 1 W
=N’ <_) 272 —
) \l 1:[ 14 <L \/27Th sinh wT' ¥

1 I Y\/ wT
2mhT sinh w71’




G(z',T;x,0) = (xife_%HTM) Knowing G buys us a lot!

Let H|n) = e,|n). These form a complete setj_z In)(n| =1

A~

Consider: G(2',T;x,0) = (x'|£_%ﬁTx) = {a@'| (Z |n<n|)6_%HT|LB>

— Ze_%GnT¢n(x/)¢;:(x) _ 6_%EOT¢0($’)¢8(3§) L.

As T — oo only the ground state survives and can be extracted. Let’s check:

2mh sinh wT 2h sinh wT

1 1
_ e_%wT ( w ) * 6_;_5m'2 ( W ) * e_%mz Correct SHO energies

lim \/ - exp [ - ~ (2 4+ 2*)cosh wT — Zx’x]]

wh 7h and wavefunctions!



The Double Well

(as in undergrad QM)



This is not an eigenstate of the Hamiltonian

Particle located
on left minimum




This is not an eigenstate of the Hamiltonian

Particle located
on right minimum



Symmetric eigenstate of the Hamiltonian




Anti-symmetric eigenstate of the Hamiltonian
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Double well instantons — a first look (purely classical)

V(z)

® Stay-at-home solution with zero energy, i.e. by choice V(0) =0, F
2o(—=T/2) = 2.(T/2) = —a has S[z]=0and A=¢ 70=1

® Left-to-Right: z.(—T7/2) = —a, z.(+7T/2) =+a (We're interested in T — o)

Ma o 2.(—7)=—x.(71) from EOM — z.(0) =0

Le

|
-

@ F=0s0i,=+/2V(x) is large only near z = 0
T—>

@ z. “suddenly” jumps from —a to +a and so is
|ET— called an “instanton”. But how sudden is sudden?

centre @ When/where does the jump happen?

—a




Double well instantons — a solvable example (purely classical)

Viz) = E;;Q (™ — )

Claimed solution of EOM: z.(1) = atanh(uj;) To(—00) = —a, T.(+00)=+a

d2 - 1 2 TW 2 (TW 1 2 332 oyt
Check: Talc = —5aW tanh( > ) (1 — tanh (7)): — 5w (1 — §> = V(@)
P ; v
To 1
Le
T —>

Zero W1dth .
%\Wldth O 1/ w) instanton kink




Reversing time for the instanton

d?z, ;
® Recall EOM: ;Tgr) =V'(zc(7), V(—z(1))=V(x(r)) ..V'(-z(1)) ==V (2())
2, [
Let 7 — —7 then dxc—(zﬂ =V'(zc(-7)) = =V'(=zc(-7)) -~ y(r) = —z(-7)
d is also a solution
Example: atanh(uﬁ) —> —a tanh(ﬂ> (called anti-instanton)
2) 1o -7 2

® Suppose we put here 7 — 77 in place of 7. Nothing changes! This means
that z.(7 —7) is an equally good solution. So we can have many instantons
moving between —7'/2 and +7'/2. (Remember that T"— o0)
L W
1 1 |

T T

8 —>




Action for one instanton or anti-instanton

|
Reminder 1: the one instanton action is S|z.] = /dT (53562 + V(:Ec))

1
Reminder 2: energy conservation says — 53562 + V(xz.) = E =0 by our own choosing

®, 0]
® S, [gjc] — / dr 3;2 - /5 dr x'c(’r)z thzi,t’s because Ehe d'.eriva,tive is non-2eTo
- s only around z = 0, i.e. the crossing point
dx
We can also write /dT T.(7)? = /dT y “E. = /da:\/QV(azc)
T
: W’ 5 a9 Lo 2 9
@® For the special case V(z) = (x*—a”)* the action is calculated as S,—1 = —wa

"~ 8a? 3

® Lor n non-overlapping instantons, S, = nS,—=1 = nS; (often called instanton gas)

® A single instanton’s centre can be located anywhere between —7°/2 and +7/2
Thus at the classical level (no fluctuations included yet), contributions from

all values of 7" must be summed over, [+7/2 i 1
/ dren®t = Tenr>t

—T/2



Now look at the case for many instantons and anti-instantons

71

72

W B

73

We can readily generalize to any n,

S1% _ cinh (exp[—%Sl] T)

o0

Define: Z7p = Z
n odd

For the solutions which return
to the left sum only on even n

[

T/2 T/2 T/2
- 3—/ d’rl/ d'rg/ drs e 7351
T2

1'/2 T2
/ dTlf dTQ(— —TQ)
T

=ec

~135,

L1351 (T2 T ,
=e k — dTl(——Tl)
. 2 —T/2 2
_T3€—%331
3!
Tﬂ
AS = —Je %Sl]” n=1,3,5

—

L

/7 = cosh (exp[

1
——S
A 1

7)



Conclusions of Lecture#?

Stotal = S(O) l -+ 5(2)

classica fluctuation

eQ%tota,l — W(O) ] X 527(2)

classica fluctuation

1
/5 » = sinh —=51| T
Lr — Sl (eXP[ r 1] ) '\
1
/7 = cosh (exp[—ﬁSl] T)
S1 is the single instanton action.

Start time is —% and the end time is —|—%
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