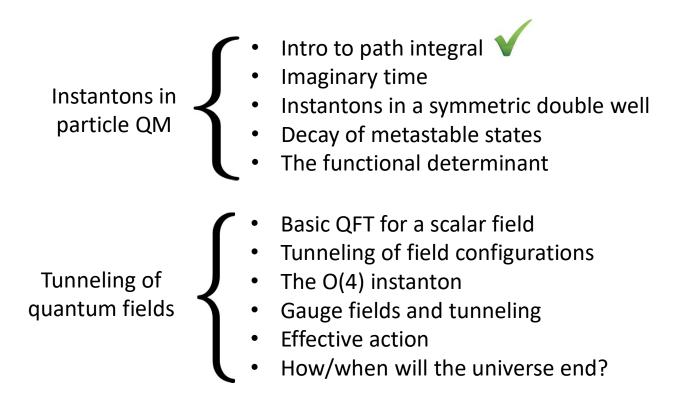
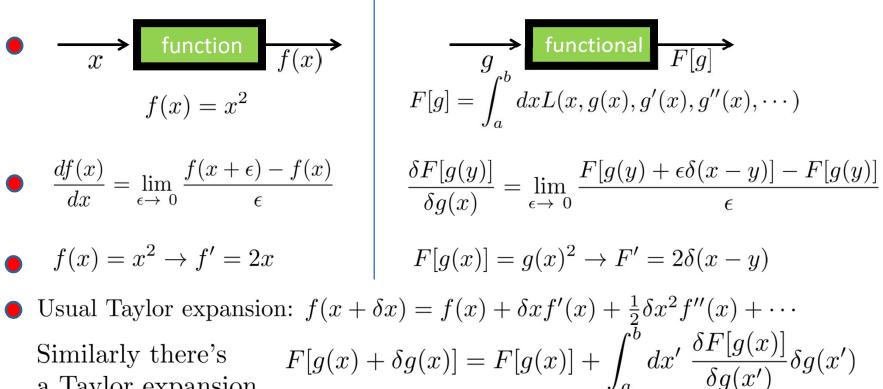


Course Outline



Review of functional analysis



 $+\frac{1}{2}\int_{a}^{b}dx'\int_{a}^{b}dx''\frac{\delta^{2}F[g(x)]}{\delta g(x')\delta g(x'')}\delta g(x'')\delta g(x'')+\cdots$

a Taylor expansion for functionals Real Time Feynman Path Integral (derived in lecture 1)

$$\mathcal{A}_{a \to b} = \sum_{\text{paths}} e^{i\frac{S}{\hbar}} \to \int [dx] e^{i\frac{S[x]}{\hbar}}$$

$$[dx] = \mathcal{N} \lim_{n \to \infty} \prod_{i=1}^{n-1} dx_i$$

$$S[x] = \int_0^t dt \mathcal{L}(x, \dot{x})$$

$$\mathcal{L}(x, \dot{x}) = \frac{1}{2}\dot{x}^2 - V(x)$$
For $\hbar \to 0$ the phase oscillates wildly!

Imaginary time path integral - 1
Put
$$t = -i\tau$$
 $\left(\frac{dx}{dt}\right)^2 = -\left(\frac{dx}{d\tau}\right)^2 \equiv -\dot{x}^2$ $\frac{i}{\hbar}\int dt = \frac{1}{\hbar}\int d\tau$
 $\mathscr{A}_{A\to B} = \int [dx] \exp\left(-\frac{S[x]}{\hbar}\right), \qquad S[x] = \int_{\tau_a}^{\tau_b} d\tau \left(\frac{1}{2}\dot{x}^2 + V(x)\right)$ Euclidean action
b Let $x_c(\tau)$ be the classically determined path from a to b .
General path is $x(\tau) = x_c(\tau) + \xi(\tau)$ with $\xi(\tau_a) = \xi(\tau_b) = 0$.
Expand $S[x]$ around x_c in a functional Taylor series:
 $S[x] = S[x_c] + \int_{\tau_a}^{\tau_b} d\tau (-\ddot{x}_c + V'(x_c))\xi(\tau)$
 $+ \frac{1}{2}\int_{\tau_a}^{\tau_b} d\tau \xi(\tau) \left(-\frac{d^2}{d\tau^2} + V''(x_c)\right)\xi(\tau) + \cdots$ First order variation
 $x_c = V'(x_c)$ (Newton's Law)
 $S[x] = S[x_c] + \frac{1}{2}\int_{\tau_a}^{\tau_b} d\tau \xi(\tau) \left(-\frac{d^2}{d\tau^2} + V''(x_c)\right)\xi(\tau) \equiv S^{(0)} + S^{(2)}$
(Action at 2nd order for an arbitrary path $x_c + \xi$)

Imaginary time path integral - 2

 $\mathscr{A}_{a\to b} = \int [dx] \, e^{-\frac{1}{\hbar}S[x]} = e^{-\frac{1}{\hbar}S^{(0)}[x_c]} \int [dx] \, e^{-\frac{1}{\hbar}S^{(2)}[x]} = e^{-\frac{1}{\hbar}S^{(0)}[x_c]} \int [d\xi] \, e^{-\frac{1}{\hbar}S^{(2)}[x_c+\xi]}$ Note: we are only integrating over fluctuations. Hence, $[dx] = [d\xi]$.

Some low hanging fruit

•
$$\frac{dE}{d\tau} \equiv \frac{d}{d\tau} \left(-\frac{1}{2} \dot{x_c}^2 + V(x_c) \right) = -\dot{x}_c \ddot{x}_c + V'(x_c) \dot{x}_c = (-\ddot{x}_c + V'(x_c)) \dot{x}_c = 0$$

Hence the "energy" E is conserved on $x_c(\tau)$ (but not away from it!).

•
$$x_c(\tau)$$
 fixes $S_c^{(0)}[x_c] = \int d\tau \left(\frac{1}{2}\dot{x_c}^2 + V(x_c)\right)$ and this fixes $e^{-\frac{1}{\hbar}S_c^{(0)}[x_c]}$

• If $\int [d\xi] e^{-\frac{1}{\hbar}S^{(2)}[\xi]}$ is x_c independent then it's just a normalization constant!

Recapitulation of achievements so far

$$S_{total} = S_{classical}^{(0)} + S_{fluctuation}^{(2)}$$

$$\mathscr{A}_{total} = \mathscr{A}_{classical}^{(0)} \times \mathscr{A}_{fluctuation}^{(2)}$$

$$S_{classical}^{(0)} = \int_{\tau_a}^{\tau_b} d\tau \left(\frac{1}{2}\dot{x_c}^2 + V(x_c)\right) \qquad \text{a} \qquad \mathbf{x}_c \qquad \mathbf{x}_c$$

$$S_{fluctuation}^{(2)} = \frac{1}{2} \int_{\tau_a}^{\tau_b} d\tau \ \xi(\tau) \left(-\frac{d^2}{d\tau^2} + V''(x_c)\right) \xi(\tau)$$

Work out $\,\mathcal{S}_{ m classical}\,$ and $\,\mathcal{A}_{ m classical}\,$ for free particle and SHO

- 1. Free Particle: V = 0 BC's are $(x,0) \rightarrow (x',T)$ $\frac{d^2}{d\tau^2} x_c = 0 \quad \therefore x_c(\tau) \sim c\tau + d \qquad x_c(\tau) = x + \frac{x'-x}{T}\tau$ $S_c = \int_0^T d\tau \left(\frac{1}{2}\dot{x_c}^2 + 0\right) = \frac{(x'-x)^2}{2T} \quad \therefore \mathcal{A}_c = e^{-\frac{(x'-x)^2}{2\hbar T}}$
- 2. SHO: $V(x) = \frac{1}{2}\omega^2 x^2$ with same BC's as for free particle $\frac{d^2}{d\tau^2} x_c = \omega^2 x_c \quad \therefore \quad x_c(\tau) \sim c e^{\omega \tau} + d e^{-\omega \tau}$ (Fix *c*, *d* by BC's) $S_c = \int_0^T d\tau \left(\frac{1}{2}\dot{x_c}^2 + \frac{1}{2}\omega^2 x^2\right)$ $\mathcal{A}_c = \exp\left[-\frac{\omega}{2\hbar \sinh \omega T} [(x'^2 + x^2) \cosh \omega T - 2x'x]\right]$

Imaginary time path integral - 3 How to compute $S^{(2)} = \frac{1}{2} \int_{\tau}^{\tau_b} d\tau \,\xi(\tau) \left(-\frac{d^2}{d\tau^2} + V''(x_c)\right) \xi(\tau)$? Let's expand $\xi(\tau)$ in an orthonormal basis $\{\phi_n(\tau)\}, \left(-\frac{d^2}{d\tau^2} + V''(x_c)\right)\phi_n(\tau) = \lambda_n\phi_n(\tau) \text{ with } \phi_n(\tau_a) = \phi_n(\tau_b) = 0.$ • $x(\tau) = x_c(\tau) + \xi(\tau) = x_c(\tau) + \sum_{n=0}^{\infty} c_n \phi_n(\tau) \implies S^{(2)} = \frac{1}{2} \sum_{n=0}^{\infty} \lambda_n c_n^2$ • We need: $\int [d\xi] e^{-\frac{1}{\hbar}S^{(2)}(x_c+\xi)} \text{ where } [dx] = [d\xi] = \mathcal{N}' \prod_{n=0}^{\infty} \frac{1}{\sqrt{2\pi\hbar}} dc_n$ Note: Integrating over paths is the same as integrating over c_n • $\int [dx]e^{-\frac{1}{\hbar}S^{(2)}} = \mathcal{N}' \prod_{n=0}^{\infty} \int_{-\infty}^{\infty} \frac{dc_n}{\sqrt{2\pi\hbar}} e^{-\frac{1}{2\hbar}\lambda_n c_n^2} = \mathcal{N}' \prod_{n=0}^{\infty} \frac{1}{\sqrt{\lambda_n}} e^{-\frac{1}{2}\lambda_n c_n^2} = \mathcal{N}' \prod_{n=0}^{\infty} \frac{1}{\sqrt{\lambda_n}} e^{-\frac{1}{2}\lambda_n c_n^2} = \mathcal{N}' \prod_{n=0}^{\infty} \frac{1}{\sqrt{\lambda_n}} e^{-\frac{1}{2}\lambda_n c_n^2} = \mathcal{N}' \prod_{n=0}^{\infty} \frac{1}{\sqrt{\lambda_n}} e^{-\frac{1}{2}\lambda$

Work out $\mathcal{A}_{\mathrm{fluctuation}}$ for free particle

1. Free Particle: V = 0 BC's are $(x, 0) \to (x', T)$ EV problem: $\left(-\frac{d^2}{d\tau^2} + V''_{\checkmark 0}(x_c)\right)\phi_n(\tau) = \lambda_n\phi_n(\tau)$ with $\phi_n(0) = \phi_n(T) = 0$. Normalized solution: $\phi_n(\tau) = \sqrt{\frac{2}{T}} \sin \frac{n\pi}{T} \tau$, $\lambda_n = \frac{n^2\pi^2}{T^2}$ $\therefore \mathcal{A}_{fluct} = \int [dx]e^{-\frac{1}{\hbar}S^{(2)}} = \mathcal{N}' \prod_{i=1}^{\infty} \frac{1}{\sqrt{\lambda_n}} = \mathcal{N}' \prod_{n=1}^{\infty} \left(\frac{T}{\pi n}\right)$ The first factor is infinite and the second is zero. How to make sense out of this total

mathematical nonsense?

Answer: we know the product because we have earlier on calculated the normalization for a free particle!

Work out
$$\mathcal{A}_{\text{fluctuation}}$$
 for SHO
1. SHO: $V(x) = \frac{1}{2}\omega^2 x^2$, $V''(x) = \omega^2$ and BC's are as in free particle case.
EV problem: $\left(-\frac{d^2}{d\tau^2} + \omega^2\right)\phi_n(\tau) = \lambda_n\phi_n(\tau)$ with $\phi_n(0) = \phi_n(T) = 0$.
Solution: $\phi_n(\tau) = \sqrt{\frac{2}{T}} \sin\frac{n\pi}{T}\tau$, $\lambda_n = \frac{n^2\pi^2}{T^2} + \omega^2 = \frac{n^2\pi^2}{T^2} \left(1 + \frac{\omega^2T^2}{n^2\pi^2}\right)$
 $\therefore \mathcal{A}_{fluct} = \int [dx]e^{-\frac{1}{\hbar}S^{(2)}} = \mathcal{N}' \prod_{n=1}^{\infty} \frac{1}{\sqrt{\lambda_n}}$
 $= \mathcal{N}' \prod_{n=1}^{\infty} \left(\frac{T}{n\pi}\right) \times \sqrt{\prod_{n=1}^{\infty} \frac{1}{1 + \frac{\omega^2T^2}{n^2\pi^2}}} = \sqrt{\frac{\omega}{2\pi\hbar} \sinh\omega T} \checkmark$

$$G(x',T;x,0) = \langle x'|e^{-\frac{1}{\hbar}\hat{H}T}|x\rangle \quad \text{Knowing } G \text{ buys us a lot!}$$

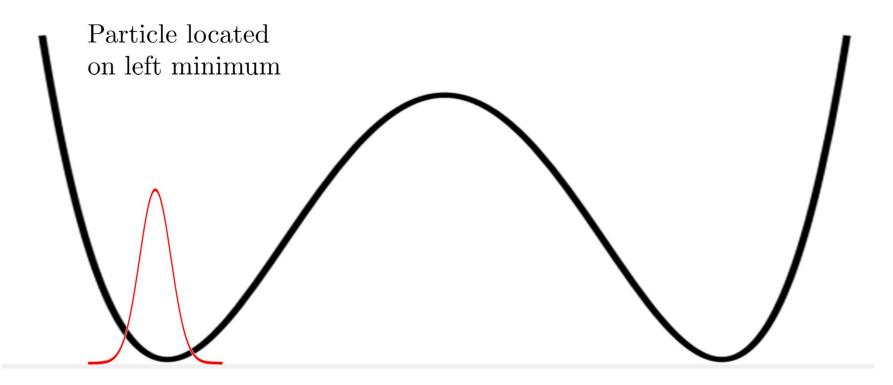
Let $\hat{H}|n\rangle = \epsilon_n|n\rangle$. These form a complete set, $\sum_n |n\rangle\langle n| = \hat{1}$
Consider: $G(x',T;x,0) = \langle x'|e^{-\frac{1}{\hbar}\hat{H}T}|x\rangle = \langle x'|\left(\sum_n |n\langle n|\right)e^{-\frac{1}{\hbar}\hat{H}T}|x\rangle$
 $= \sum_n e^{-\frac{1}{\hbar}\epsilon_n T}\phi_n(x')\phi_n^*(x) = e^{-\frac{1}{\hbar}\epsilon_0 T}\phi_0(x')\phi_0^*(x) + \cdots$

As $T \to \infty$ only the ground state survives and can be extracted. Let's check:

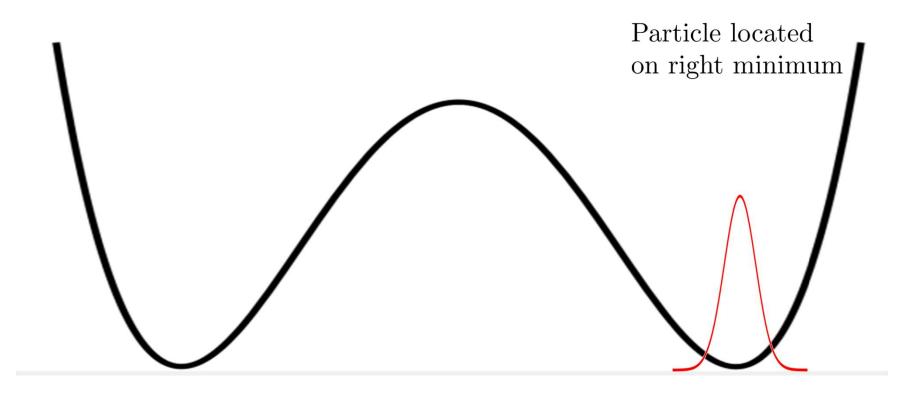
$$\lim_{T \to \infty} \sqrt{\frac{\omega}{2\pi\hbar \sinh \omega T}} \exp\left[-\frac{\omega}{2\hbar \sinh \omega T} [(x'^2 + x^2) \cosh \omega T - 2x'x]\right]$$
$$= e^{-\frac{1}{2}\omega T} \left(\frac{\omega}{\pi\hbar}\right)^{\frac{1}{4}} e^{-\frac{\omega}{2\hbar}x'^2} \left(\frac{\omega}{\pi\hbar}\right)^{\frac{1}{4}} e^{-\frac{\omega}{2\hbar}x^2} \qquad \begin{array}{c} \text{Correct SHO energies} \\ \text{and wavefunctions!} \end{array}$$

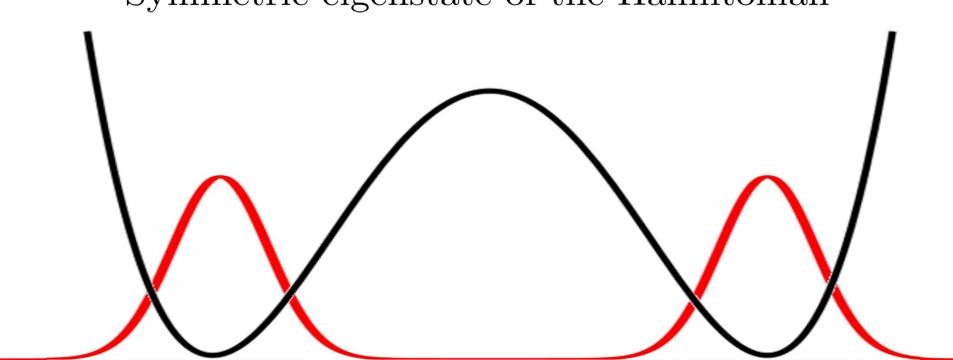
The Double Well (as in undergrad QM)

This is not an eigenstate of the Hamiltonian

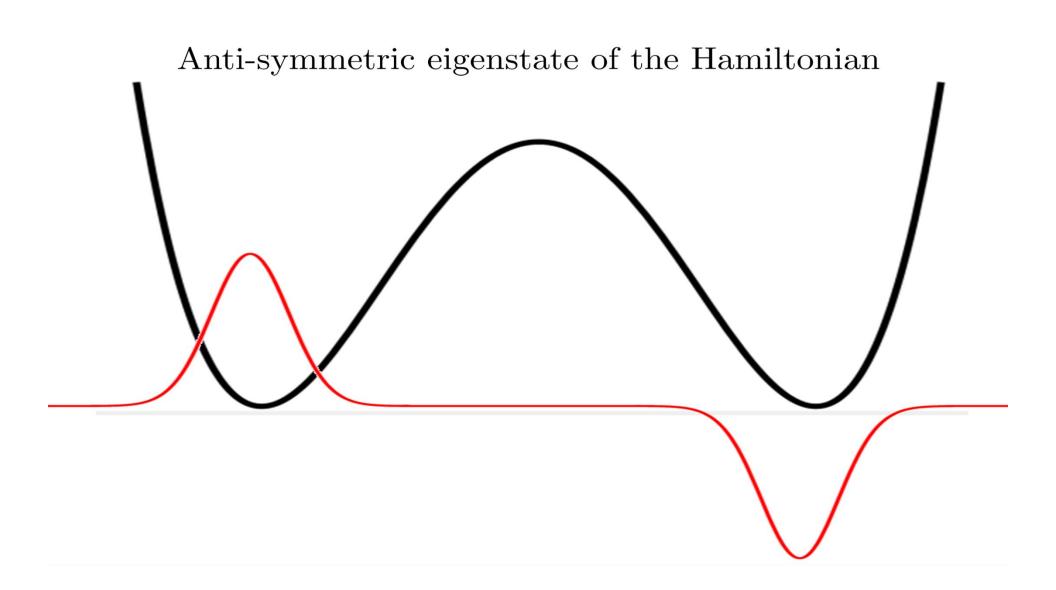


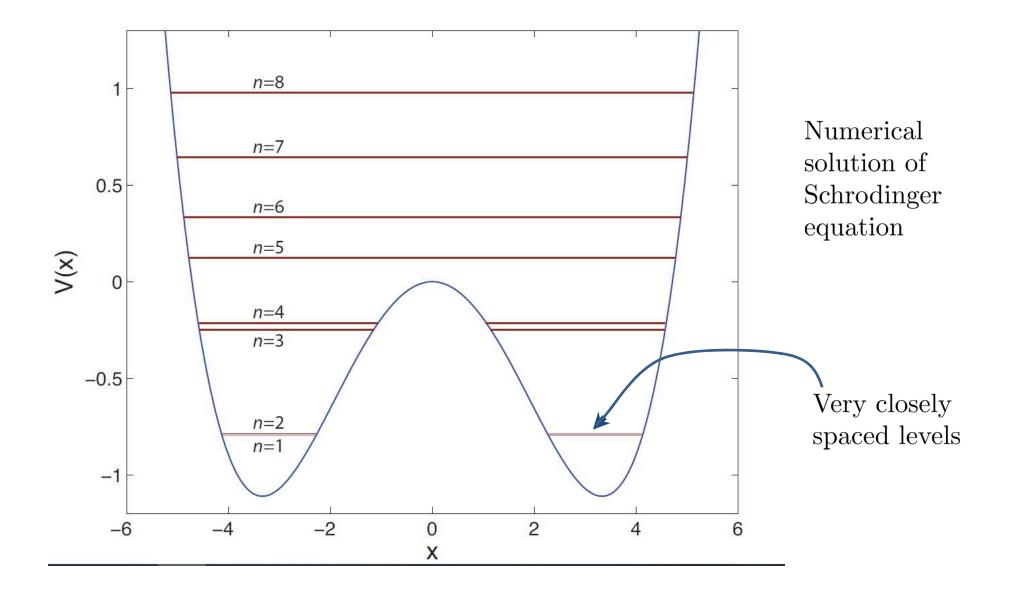
This is not an eigenstate of the Hamiltonian

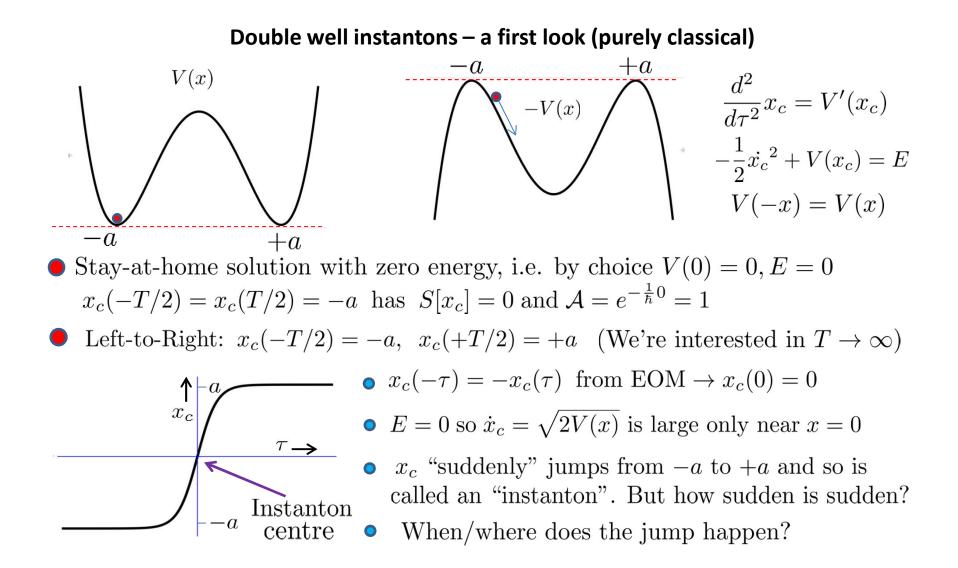


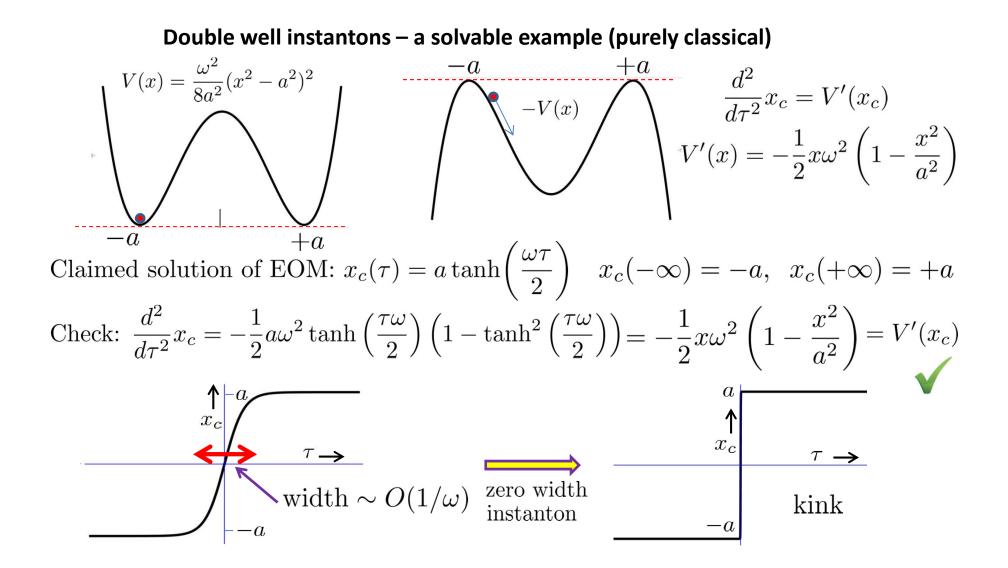


Symmetric eigenstate of the Hamiltonian







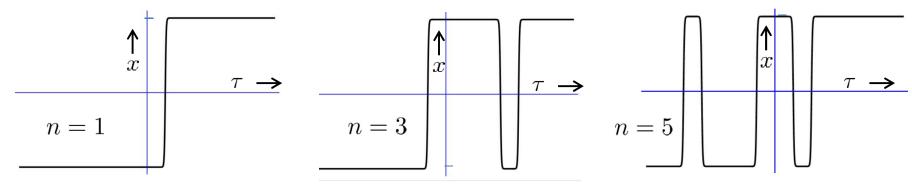


Reversing time for the instanton

• Recall EOM:
$$\frac{d^2 x_c(\tau)}{d\tau^2} = V'(x_c(\tau)), \quad V(-x(\tau)) = V(x(\tau)) \quad \therefore V'(-x(\tau)) = -V(x(\tau))$$

Let $\tau \to -\tau$ then $\frac{d^2 x_c(-\tau)}{d\tau^2} = V'(x_c(-\tau)) = -V'(-x_c(-\tau))$ $\therefore y(\tau) = -x(-\tau)$
is also a solution
Example: $a \tanh\left(\frac{\omega\tau}{2}\right) \xrightarrow[\tau \to -\tau]{} -a \tanh\left(\frac{\omega\tau}{2}\right)$ (called anti-instanton)

• Suppose we put here $\tau - \tau_l$ in place of τ . Nothing changes! This means that $x_c(\tau - \tau_l)$ is an equally good solution. So we can have many instantons moving between -T/2 and +T/2. (Remember that $T \to \infty$)



Action for one instanton or anti-instanton

Reminder 1: the one instanton action is $S[x_c] = \int d\tau \left(\frac{1}{2}\dot{x_c}^2 + V(x_c)\right)$ **Reminder 2:** energy conservation says $-\frac{1}{2}\dot{x_c}^2 + V(x_c) = E = 0$ by our own choosing • $S_{n=1}[x_c] = \int_{-\infty}^{\infty} d\tau \ \dot{x}_c^2 \approx \int_{-\delta}^{\delta} d\tau \ \dot{x}_c(\tau)^2$ that's because the derivative is non-zero only around x = 0, i.e. the crossing point We can also write $\int d\tau \, \dot{x}_c(\tau)^2 = \int d\tau \frac{dx_c}{d\tau} \dot{x}_c = \int dx \sqrt{2V(x_c)}$ • For the special case $V(x) = \frac{\omega^2}{8a^2}(x^2 - a^2)^2$ the action is calculated as $S_{n=1} = \frac{2}{3}\omega a^2$ For *n* non-overlapping instantons, $S_n = nS_{n=1} \equiv nS_1$ (often called instanton gas)

• A single instanton's centre can be located anywhere between -T/2 and +T/2Thus at the classical level (no fluctuations included yet), contributions from all values of T must be summed over, $\int^{+T/2}$ 1 S $Te^{\frac{1}{\hbar}S_1}$

e

$$\int_{-T/2} d\tau e^{\frac{i}{\hbar}S_1} = 2$$

$\mathcal{A}_{n=3}^{c} = \int_{-T/2}^{T/2} d\tau_1 \int_{\tau_1}^{T/2} d\tau_2 \int_{\tau_2}^{T/2} d\tau_3 \ e^{-\frac{1}{\hbar}3S_1}$ $= e^{-\frac{1}{\hbar}3S_1} \int_{-T/2}^{T/2} d\tau_1 \int_{\tau_1}^{T/2} d\tau_2 (\frac{T}{2} - \tau_2)$ n = 3 τ_2 \mathcal{T}_1 $= e^{-\frac{1}{\hbar}3S_1} \frac{1}{2} \int_{-T/2}^{T/2} d\tau_1 (\frac{T}{2} - \tau_1)^2$ $= \frac{1}{3!} T^3 e^{-\frac{1}{\hbar}3S_1}$ $\mathcal{A}_{n}^{c} = \frac{T^{n}}{n!} [e^{-\frac{1}{\hbar}S_{1}}]^{n} \quad n = 1, 3, 5 \cdots$ We can readily generalize to any n, Define: $Z_{LR}^c = \sum_{n=1}^{\infty} \frac{1}{n!} [Te^{-\frac{1}{\hbar}S_1}]^n = \sinh\left(\exp\left[-\frac{1}{\hbar}S_1\right]T\right)$ n odd $Z_{LL}^c = \cosh\left(\exp\left[-\frac{1}{\hbar}S_1\right]T\right)$ For the solutions which return to the left sum only on even n

Now look at the case for many instantons and anti-instantons

Conclusions of Lecture#2

$$S_{total} = S_{classical}^{(0)} + S_{fluctuation}^{(2)}$$

$$\mathscr{A}_{total} = \mathscr{A}_{classical}^{(0)} \times \mathscr{A}_{fluctuation}^{(2)}$$

$$Z_{LR}^{c} = \sinh\left(\exp\left[-\frac{1}{\hbar}S_{1}\right]T\right)$$

$$Z_{LL}^{c} = \cosh\left(\exp\left[-\frac{1}{\hbar}S_{1}\right]T\right)$$

$$S_{1} \text{ is the single instanton action.}$$

Start time is $-\frac{T}{2}$ and the end time is $+\frac{T}{2}$

References

- False vacuum decay: an introductory review, Federica Devoto, Simone Devoto, Luca Di Luzio, Giovanni Ridolfi, J. Phys. G: Nucl. Part. Phys. 49 (2022).
- The Theory and Applications of Instanton Calculations, Manu Paranjape (2022).
- Advanced Topics in Quantum Field Theory, M. Shifman