Questions for Module #26

The following questions are from Serway and Jewett. Answers may be found at the end of the book (click <u>here</u>).

• 0

13. Two small beads having positive charges $q_1 = 3q$ and $q_2 = q$ are fixed at the opposite ends of a horizontal insulating rod of length d = 1.50 m. The bead with charge q_1 is at the origin. As shown in Figure P23.13, a third small, charged bead is free to slide on the rod. (a) At what position x is the third bead in equilibrium? (b) Can the equilibrium be stable?

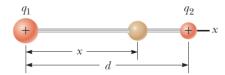


Figure P23.13 Problems 13 and 14.

- A uniformly charged insulating rod M of length 14.0 cm is bent into the shape of a semicircle as shown in Figure P23.45. The rod has a total charge of -7.50μ C. Find (a) the magnitude and (b) the direction of the electric field at O, the center of the semicircle.
- **31.** Three point charges are located on a circular arc as shown in Figure P23.31. (a) What is the total electric field at *P*, the center of the arc? (b) Find the electric force that would be exerted on a −5.00-nC point charge placed at *P*.

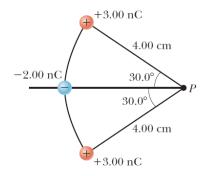


Figure P23.31

71. A line of positive charge is formed into a semicircle of radius R=60.0 cm as shown in Figure P23.71. The charge per unit length along the semicircle is described by the expression $\lambda = \lambda_0 \cos \theta$. The total charge on the semicircle is 12.0 μ C. Calculate the total force on a charge of 3.00 μ C. Placed a

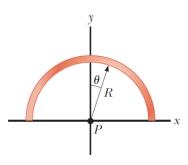


Figure P23.71

charge of 3.00 μ C placed at the center of curvature P.

11. Four closed surfaces, S_1 W through S_4 , together with the charges -2Q, Q, and -Q are sketched in Figure P24.11. (The colored lines are the intersections of the surfaces with the page.) Find the electric flux through each surface.

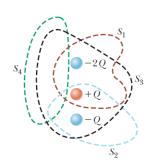


Figure P24.11

19. A particle with charge $Q = 5.00 \ \mu\text{C}$ is located at the center of a cube of edge $L = 0.100 \ \text{m}$. In addition, six other identical charged particles having $q = -1.00 \ \mu\text{C}$ are positioned symmetrically around Q as shown in Figure P24.19. Determine the electric flux through one face of the cube.

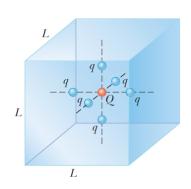


Figure P24.19
Problems 19 and 20.

- Consider a long, cylindrical charge distribution of radius R with a uniform charge density ρ . Find the electric field at distance r from the axis, where r < R.
- **39.** A solid metallic sphere of radius a carries total charge \mathbb{W} Q. No other charges are nearby. The electric field just outside its surface is k_eQ/a^2 radially outward. At this close point, the uniformly charged surface of the sphere looks exactly like a uniform flat sheet of charge. Is the electric field here given by σ/ϵ_0 or by $\sigma/2\epsilon_0$?

11. An insulating rod having linear charge density $\lambda = 40.0 \ \mu\text{C/m}$ and linear mass density $\mu = 0.100 \ \text{kg/m}$ is released from rest in a uniform electric field $E = 100 \ \text{V/m}$ directed perpendicular to the rod (Fig. P25.11). (a) Determine the speed of the rod after it has traveled 2.00 m. (b) What If? How does your answer

Figure P25.11

to part (a) change if the electric field is not perpendicular to the rod? Explain.

53. The general form of Gauss's law describes how a charge creates an electric field in a material, as well as in vacuum:

$$\int \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}} = \frac{q_{\rm in}}{\epsilon}$$

where $\epsilon = \kappa \epsilon_0$ is the permittivity of the material. (a) A sheet with charge Q uniformly distributed over its area A is surrounded by a dielectric. Show that the sheet creates a uniform electric field at nearby points with magnitude $E = Q/2A\epsilon$. (b) Two large sheets of area A, carrying opposite charges of equal magnitude Q, are a small distance d apart. Show that they create uniform electric field in the space between them with magnitude $E = Q/A\epsilon$. (c) Assume the negative plate is at zero potential. Show that the positive plate is at potential $Qd/A\epsilon$. (d) Show that the capacitance of the pair of plates is given by $C = A\epsilon/d = \kappa A\epsilon_0/d$.

58. Two large, parallel metal plates, each of area *A*, are oriented horizontally and separated by a distance 3*d*. A grounded conducting wire joins them, and initially each plate carries no charge. Now a third identical plate carrying charge *Q* is inserted between the two plates, parallel to them and located a distance *d* from the upper plate as shown in Figure P26.58. (a) What induced charge appears on each of the two original plates? (b) What potential difference appears between the middle plate and each of the other plates?

