

Course Outline

Our goal in Lecture#3 is to calculate the fluctuation part

$$
\mathscr{A}_{total} = \mathscr{A}_{classical}^{(0)} \times \mathscr{A}_{fluctuation}^{(2)}
$$
\n
$$
S_{fluctuation}^{(2)} = \frac{1}{2} \int_{-T/2}^{T/2} d\tau \xi(\tau) \left(-\frac{d^2}{d\tau^2} + V''(x_c) \right) \xi(\tau)
$$
\n• In Lecture #2 we expanded $\xi(\tau)$ in an orthonormal, complete basis $\phi_n(\tau)$,
\n $\xi(\tau) = \sum_{n=0}^{\infty} c_n \phi_n(\tau)$ such that $\left(-\frac{d^2}{d\tau^2} + V''(x_c) \right) \phi_n = \lambda_n \phi_n$ and the BC's,
\n $\phi_n(-T/2) = \phi_n(T/2) = 0$. This gave us: $S^{(2)} = \frac{1}{2} \sum_{n=0}^{\infty} \lambda_n c_n^2$
\n• With $[d\xi] = \mathcal{N} \prod_{n=0}^{\infty} \frac{1}{\sqrt{2\pi\hbar}} dc_n$ we found: $\int [d\xi] e^{-\frac{1}{\hbar}S^{(2)}} = \mathcal{N} \prod_{n=0}^{\infty} \frac{1}{\sqrt{\lambda_n}}$
\nBut what if some eigenvalue λ_n vanishes? TROUBLE!! = $\frac{\mathcal{N}}{\sqrt{\det S''}}$

The zero mode – a delicate matter to be handled stepwise
 O Step 1: Suppose $x_c(\tau)$ is a solution of the EOM $\frac{d^2}{d\tau^2}x_c(\tau) = V'(x_c(\tau))$.

Then $x_c(\tau - \tau')$ is an equally good solution (time translational invariance).

Step 2:
$$
-\frac{d^2}{d\tau^2} + V''(x_c) \equiv S''
$$
 has $\dot{x}_c(\tau)$ as eigenfunction with zero eigenvalue. Proof: $\left(-\frac{d^2}{d\tau^2} + V''(x_c)\right)\frac{dx_c}{d\tau} = \frac{d}{d\tau}\left(-\frac{d^2x_c}{d\tau^2} + V'(x_c)\right) = 0$ using the EOM. Note that $\dot{x}_c(\tau)$ obeys the correct BC's, i.e. $\dot{x}_c(-T/2) = \dot{x}_c(+T/2) = 0$.

Step 3: The zero mode wavefunction can be properly normalized: $\phi_0(\tau) \equiv C \frac{dx_c}{d\tau}$ where $C = \left[\int_{-T/2}^{T/2} d\tau \left(\frac{dx_c}{d\tau} \right)^2 \right]^{-\frac{1}{2}} = \left[\int_{-a}^{+a} dx \sqrt{2V(x_c)} \right]^{-\frac{1}{2}} = S_1^{-\frac{1}{2}}$

Here S_1 is the single instanton action.

How to assign the proper integration measure to the zero mode - 1
Let's go back to the source of the problem (from lecture #2):

$$
\int [dx] e^{-\frac{1}{\hbar}S^{(2)}} = \mathcal{N} \prod_{n=0}^{\infty} \int_{-\infty}^{\infty} \frac{dc_n}{\sqrt{2\pi\hbar}} e^{-\frac{1}{2\hbar}\lambda_n c_n^2} = \mathcal{N} \prod_{n=0}^{\infty} \frac{1}{\sqrt{\lambda_n}} \quad \text{is no problem} \text{ unless } \lambda_0 = 0
$$

• But if $\lambda_0 = 0$ how to handle this: $\int_{-\infty}^{\infty} \frac{dc_0}{\sqrt{2\pi\hbar}} e^{-0} = \infty$? The infinity owes to a symmetry!

Recall we had earlier expanded about: $x(\tau) = x_c(\tau) + \xi(\tau) = x_c(\tau) + \sum_{n=0}^{\infty} c_n \phi_n(\tau)$

V:

But we can choose the integration variables differently
\n
$$
x(\tau - \tau') = x_c(\tau) + \xi(\tau) = x_c(\tau) + \sum_{n=0}^{\infty} c_n \phi_n(\tau)
$$

Sliding instanton on this path needs no effort

Assigning the proper integration measure to the zero mode - 2
integration variable: $x(\tau-\tau') = x_c(\tau) + \sum_{n=0}^{\infty} c_n \widehat{\phi}_n(\tau)$ and operate with
 $\leftarrow \int^{T/2} d\tau + (\tau) \phi(-\tau') \int^{T/2} d\tau + (\tau) \phi(-\tau') d\tau$ Use, Note: $\int_{-T/2}^{T/2} d\tau \phi_0(\tau) x_c(\tau) = C \int_{-T/2}^{T/2} d\tau \dot{x}_c(\tau) x_c(\tau) = C \int_{-T/2}^{T/2} d\tau \frac{1}{2} \frac{d}{d\tau} x_c^2 = 0$ This gives c_0 for different choices of path, $c_0(\tau') = C \int_{-T/2}^{T/2} d\tau \dot{x}_c(\tau) x(\tau - \tau')$
 $\frac{dc_0(\tau')}{d\tau'} = C \int_{-T/2}^{T/2} d\tau \dot{x}_c(\tau) \frac{d}{d\tau'} x(\tau - \tau') = -C \int_{-T/2}^{T/2} d\tau \dot{x}_c(\tau) \frac{d}{d\tau} x(\tau - \tau')$ $= -C \int_{-\pi/2}^{T/2} d\tau \dot{x}_c(\tau) \dot{x}_c(\tau) + 0 = -S_1^{\frac{1}{2}}$

This, finally, tells us how to replace the integration over $c_0(\tau)$ with integration over all instanton times from $-T/2$ to $T/2$

$$
\frac{dc_0}{\sqrt{2\pi\hbar}} = \sqrt{\frac{S_1}{2\pi\hbar}}d\tau
$$

Now go back and correct all earlier "mistakes"

Including fluctuations, and after integrating over all instanton positions between $-T/2$ and $+T/2$, the correct single instanton amplitude is:

$$
\mathcal{A}_{n=1} = \int [dx] e^{-\frac{1}{\hbar}(S^{(0)} + S^{(2)})} = \mathcal{N}e^{-\frac{1}{\hbar}S_1} \sqrt{\frac{S_1}{2\pi\hbar}} \prod_{n=1}^{\infty} \frac{1}{\sqrt{\lambda_n}} \sqrt{\frac{1}{\det'S'}}
$$
\n
$$
K \sim \text{ratio of the SHO determinant} \quad K \equiv \sqrt{\frac{S_1}{2\pi\hbar}} \frac{\det \left[-\frac{d^2}{d\tau^2} + \omega^2 \right]^{\frac{1}{2}}}{\det' \left[-\frac{d^2}{d\tau^2} + V''(x_c) \right]^{\frac{1}{2}}}
$$
\nwith the zero mode removed\n
$$
\therefore \mathcal{A}_{n=1} = \sqrt{\frac{1}{\det \left[-\frac{d^2}{d\tau^2} + \omega^2 \right]^{\frac{1}{2}}}} \times e^{-\frac{1}{\hbar}S_1} K T \quad \left[= \left(\frac{\omega}{\pi\hbar} \right)^{\frac{1}{2}} e^{-\frac{\omega T}{2}} \times e^{-\frac{1}{\hbar}S_1} K T \right]
$$

$$
= \sqrt{\frac{\omega}{2\pi\hbar \sinh \omega T}} \xrightarrow[T \to \infty]{\frac{\omega}{\pi\hbar}} \left(\frac{\omega}{\pi\hbar}\right)^{\frac{1}{2}} e^{-\frac{\omega T}{2}}
$$
 This second part here will
exponentiate for $n > 1$

Refresher from Lecture#2

Summary of main results so far

After summing over all instanton numbers from 0 to ∞ ,

$$
Z_{LR} \equiv \mathcal{A}_{(-\frac{T}{2}, -a)\to(\frac{T}{2}, a)} = \left(\frac{\omega}{\pi\hbar}\right)^{\frac{1}{2}} e^{-\frac{\omega T}{2}} \sinh\left(e^{-\frac{1}{\hbar}S_1}KT\right)
$$

$$
Z_{LL} \equiv \mathcal{A}_{(-\frac{T}{2}, -a)\to(\frac{T}{2}, -a)} = \left(\frac{\omega}{\pi\hbar}\right)^{\frac{1}{2}} e^{-\frac{\omega T}{2}} \cosh\left(e^{-\frac{1}{\hbar}S_1}KT\right)
$$

In the dilute gas approximation only the single instanton action enters.

$$
S_1 = \int d\tau \left(\frac{1}{2}\dot{x_c}^2 + V(x_c)\right) = \int_{-a}^{+a} dx \sqrt{2V(x)}
$$

$$
\frac{\det \left[-\frac{d^2}{d\tau^2} + \omega^2 \right]^{\frac{1}{2}}}{\det' \left[-\frac{d^2}{d\tau^2} + V''(x_c) \right]^{\frac{1}{2}}} = ?
$$

This is the trickiest part of the calculation. Read Coleman's paper or the prescribed textbook for a proper treatment. We'll return to it in a moment.

Calculation of the energy splitting between lowest two levels - I
We now have expressions for $Z_{LR}(=Z_{RL})$ and $Z_{LL}(=Z_{RR})$.
But all energy eigenstates must have $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ $\langle -a|0\rangle = \langle a|0\rangle, \ \langle -a|1\rangle = -\langle a|1\rangle.$ $Z_{LR} = \langle a|e^{-\frac{HT}{\hbar}}| - a \rangle = \langle a|e^{-\frac{HT}{\hbar}} \left(\sum |n\rangle\langle n| \right)| - a \rangle$
= $e^{-\frac{E_0 T}{\hbar}} \langle a|0\rangle\langle 0| - a \rangle + e^{-\frac{E_1 T}{\hbar}} \langle a|1\rangle\langle 1| - a \rangle + \cdots$ $= e^{-\frac{E_0 T}{\hbar}} |\langle a|0\rangle|^2 - e^{-\frac{E_1 T}{\hbar}} |\langle a|1\rangle|^2 = |\langle a|0\rangle|^2 (e^{-\frac{E_0 T}{\hbar}} - e^{-\frac{E_1 T}{\hbar}})$ Similarly, $Z_{LL} = \langle -a|e^{-\frac{HT}{\hbar}}| - a \rangle = |\langle a|0 \rangle|^2 (e^{-\frac{E_0 T}{\hbar}} + e^{-\frac{E_1 T}{\hbar}})$ $\therefore \frac{Z_{LL}-Z_{LR}}{Z_{LL}+Z_{LR}} = \exp\left[-\frac{(E_1-E_0)T}{\hbar}\right] \rightarrow E_1-E_0 = -\frac{\hbar}{T}\log\frac{Z_{LL}-Z_{LR}}{Z_{LL}+Z_{LR}}$ as

Calculation of the energy splitting between lowest two levels - II

\n
$$
\Delta E = E_1 - E_0 = -\frac{\hbar}{T} \log \frac{Z_{LL} - Z_{LR}}{Z_{LL} + Z_{LR}} \qquad \text{Put, } \Omega = e^{-\frac{1}{\hbar}S_1} K
$$
\nthen
$$
\Delta E = -\frac{\hbar}{T} \log \frac{\cosh \Omega T - \sinh \Omega T}{\cosh \Omega T + \sinh \Omega T}
$$

\n
$$
\frac{1}{T} \rightarrow \infty \qquad -\frac{\hbar}{T} \log \frac{e^{-\Omega T}}{e^{\Omega T}} = 2\hbar \Omega = 2\hbar e^{-\frac{1}{\hbar}S_1} K
$$
\n
$$
\frac{1}{2} \hbar \omega \longrightarrow \frac{1}{2} \hbar \omega - \hbar K e^{-\frac{1}{\hbar}S_1}
$$
\n
$$
\frac{1}{2} \hbar \omega - \hbar K e^{-\frac{1}{\hbar}S_1}
$$

So if we can calculate K the calculation will be complete.

Remarks on evaluation of K

Suppose $W(\tau)$ is an arbitrary potential. The eigenvalue problem is, $\left(-\frac{d^2}{d\tau^2} + W \right) \phi = \lambda \phi$ and $\phi(-T/2) = \phi(T/2) = 0$

 \bullet As λ becomes large W becomes less relevant. This means for two potentials W_1, W_2 the $\lambda'_n s$ will approach each other, $\lim_{n\to\infty}(\lambda_n^1-\lambda_n^2))=0$ $F(\lambda) = \prod_{n=1}^{\infty} \frac{\lambda_n^1 - \lambda}{\lambda_n^2 - \lambda}$ is possibly convergent and well behaved. $\lim_{\lambda\to 0} F(\lambda) = \frac{\det_1}{\det_2}$ $\lim_{\lambda\to\infty}F(\lambda)=1$

More remarks on evaluation of K

Given any $W(\tau)$, for any λ the Cauchy problem is always solvable. Eg: $\left(-\frac{d^2}{d\tau^2}+W\right)\phi_{\lambda}=\lambda\phi_{\lambda}$ and $\phi_{\lambda}(-T/2)=0$ with initial speed $\dot{\phi}_{\lambda}(-T/2)=1$.

- In general the ball will overshoot or $-a$ undershoot. Only when λ equals some λ_n will it reach the other hill top in which case $\phi_{\lambda}(T/2)$ will be zero.
	- Every potential will give the same value for $\phi_{\lambda}(T/2)$ for large enough λ . So you might as well put $W_1 = constant = \omega^2$.

•
$$
F(\lambda) = \prod_{n=1}^{\infty} \frac{\lambda_n^1 - \lambda}{\lambda_n^2 - \lambda}
$$
 and $G(\lambda) = \frac{\phi_{\lambda}^1(T/2)}{\phi_{\lambda}^2(T/2)}$ have poles and zeros at exactly

the same discrete values of λ . They also agree for large $|\lambda|$. Hence they agree everywhere. $(F, G$ are holomorphic functions. Liouville's theorem applies.)

Final remarks on the evaluation of K

Any 2^{nd} order ode like $\left(-\frac{d^2}{d\tau^2}+W\right)\phi=0$ has to have 2 linearly independent solutions. We found one of them, $\phi_0(\tau) \sim \dot{x}(\tau)$. What's the other one?

- If $f(\tau)$, $g(\tau)$ are two independent solutions of a 2^{nd} order ode then the Wronskian, $W = fg' - f'g$ is a constant and non-zero.
- By taking a linear combination $c_1 f(\tau) + c_2 g(\tau)$ we can satisfy the ode as well as the initial conditions, $\phi(-T/2) = 0, \dot{\phi}(-T/2) = 1$.
- After a long song and dance (see references) we find K in terms of V : \angle $\int a$ \Box $\hat{\alpha}$, $\frac{3}{2}$ $1 \quad 7$

$$
K = \frac{a\omega^2}{\sqrt{2\pi\hbar}} \text{ where } \hat{a} = a \exp\left(\int_0^{\infty} dx \left[\frac{\omega}{\sqrt{2V(x)}} - \frac{1}{a-x}\right]\right)
$$

$$
\omega^2 = \frac{d^2V(x)}{dx^2}\Big|_{x=\pm a}
$$

Completing the model calculation

$$
\text{Plug into } \Delta E = 2\hbar^{\frac{1}{2}} e^{-\frac{1}{\hbar}S_1} K \text{ with } K = \frac{\hat{a}\omega^{\frac{3}{2}}}{\sqrt{\pi\hbar}}
$$

$$
\Delta E = 4\sqrt{\frac{\hbar m}{\pi}}a\omega^{\frac{3}{2}}e^{-\frac{2ma^2\omega}{3\hbar}}
$$

 $(m$ restored here through dimensional reasoning)

References

- False vacuum decay: an introductory review, Federica Devoto, Simone Devoto, Luca Di Luzio, Giovanni Ridolfi, J. Phys. G: Nucl. Part. Phys. 49 (2022).
-
- False vacuum decay: an introductory review, Federica Devoto, Simone Devoto,

 Luca Di Luzio, Giovanni Ridolfi, J. Phys. G: Nucl. Part. Phys. 49 (2022).

 The Theory and Applications of Instanton Calculations, Manu Para • Advanced Topics in Quantum Field Theory, M. Shifman, Cambridge University Press (2012). • False vacuum decay: an introductory review, Federica Devoto, Simone Devotuca Di Luzio, Giovanni Ridolfi, J. Phys. G: Nucl. Part. Phys. 49 (2022).
• The Theory and Applications of Instanton Calculations, Manu Paranjape (2
-

