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A quick recapitulation

Symmetric potential

V(-z) = V(z)
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We will find the energy
difference between these

/ two eigenstates.




Our goal in Lecture#3 is to calculate the fluctuation part

b
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classical fluctuation

1 T2 d2
S}%ictuation — 2/ dr () ( T g2 + V”(iUc))'f(T)

—-T/2 d

® In Lecture #2 we expanded £(7) in an orthonormal, complete basis ¢, (7),
2

E(1) = z cn®n(T) such that ( _ + V"(:cc)) brn, = Andyn and the BC’s,
n=0

dT?

= 1 6.9
On(=T/2) = ¢pn(T/2) = 0. This gave us: S = 5 Z Anc
n=0

® With [d{] :NH \/217r—hdcn we found:/[d.ﬁ}e_%s(?) =N H \/;
= n=0 e
N

But what if some eigenvalue \,, vanishes? TROUBLE !! =

:

det S



The zero mode — a delicate matter to be handled stepwise
2

d
® Step 1: Suppose z.(7) is a solution of the EOM ch(ﬂ = V'(z.(1)).

Then x.(7 — 7") is an equally good solution (time translational invariance).

2

® Step 2: — 3t V'(z.) = S" has i.(7) as eigenfunction with zero eigenvalue.
T
d2 dmc d dzxc .
Proof: ( T dr2 + Vl,@c)) = E ( o dr2 + V,($C)) = 0 using the EOM.

Note that &.(7) obeys the correct BC’s, i.e. &.(—T1/2) = 2.(+71/2) = 0.

® Step 3: The zero mode wavefunction can be properly normalized:

T2

T2 21—-1% +a )
Cbo(T)ECCZCC where C' = [/ dT(CZf) ] _ [/ i \/m] 251_5

Here 57 is the single instanton action.



How to assign the proper integration measure to the zero mode - 1

Let’s go back to the source of the problem (from lecture #2)'
n=012--..

2 o0 d n 1 g o=
/[d.fc] i =N H/ c e~ 2 =N H is no problem

'n unless A\g = 0

> dc infini
® But if A = 0 how to handle this: 0 70 = oo 7 lheinhnity owes
27 h to a Symmetry‘

® Recall we had earlier expanded about: z(7) = x.(7)+&(7T +Z CnPn (T
b

But we can choose the integration Variables differently:

3 x(T_T,): ( )+£( +ch¢n

\
~
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Sliding instanton on this
path needs no effort



Assigning the proper integration measure to the zero mode - 2
S

o0
Now use this integration variable: z(7—7") = x.(7 —{—Z cn®n(T) and operate with
n=0
T/2 T/2 Use

T/2
/T/Z e ~/ T/2 drotrier —7) = f—T/2 Argo(T)ze(T) F 0 4 (ry = Ci(r

T/2 T/2 T/2
Note: / drdo(T)xe(7) = C’/ a7 TolTzelr) = C‘/ d'r——scz =0
~T/2 ~T/2 T/2
T /2
This gives ¢ for different choices of path, ¢o(7') = C / drie(T)e(r —7')
T/2
d / T/2 d T /2
CO( ) _ c/ drio(7T)~=z(T — ') = —cf drso(r) (7 — )
T/2 dT —T/Q dT
T/2 1
C/ dric(T)Te(T) +0 = =87
Tl
This, finally, tells us how to replace the
dCU Sl

integration over cy(7) with integration
over all instanton times from —7'/2 to T'/2 2mh




Now go back and correct all earlier “mistakes”

Including fluctuations, and after integrating over all instanton positions
between —7'/2 and +7'/2, the correct single instanton amplitude is:

det’ S”

from zero mode

K ~ ratio of the SHO determinant B Sq det[ - % + wﬂ 2
to that of the actual determinant & = 2l 1 i 72 N 1
with the zero mode removed det [ — gz TV (mc)]

1 % wT 1
-.-Anz].:m Xe—ﬁ&KT _ (w) — T3 XQ—gSlKT
dﬂ—%+@§

_ \/ w N ( W )56_§ This second part here will

2rh sinh wT' o, , 7\ 7h exponentiate for n > 1




Refresher from Lecture#2

T/2 T/2 T/2
| nS_/ d7'1/ d’rz/ dTeﬁl
n =3 T/2
= T/2 T/2
71 T2 T3 =€ 73 / dTlf dTg(— —Tg)
T/2
. T
28_5331—/ dri(= — )2
2 ) g N2
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We can readily generalize to any n, AS = —[e 55" n=1,3,5---

) S 1
Define: Z; p = Z E[TB hsl] = sinh(exp[—ﬁsﬂ T)
nodd



Summary of main results so far

After summing over all instanton numbers from 0 to oo,

W — : _1
ZLR —A( L,—a)=(L,e) — (ﬁ) € smh(e hleT)

L = A(_%,—a)—)(%,—a) — (%) € cosh(e_%leT>

In the dilute gas approximation only the single instanton action enters.

S, = / dr(%afcz—I—V(scc)) _ /_ + dz /2 ()

(][]
)
w’,ﬂ

m|g

72 o1 1 This is the trickiest part of the
2 :
det[ — —,rg- + w ] _ 9 calculation. Read Coleman’s
T aper or the prescribed textbook
d? p
det’ [  dr? + V”(ZBC)] : for a proper treatment. We’ll

return to it 1n a moment.



Calculation of the energy splitting between lowest two levels - |

We now have expressions for Zpr(= Zrr,) and Zpr(= Zgr).

But all energy eigenstates must have
either positive or negative parity:
H|0) = Ey|0) and H|1) = E4]1) :
(=al0) = (a|0), (—a[l) = —(all).

Zir = {ale” " | —a) = (ale~F
= ¢~ % (al0)(0] — a) + e~ F (al1)(1] —a

EnT EqT
=c n [(a|0)]* — e [{a|1)]* = al0
Similarly, Zr, = (—ale” % | —a) = |(a|0)|?
Zrr —ZLr (B1 - E)T
”ZLL‘|‘ZLR_exp[ A ] —|E1 — Eg = —=log




Calculation of the energy splitting between lowest two levels - Il

h
AFE = El — EO = _TIOgZLL n ZLR
cosh Q7T — sinh QT
cosh QT + sinh QT
A —QT

— —Tloge

T — o0 €QT

1
—hw
2) <

41T — ALR

h

then AFE = —Tlog

Put, Q=e 751K

QM) = ke  FSVK

1 1
Shw + hKe w51

1 )
o hw = I

So if we can calculate K the calculation will be complete.



Remarks on evaluation of K

SuppoQSe W (r) is an arbitrary potential. The eigenvalue problem is,
d
(S5 +W)6 =26 and §(~T/2) = §(T/2) =0
® As )\ becomes large W becomes

less relevant. This means for

two potentials Wy, Wy the A\ s
will approach each other,
lim (AL, — A%)) =0

§
=

| : n—oo

i Wi(r) i AL

| i @ F()\):l._)@_)\ is
I n=1 n

possibly convergent and
well behaved.

. det1
. ® — -
; ; Hm FN) = oot

lim F(\) =1

A— 00



More remarks on evaluation of K
Given any W (1), for any A\ the Cauchy problem is always solvable. Eg:

(= == +W)¢r = Apx and ¢x(~T/2) =0 with initial speed ¢x(—T/2) = 1.

® In general the ball will overshoot or
undershoot. Only when A equals some
A, Will it reach the other hill top in
which case ¢, (7/2) will be zero.

® LEvery potential will give the same value

for ¢ (71'/2) for large enough A. So you

might as well put W, = constant = w?.

o8 3l LT /9
® F()\)= 11 i% — :\\ and G(\) = % have poles and zeros at exactly

the same discrete values of A. They also agree for large |A|. Hence they agree
everywhere. (F, G are holomorphic functions. Liouville’s theorem applies.)



Final remarks on the evaluation of K
d2
Any 2™% order ode like (— 72 +W)gb — 0 has to have 2 linearly independent
T
solutions. We found one of them, ¢o(7) ~ @(7). What’s the other one?

® If f(7),g(7) are two independent solutions of a 2"¢ order ode

then the Wronskian, W = f¢’ — f’¢g is a constant and non-zero.

® By taking a linear combination ¢y f(7) + cog(7) we can satisfy the ode

as well as the initial conditions, ¢(—1"/2) = 0,¢(-1/2) = 1.

® After a long song and dance (see references) we find K in terms of V :
3

aw?2 “ W 1
K = where a = a ex / dm[ — ])
V21h p( 0 ZV(;U) a—x




Completing the model calculation

d*V (z)
2 _
YT T 2 e
+a "

Sl :/ dx QV(Qj) — §a2w

. (/a’ [ W 1 ]

@ = a €xp dx _

0 2V(z) a—2
= 2a + O(\/ﬁ)
~ 3

Plug into AF = QH%G_%SlK with K = aw 2
) VTh

2ma2w
AFE = 44/ h—maw%(a_ 3h
T

(m restored here through dimensional reasoning)
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