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Reminder from basic quantum mechanics

H is a hermitian operator if H = H'. Therefore its eigenvalues are
real and states preserve their norm in time. Check: v
Y(t)) = e FD(0) - p(t)|w(t)) = ((0)|eF = yp(0)) = (1(0)]%(0))

=2

But even simple Hamiltonians like 2].; can fail to be hermitian! Let’s see why:
m
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1 True only if the boundary terms

- * A2 L -
B /dil? VoY = <w|H‘w> v vanish i.e. no current leaks out.
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Else E =¢eg —i['/2 and so ¢(t) = w(O)e"%eRte_%t is a decaying state.



Decay of a metastable state
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Decay of a metastable state

inverted potential
seen by instantons
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unstable
vacuuln
Tp(T)
1.,
5T +Vi(xp) =0
> — Tp(r=a)=0
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® Instanton travels from x =0 to £ = a.
® Departure time from 0 is 7 = —7'/2
® Arrival time at a is 7 = 0.

® Instanton returns to x =0 at 7 =1/2.

® The bounce around 7 = 0 happens very
fast. Most time is spent in transit. Why?
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Formally the expanded action is as it was in lecture#2

Scb(T) o~

Stotal = Setassicat T Si,

classical fluctuation
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1 Tb dz y
Sg“%ictuation = 5/ dr &§(7) ( —ostV (fcb))ﬁ(T) The bounce () has,
! m(=3) = m(5) = 0,2(0) = a
1

® Expand — isc'bQ +V(xp) =0 around x =a — Ip = /2V(x) = w(zp — a)

a

® The bounce velocity &(7), by virtue of being a solution of the EOM
must be an eigenfunction of S” with zero eigenvalue,

d2 dib‘b d dzi‘b
Proof: ( ) + V”(fﬂb)) ar  dr ( T2 0y V’(xb)) = 0 using the EOM.

Note: z.(7) obeys the correct BC’s, i.e. a3(—T1/2) = ©(0) = @p(+7/2) = 0.



But now note a crucial difference

i‘b(T)

tp(7) has zero eigenvalue
but it has a node. Hence
there must exist some still
lower eigenfunction that’s
without a node and with
some negative eigenvalue.

T=0

(more nodes in zy(7)

1 .
This is easily seen from here: Séo) = / d7<§afb2 + V(a:b)) means more wiggles,
T
—3

hence more KE and
Our previous analysis fails badly: so a bigger \)

3R AnCn — — but now \g =0 and A_1 <0
11 /- = vas : !

[N

Is / de ¢ = nonsense? Or can it somehow be made meaningful?
— 00



o

overshoot
c>a

® Look at the space of all paths satisfying
x(=T/2) = x(T/2) = 0 on which z(7) takes
its maximum at 7 = 0. Let ¢ = z(7 = 0). We
will parameterize paths by their value of c.

® A definite value of action is associated with
each path, i.e. each value of ¢. The path
which just reaches a extremizes S(c).
dS(c)
dc
® To give meaning to [ dc we shall have

to continue a real integral into the complex
plane, i.e. use analytic continuation.

=0

c=a

® Loss of probability is associated with ¢ > a.
We should therefore expect an imaginary
part in the probability amplitude.




Review of complex variables and integration - 1

® Suppose f(z) = u(z)+iv(z) where f(z) = f(x,y),u(z) = u(z,y),v(z) = v(z,y)
ou  Ov ov ou

Then f'(z) exists if 9 8_y and 3 = _8_y (Cauchy Riemann condition)
0%u  0? 0%v  0*
® If CR holds then 5+ ayZJ =0 and 5+ 8;; — 0. (Check by differentiating. )
® Suppose f'(z9) =0, i.e. if @ = 8_u o @ = (. Then this is an extreme point.

or Oy dr dy
But is it a maximum or minimum? Answer: it can be both! That’s because

if i < 0 (i.e. u has a max along x) then i > (0 (i.e. v has a min along y.)
— €. X — €. :
2 g 812 gY
This is called a saddle point.
® Note from CR, ol 0% + il = Vu-Vv =0 and so contours of constant phase
Ox dxr Oy Oy

are also contours of steepest descent.
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Saddle Point

C .
On A — zp — B, note that zg is the minimum point
On C' — zp — D, note that zg is the maximum point



Review of complex variables and integration - 2

® If f(z) is differentiable in a region it is analytic there. Cauchy’s integral theorem then

holds: f dzf(z) = 0 provided f(z) is analytic inside the region I'. This allows
T

us to deform the integration path if f(z) is analytic inside I'.

> dc
® We are interested in calculating integrals like / — 35 Ac?
— o0 2mh

with A < 0.

® To make sense we go to the complex plane and deform the integration path
as we choose - provided that we avoid all singularities such as poles or branch
cuts. So with a,b complex numbers that we can change at will, consider a
general integral of this kind,

b
1 =/ dz e~ <7 with € small.



Review of complex variables and integration - 3

Expand f(z) about 2¢: f(2) = f(20) + %f”(zo)(z — 20)* with f'(2) = 0.

b b
dz e~ <) = exp {_%f(zo)} fa S ED {_%ef”(z())(z — 20)2}

Now change co?;“dinates: — exp {—lf(zo)} /d'r’ew exp {—%f”(zo)rzezw}
€ €

zZ—2z9=Te

Consider: I = /

a

If f"(zo) is negative rewrite as, f"(z0) = —|f" (20)|

1 . 1 . B
oI = exp {_Ef(zo)} /d'rew exp {2_€|fn(20)|r26229} Choose 0 = 7 /2 for path

of steepest descent.
_ 1 > 1
—iesp {11} [ ar e {1 olr?}
0

D A 2me 1 1 1
_e p{ ef(zo)} 7 (20)] —>| i 3 exp {—7—155} |
\ /
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Now put it all together and move towards the final result

Including fluctuations, and after integrating over all bounce times
between —71'/2 and +71/2, the correct single bounce amplitude is

(1) 1(5(0) 45 _1is, Sb
A 2.05(3.0 f[dx] =g 2rh H

\/_

K ~ ratio of the SHO determinant L | Sy L det[ F + wﬂ :

to.that of the actual detgrmmant /Y 2V 27k VIA=1 det/ [ - d; + V" ()] ?

(minus the zero and negative mode)

Note
AL = N - X e RS KT > - 26_% x ie B KT
det[—j—22+w2]§ T -0 \mh
W % — 2L - 1 nm N — 2ob
Now sum over all bounces: Z(T') = (F@) e 2 ;az T"K"e ™%




The final touches

Recall: Z(T) = (x = 0|e_H_g |z = 0) and insert 1 = Z In)(n
= |60 (0)e™F + |¢1(0)7e” F + -+
EoT
~log(Z(T)) — -8 _
Now look at our hard won result: Z(T) = ( w ) e_%exp [iTKe_%]

mh
2 hw KK _s
log(Z(T)) T_m% _2h T+Z?€ 1" Compare this against
BT (ep—il/2)T 1 sy

5 7 togetE0:§M—iKe_h

2 1
Recall: S :/ d’r(§:15b2 + V(l'b))

a 2 a
arig =2 [ dnd (d‘“) ~2 [ 4o/
0 0

B /_ dry \ dr

~

n|N



The Grand Result

' = AG—B = probability per unit time for
tunneling out of the unstable
vacuuin.

A Sy detS(’)’ ox (_&)
“Vom\aet sy TP\ T h

B = % = %/ dx+/2V (x)
0
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