

Course Outline

Reminder from basic quantum mechanics

 \hat{H} is a hermitian operator if $\hat{H} = \hat{H}^{\dagger}$. Therefore its eigenvalues are real and states preserve their norm in time. Check: $|\psi(t)\rangle = e^{-\frac{i}{\hbar}\hat{H}t}|\psi(0)\rangle$: $\langle\psi(t)|\psi(t)\rangle = \langle\psi(0)|e^{\frac{i}{\hbar}(\hat{H}^{\dagger}-\hat{H})t}|\psi(0)\rangle = \langle\psi(0)|\psi(0)\rangle$ But even simple Hamiltonians like $\frac{\hat{p}^2}{2m}$ can fail to be hermitian! Let's see why:
 $\langle \psi | \hat{H}^{\dagger} | \psi \rangle = \frac{1}{2m} \int dx \, (\hat{p}^2 \psi^*) \psi = -\frac{\hbar^2}{2m} \int dx \, (\frac{d^2}{dx^2} \psi^*) \psi$ $= -\frac{\hbar^2}{2m} \int dx \frac{d}{dx} \left\{ \frac{d\psi^*}{dx} \overline{\psi} - \psi^* \frac{d\overline{\psi}}{dx} \right\} - \frac{\hbar^2}{2m} \int dx \psi^* \frac{d^2}{dx^2} \psi$ $=\frac{1}{2m}\int dx \,\psi^*\hat{p}^2\psi = \langle \psi|\hat{H}|\psi\rangle$ True only if the boundary terms
vanish i.e. no current leaks out. Else $E = \epsilon_R - i\Gamma/2$ and so $\psi(t) = \psi(0)e^{-\frac{i}{\hbar}\epsilon_R t}e^{-\frac{\Gamma}{2\hbar}t}$ is a decaying state.

Decay of a metastable state

Formally the expanded action is as it was in lecture#2

$$
S_{total} = S_{classical}^{(0)} + S_{fluctuation}^{(2)}
$$

\n
$$
S_{classical}^{(0)} \equiv S_b^{(0)} = \int_{-\frac{T}{2}}^{\frac{T}{2}} d\tau \left(\frac{1}{2}\dot{x_b}^2 + V(x_b)\right)
$$

\n
$$
S_{fluctuation}^{(2)} = \frac{1}{2} \int_{\tau_a}^{\tau_b} d\tau \xi(\tau) \left(-\frac{d^2}{d\tau^2} + V''(x_b)\right) \xi(\tau) \text{ The bounce } x_b(\tau) \text{ has,}
$$

\n
$$
x_b(-\frac{T}{2}) = x_b(\frac{T}{2}) = 0, x_b(0) = a
$$

\n• Expand $-\frac{1}{2}\dot{x_b}^2 + V(x_b) = 0$ around $x = a \rightarrow \dot{x_b} \approx \sqrt{2V(x)} = \omega(x_b - a)$

The bounce velocity $\dot{x}_b(\tau)$, by virtue of being a solution of the EOM \bullet must be an eigenfunction of S'' with zero eigenvalue,

Proof:
$$
\left(-\frac{d^2}{d\tau^2} + V''(x_b)\right)\frac{dx_b}{d\tau} = \frac{d}{d\tau}\left(-\frac{d^2x_b}{d\tau^2} + V'(x_b)\right) = 0
$$
 using the EOM.

Note: $\dot{x}_c(\tau)$ obeys the correct BC's, i.e. $\dot{x}_b(-T/2) = \dot{x}_b(0) = \dot{x}_b(+T/2) = 0$.

But now note a crucial difference

• Look at the space of all paths satisfying $x(-T/2) = x(T/2) = 0$ on which $x(\tau)$ takes its maximum at $\tau = 0$. Let $c \equiv x(\tau = 0)$. We will parameterize paths by their value of c .

• A definite value of action is associated with each path, i.e. each value of c . The path which just reaches a extremizes $S(c)$.

$$
\left. \frac{dS(c)}{dc} \right|_{c=a} = 0
$$

- To give meaning to $\int dc$ we shall have to continue a real integral into the complex plane, i.e. use analytic continuation.
- Loss of probability is associated with $c > a$. We should therefore expect an imaginary part in the probability amplitude.

Review of complex variables and integration - 1
\n• Suppose
$$
f(z) = u(z) + iv(z)
$$
 where $f(z) = f(x, y), u(z) = u(x, y), v(z) = v(x, y)$
\nThen $f'(z)$ exists if $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ and $\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$ (Cauchy Riemann condition)
\n• If CR holds then $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ and $\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0$. (Check by differentiating.)
\n• Suppose $f'(z_0) = 0$, i.e. if $\frac{\partial u}{\partial x} = \frac{\partial u}{\partial y} = \frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} = 0$. Then this is an extreme point.
\nBut is it a maximum or minimum? Answer: it can be both! That's because
\nif $\frac{\partial^2 u}{\partial x^2} < 0$ (i.e. *u* has a max along *x*) then $\frac{\partial^2 u}{\partial y^2} > 0$ (i.e. *u* has a min along *y*.)
\nThis is called a saddle point.

• Note from CR,
$$
\frac{\partial u}{\partial x} \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \frac{\partial v}{\partial y} = \nabla u \cdot \nabla v = 0
$$
 and so contours of constant phase are also contours of steepest descent.

On $C-z_0-D$, note that z_0 is the maximum point

- **Review of complex variables and integration 2**
fferentiable in a region it is *analytic* there. Cauchy's integral theorem then
 $dzf(z) = 0$ provided $f(z)$ is analytic inside the region Γ . This allows us to deform the integration path if $f(z)$ is analytic inside Γ .
- We are interested in calculating integrals like $\int_{-\infty}^{\infty} \frac{dc}{\sqrt{2\pi\hbar}} e^{-\frac{1}{2\hbar}\lambda c^2}$ with $\lambda < 0$.
- To make sense we go to the complex plane and deform the integration path as we choose - provided that we avoid all singularities such as poles or branch cuts. So with a, b complex numbers that we can change at will, consider a general integral of this kind,

$$
I = \int_{a}^{b} dz \ e^{-\frac{1}{\epsilon}f(z)} \quad \text{with } \epsilon \text{ small.}
$$

Review of complex variables and integration - 3
\nExpand
$$
f(z)
$$
 about z_0 : $f(z) = f(z_0) + \frac{1}{2}f''(z_0)(z - z_0)^2$ with $f'(z_0) = 0$.
\nConsider: $I = \int_a^b dz \, e^{-\frac{1}{\epsilon}f(z)} = \exp\left\{-\frac{1}{\epsilon}f(z_0)\right\} \int_a^b dz \, \exp\left\{-\frac{1}{2\epsilon}f''(z_0)(z - z_0)^2\right\}$
\nNow change coordinates: $= \exp\left\{-\frac{1}{\epsilon}f(z_0)\right\} \int dre^{i\theta} \exp\left\{-\frac{1}{2\epsilon}f''(z_0)r^2e^{2i\theta}\right\}$
\nIf $f''(z_0)$ is negative rewrite as, $f''(z_0) = -|f''(z_0)|$
\n $\therefore I = \exp\left\{-\frac{1}{\epsilon}f(z_0)\right\} \int dre^{i\theta} \exp\left\{\frac{1}{2\epsilon}|f''(z_0)|r^2e^{i2\theta}\right\}$ Choose $\theta = \pi/2$ for path of steepest descent.
\n $= i \exp\left\{-\frac{1}{\epsilon}f(z_0)\right\} \int_0^\infty dr \, \exp\left\{-\frac{1}{2\epsilon}|f''(z_0)|r^2\right\}$
\n $= i \left\{\frac{1}{2}\exp\left\{-\frac{1}{\epsilon}f(z_0)\right\} \sqrt{\frac{2\pi\epsilon}{|f''(z_0)|}}\right\}$

Now put it all together and move towards the final result

Including fluctuations, and after integrating over all bounce times between $-T/2$ and $+T/2$, the correct single bounce amplitude is:

$$
\mathcal{A}_{(-\frac{T}{2},0)\to(\frac{T}{2},0)}^{(1)} = \int [dx] e^{-\frac{1}{\hbar}(S^{(0)}+S^{(2)})} = \mathcal{N} e^{-\frac{1}{\hbar}S_b} \sqrt{\frac{S_b}{2\pi\hbar}} T \frac{i}{2} \prod_n' \frac{1}{\sqrt{\lambda_n}}
$$

 $K = \frac{1}{2} \sqrt{\frac{S_b}{2\pi\hbar}} \frac{1}{\sqrt{|\lambda_{-1}|}} \frac{\det \left[-\frac{a^2}{d\tau^2} + \omega^2\right]^2}{\det \left[-\frac{d^2}{d\tau^2} + V''(x_c)\right]^{\frac{1}{2}}}$ $K\sim$ ratio of the SHO determinant to that of the actual determinant (minus the zero and negative mode) **Note**

$$
\mathcal{A}^{(1)} = \frac{\mathcal{N}}{\det\left[-\frac{d^2}{d\tau^2} + \omega^2\right]^{\frac{1}{2}}} \times ie^{-\frac{1}{\hbar}S_b}KT \xrightarrow[T \to \infty]{} \left(\frac{\omega}{\pi\hbar}\right)^{\frac{1}{2}} e^{-\frac{\omega T}{2}} \times ie^{-\frac{1}{\hbar}S_b}KT
$$

Now sum over all bounces: $Z(T) = \left(\frac{\omega}{\pi\hbar}\right)^{\frac{1}{2}} e^{-\frac{\omega T}{2}} \sum_{n=0}^{\infty} \frac{1}{n!} i^n T^n K^n e^{-\frac{nS_b}{\hbar}}$
 $Z(T) = \left(\frac{\omega}{\pi\hbar}\right)^{\frac{1}{2}} e^{-\frac{\omega T}{2}} \exp\left[iTK e^{-\frac{S_b}{\hbar}}\right]$ (dilute bounce approximation)

The final touches

Recall:
$$
Z(T) = \langle x = 0 | e^{-\frac{HT}{\hbar}} | x = 0 \rangle \text{ and insert } \hat{\mathbf{1}} = \sum |n\rangle \langle n |
$$

$$
= |\phi_0(0)|^2 e^{-\frac{E_0 T}{\hbar}} + |\phi_1(0)|^2 e^{-\frac{E_1 T}{\hbar}} + \cdots
$$

$$
\therefore \log(Z(T)) \xrightarrow[T \to \infty]{\sim} -\frac{E_0 T}{\hbar}
$$
Now look at our hard won result:
$$
Z(T) = \left(\frac{\omega}{\pi \hbar}\right)^{\frac{1}{2}} e^{-\frac{\omega T}{2}} \exp[iTKe^{-\frac{S_b}{\hbar}}]
$$

$$
\log(Z(T)) \xrightarrow[T \to \infty]{\sim} -\frac{\frac{1}{2}\hbar\omega}{\hbar}T + i\frac{\hbar K}{\hbar}e^{-\frac{S_b}{\hbar}}T \quad \text{Compare this against}
$$

$$
-\frac{E_0 T}{\hbar} = -\frac{(\epsilon_R - i\Gamma/2)T}{\hbar} \text{ to get } E_0 = \frac{1}{2}\hbar\omega - iKe^{-\frac{S_b}{\hbar}}
$$

$$
\text{Recall: } S_b = \int_{-\frac{T}{2}}^{\frac{T}{2}} d\tau \left(\frac{1}{2}\dot{x}_b^2 + V(x_b)\right)
$$

$$
= \int_{-\frac{T}{2}}^{\frac{T}{2}} d\tau \dot{x}_b^2 = 2 \int_0^a dx_b \frac{d\tau}{dx_b} \left(\frac{dx_b}{d\tau}\right)^2 = 2 \int_0^a dx \sqrt{2V(x)}
$$

The Grand Result

$$
\Gamma \equiv A e^{-B} =
$$
probability per unit time for
tunneling out of the unstable
vacuum.

$$
A = \sqrt{\frac{S_b}{2\pi\hbar}} \sqrt{\frac{\det S_0''}{\det S_b''}} \exp\left(-\frac{S_b}{\hbar}\right)
$$

$$
B = \frac{S_b}{\hbar} = \frac{2}{\hbar} \int_0^a dx \sqrt{2V(x)}
$$

References

- False vacuum decay: an introductory review, Federica Devoto, Simone Devoto, Luca Di Luzio, Giovanni Ridolfi, J. Phys. G: Nucl. Part. Phys. 49 (2022).
-
- False vacuum decay: an introductory review, Federica Devoto, Simone Devoto,

Luca Di Luzio, Giovanni Ridolfi, J. Phys. G: Nucl. Part. Phys. 49 (2022).

The Theory and Applications of Instanton Calculations, Manu Para • Advanced Topics in Quantum Field Theory, M. Shifman, Cambridge University Press (2012). • False vacuum decay: an introductory review, Federica Devoto, Simone Devotuca Di Luzio, Giovanni Ridolfi, J. Phys. G: Nucl. Part. Phys. 49 (2022).
• The Theory and Applications of Instanton Calculations, Manu Paranjape (2
-

