
Our everyday experiences and observations involve objects that move at speeds much 
less than the speed of light. Newtonian mechanics was formulated by observing and 

describing the motion of such objects, and this formalism is very successful in describing a 

wide range of phenomena that occur at low speeds. Nonetheless, it fails to describe properly 

the motion of objects whose speeds approach that of light.

 Experimentally, the predictions of Newtonian theory can be tested at high speeds by 

accelerating electrons or other charged particles through a large electric potential dif-

ference. For example, it is possible to accelerate an electron to a speed of 0.99c (where c 

is the speed of light) by using a potential difference of several million volts. According to 

Newtonian mechanics, if the potential difference is increased by a factor of 4, the electron’s 

kinetic energy is four times greater and its speed should double to 1.98c. Experiments show, 

however, that the speed of the electron—as well as the speed of any other object in the Uni-

verse—always remains less than the speed of light, regardless of the size of the accelerating 

voltage. Because it places no upper limit on speed, Newtonian mechanics is contrary to 

modern experimental results and is clearly a limited theory.

 In 1905, at the age of only 26, Einstein published his special theory of relativity. Regard-

ing the theory, Einstein wrote:
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39.1 The Principle of Galilean Relativity 1193

The relativity theory arose from necessity, from serious and deep contradictions in the 

old theory from which there seemed no escape. The strength of the new theory lies in 

the consistency and simplicity with which it solves all these difficulties.1

Although Einstein made many other important contributions to science, the special the-

ory of relativity alone represents one of the greatest intellectual achievements of all time. 

With this theory, experimental observations can be correctly predicted over the range of 

speeds from v 5 0 to speeds approaching the speed of light. At low speeds, Einstein’s theory 

reduces to Newtonian mechanics as a limiting situation. It is important to recognize that 

Einstein was working on electromagnetism when he developed the special theory of relativ-

ity. He was convinced that Maxwell’s equations were correct, and to reconcile them with 

one of his postulates, he was forced into the revolutionary notion of assuming that space 

and time are not absolute.

This chapter gives an introduction to the special theory of relativity, with emphasis on 

some of its predictions. In addition to its well-known and essential role in theoretical phys-

ics, the special theory of relativity has practical applications, including the design of nuclear 

power plants and modern global positioning system (GPS) units. These devices depend on 

relativistic principles for proper design and operation.

39.1 The Principle of Galilean Relativity
To describe a physical event, we must establish a frame of reference. You should 
recall from Chapter 5 that an inertial frame of reference is one in which an object is 
observed to have no acceleration when no forces act on it. Furthermore, any frame 
moving with constant velocity with respect to an inertial frame must also be an 
inertial frame.

There is no absolute inertial reference frame. Therefore, the results of an exper-
iment performed in a vehicle moving with uniform velocity must be identical to the 
results of the same experiment performed in a stationary vehicle. The formal state-
ment of this result is called the principle of Galilean relativity:

The laws of mechanics must be the same in all inertial frames of reference.

Let’s consider an observation that illustrates the equivalence of the laws of mechan-
ics in different inertial frames. The pickup truck in Figure 39.1a moves with a 

39.1

The laws of mechanics must be the same in all inertial frames of reference. Principle of Galilean relativity

1A. Einstein and L. Infield, The Evolution of Physics (New York: Simon and Schuster, 1961).

Figure 39.1  Two observers 
watch the path of a thrown ball 
and obtain different results.a b

The observer in the moving truck 
sees the ball travel in a vertical 
path when thrown upward.

The Earth-based observer sees
the ball’s path as a parabola.
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constant velocity with respect to the ground. If a passenger in the truck throws a 
ball straight up and if air resistance is neglected, the passenger observes that the 
ball moves in a vertical path. The motion of the ball appears to be precisely the 
same as if the ball were thrown by a person at rest on the Earth. The law of univer-
sal gravitation and the equations of motion under constant acceleration are obeyed 
whether the truck is at rest or in uniform motion.

Consider also an observer on the ground as in Figure 39.1b. Both observers agree 
on the laws of physics: the observer in the truck throws a ball straight up, and it 
rises and falls back into his hand according to the particle under constant accelera-
tion model. Do the observers agree on the path of the ball thrown by the observer 
in the truck? The observer on the ground sees the path of the ball as a parabola as 
illustrated in Figure 39.1b, whereas, as mentioned earlier, the observer in the truck 
sees the ball move in a vertical path. Furthermore, according to the observer on the 
ground, the ball has a horizontal component of velocity equal to the velocity of the 
truck, and the horizontal motion of the ball is described by the particle under con-
stant velocity model. Although the two observers disagree on certain aspects of the 
situation, they agree on the validity of Newton’s laws and on the results of applying 
appropriate analysis models that we have learned. This agreement implies that no 
mechanical experiment can detect any difference between the two inertial frames. 
The only thing that can be detected is the relative motion of one frame with respect 
to the other.

Q uick Quiz 39.1  Which observer in Figure 39.1 sees the ball’s correct path? (a) the 
observer in the truck  (b) the observer on the ground  (c) both observers
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Figure 39.2  An event occurs at 
a point P. The event is seen by two 
observers in inertial frames S and 
S9, where S9 moves with a velocity 
vS relative to S.

Suppose some physical phenomenon, which we call an event, occurs and is 
observed by an observer at rest in an inertial reference frame. The wording “in a 
frame” means that the observer is at rest with respect to the origin of that frame. 
The event’s location and time of occurrence can be specified by the four coordi-
nates (x, y, z, t). We would like to be able to transform these coordinates from those 
of an observer in one inertial frame to those of another observer in a frame moving 
with uniform relative velocity compared with the first frame.
 Consider two inertial frames S and S9 (Fig. 39.2). The S9 frame moves with a con-
stant velocity vS along the common x and x 9 axes, where vS is measured relative to S. 
We assume the origins of S and S9 coincide at t 5 0 and an event occurs at point P in 
space at some instant of time. For simplicity, we show the observer O in the S frame 
and the observer O 9 in the S9 frame as blue dots at the origins of their coordinate 
frames in Figure 39.2, but that is not necessary: either observer could be at any 
fixed location in his or her frame. Observer O describes the event with space–time 
coordinates (x, y, z, t), whereas observer O 9 in S9 uses the coordinates (x 9, y 9, z 9, 
t9) to describe the same event. Model the origin of S9 as a particle under constant 
velocity relative to the origin of S. As we see from the geometry in Figure 39.2, the 
relationships among these various coordinates can be written

 x 9 5 x 2 vt   y 9 5 y   z 9 5 z   t 9 5 t (39.1)

These equations are the Galilean space–time transformation equations. Note that 
time is assumed to be the same in both inertial frames. That is, within the frame-
work of classical mechanics, all clocks run at the same rate, regardless of their 
velocity, so the time at which an event occurs for an observer in S is the same as the 
time for the same event in S9. Consequently, the time interval between two succes-
sive events should be the same for both observers. Although this assumption may 
seem obvious, it turns out to be incorrect in situations where v is comparable to the 
speed of light.
 Now suppose a particle moves through a displacement of magnitude dx along 
the x axis in a time interval dt as measured by an observer in S. It follows from Equa-
tions 39.1 that the corresponding displacement dx 9 measured by an observer in S9 is 

Galilean transformation 
 equations
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dx9 5 dx 2 v dt, where frame S9 is moving with speed v in the x direction relative to 
frame S. Because dt 5 dt9, we find that

dx r
dt r

5
dx
dt

2 v

or

 u rx 5 ux 2 v  (39.2)

where ux and u9x are the x components of the velocity of the particle measured by 
observers in S and S9, respectively. (We use the symbol uS rather than vS for particle 
velocity because vS is already used for the relative velocity of two reference frames.) 
Equation 39.2 is the Galilean velocity transformation equation. It is consistent with 
our intuitive notion of time and space as well as with our discussions in Section 4.6. 
As we shall soon see, however, it leads to serious contradictions when applied to 
electromagnetic waves.

Q uick Quiz 39.2  A baseball pitcher with a 90-mi/h fastball throws a ball while 
standing on a railroad flatcar moving at 110 mi/h. The ball is thrown in the 
same direction as that of the velocity of the train. If you apply the Galilean veloc-
ity transformation equation to this situation, is the speed of the ball relative to 
the Earth (a) 90 mi/h, (b) 110 mi/h, (c) 20 mi/h, (d) 200 mi/h, or (e) impossible 
to determine?

The Speed of Light
It is quite natural to ask whether the principle of Galilean relativity also applies 
to electricity, magnetism, and optics. Experiments indicate that the answer is no. 
Recall from Chapter 34 that Maxwell showed that the speed of light in free space is 
c 5 3.00 3 108 m/s. Physicists of the late 1800s thought light waves move through a 
medium called the ether and the speed of light is c only in a special, absolute frame 
at rest with respect to the ether. The Galilean velocity transformation equation was 
expected to hold for observations of light made by an observer in any frame moving 
at speed v relative to the absolute ether frame. That is, if light travels along the x 
axis and an observer moves with velocity vS along the x axis, the observer measures 
the light to have speed c 6 v, depending on the directions of travel of the observer 
and the light.
 Because the existence of a preferred, absolute ether frame would show that light 
is similar to other classical waves and that Newtonian ideas of an absolute frame 
are true, considerable importance was attached to establishing the existence of the 
ether frame. Prior to the late 1800s, experiments involving light traveling in media 
moving at the highest laboratory speeds attainable at that time were not capable of 
detecting differences as small as that between c and c 6 v. Starting in about 1880, 
scientists decided to use the Earth as the moving frame in an attempt to improve 
their chances of detecting these small changes in the speed of light.
 Observers fixed on the Earth can take the view that they are stationary and that 
the absolute ether frame containing the medium for light propagation moves past 
them with speed v. Determining the speed of light under these circumstances is 
similar to determining the speed of an aircraft traveling in a moving air current, 
or wind; consequently, we speak of an “ether wind” blowing through our apparatus 
fixed to the Earth.
 A direct method for detecting an ether wind would use an apparatus fixed to the 
Earth to measure the ether wind’s influence on the speed of light. If v is the speed 
of the ether relative to the Earth, light should have its maximum speed c 1 v when 
propagating downwind as in Figure 39.3a. Likewise, the speed of light should have 
its minimum value c 2 v when the light is propagating upwind as in Figure 39.3b 
and an intermediate value (c 2 2 v 2)1/2 when the light is directed such that it travels 
perpendicular to the ether wind as in Figure 39.3c. In this latter case, the vector cS

Q

Pitfall Prevention 39.1
The Relationship Between the 
S and S9 Frames Many of the 
mathematical representations in 
this chapter are true only for the 
specified relationship between the 
S and S9 frames. The x and x9 axes 
coincide, except their origins are 
different. The y and y9 axes (and 
the z and z9 axes) are parallel, but 
they only coincide at one instant 
due to the time-varying position 
of the origin of S9 with respect to 
that of S. We choose the time t 5 0 
to be the instant at which the ori-
gins of the two coordinate systems 
coincide. If the S9 frame is moving 
in the positive x direction relative 
to S, then v is positive; otherwise, 
it is negative.
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Figure 39.3  If the velocity of the 
ether wind relative to the Earth 
is vS and the velocity of light rela-
tive to the ether is cS, the speed of 
light relative to the Earth depends 
on the direction of the Earth’s 
velocity.
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must be aimed upstream so that the resultant velocity is perpendicular to the wind, 
like the boat in Figure 4.21b. If the Sun is assumed to be at rest in the ether, the 
velocity of the ether wind would be equal to the orbital velocity of the Earth around 
the Sun, which has a magnitude of approximately 30 km/s or 3 3 104 m/s. Because 
c 5 3 3 108 m/s, it is necessary to detect a change in speed of approximately 1 part 
in 104 for measurements in the upwind or downwind directions. Although such 
a change is experimentally measurable, all attempts to detect such changes and 
establish the existence of the ether wind (and hence the absolute frame) proved 
futile! We shall discuss the classic experimental search for the ether in Section 39.2.
 The principle of Galilean relativity refers only to the laws of mechanics. If it is 
assumed the laws of electricity and magnetism are the same in all inertial frames, a 
paradox concerning the speed of light immediately arises. That can be understood 
by recognizing that Maxwell’s equations imply that the speed of light always has the 
fixed value 3.00 3 108 m/s in all inertial frames, a result in direct contradiction to 
what is expected based on the Galilean velocity transformation equation. According 
to Galilean relativity, the speed of light should not be the same in all inertial frames.
 To resolve this contradiction in theories, we must conclude that either (1) the laws 
of electricity and magnetism are not the same in all inertial frames or (2) the Galilean 
velocity transformation equation is incorrect. If we assume the first alternative, a pre-
ferred reference frame in which the speed of light has the value c must exist and the 
measured speed must be greater or less than this value in any other reference frame, 
in accordance with the Galilean velocity transformation equation. If we assume the 
second alternative, we must abandon the notions of absolute time and absolute length 
that form the basis of the Galilean space–time transformation equations.

39.2 The Michelson–Morley Experiment
The most famous experiment designed to detect small changes in the speed of light 
was first performed in 1881 by A. A. Michelson (see Section 37.6) and later repeated 
under various conditions by Michelson and Edward W. Morley (1838–1923). As we 
shall see, the outcome of the experiment contradicted the ether hypothesis.

The experiment was designed to determine the velocity of the Earth relative 
to that of the hypothetical ether. The experimental tool used was the Michelson 
interferometer, which was discussed in Section 37.6 and is shown again in Figure 
39.4. Arm 2 is aligned along the direction of the Earth’s motion through space. 
The Earth moving through the ether at speed v is equivalent to the ether flowing 
past the Earth in the opposite direction with speed v. This ether wind blowing in 
the direction opposite the direction of the Earth’s motion should cause the speed 
of light measured in the Earth frame to be c 2 v as the light approaches mirror M2
and c 1 v after reflection, where c is the speed of light in the ether frame.

The two light beams reflect from M1 and M2 and recombine, and an interference 
pattern is formed as discussed in Section 37.6. The interference pattern is then 
observed while the interferometer is rotated through an angle of 90°. This rotation 
interchanges the speed of the ether wind between the arms of the interferometer. 
The rotation should cause the fringe pattern to shift slightly but measurably. Mea-
surements failed, however, to show any change in the interference pattern! The 
Michelson–Morley experiment was repeated at different times of the year when the 
ether wind was expected to change direction and magnitude, but the results were 
always the same: no fringe shift of the magnitude required was ever observed.2

The negative results of the Michelson–Morley experiment not only contradicted 
the ether hypothesis, but also showed that it is impossible to measure the absolute 

39.2

2From an Earth-based observer’s point of view, changes in the Earth’s speed and direction of motion in the course 
of a year are viewed as ether wind shifts. Even if the speed of the Earth with respect to the ether were zero at some 
time, six months later the speed of the Earth would be 60 km/s with respect to the ether and as a result a fringe shift 
should be noticed. No shift has ever been observed, however.

According to the ether wind 
theory, the speed of light should 
be c � v as the beam approaches 
mirror M2 and c � v after 
reflection.

M0 M2

M1

Arm 1

Arm 2

Ether wind

Telescope

Light
source

vS

Figure 39.4 A Michelson inter-
ferometer is used in an attempt to 
detect the ether wind.
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velocity of the Earth with respect to the ether frame. Einstein, however, offered a pos-
tulate for his special theory of relativity that places quite a different interpretation on 
these null results. In later years, when more was known about the nature of light, the 
idea of an ether that permeates all of space was abandoned. Light is now understood 
to be an electromagnetic wave, which requires no medium for its propagation. As a 
result, the idea of an ether in which these waves travel became unnecessary.

Details of the Michelson–Morley Experiment
To understand the outcome of the Michelson–Morley experiment, let’s assume the 
two arms of the interferometer in Figure 39.4 are of equal length L. We shall analyze 
the situation as if there were an ether wind because that is what Michelson and Mor-
ley expected to find. As noted above, the speed of the light beam along arm 2 should 
be c 2 v as the beam approaches M2 and c 1 v after the beam is reflected. We model 
a pulse of light as a particle under constant speed. Therefore, the time interval for 
travel to the right for the pulse is Dt 5 L/(c 2 v) and the time interval for travel to 
the left is Dt 5 L/(c 1 v). The total time interval for the round trip along arm 2 is

Dt arm 2 5
L

c 1 v
1

L
c 2 v

5
2Lc

c 2 2 v2 5
2L
c a1 2

v 2

c 2 b21

 Now consider the light beam traveling along arm 1, perpendicular to the ether 
wind. Because the speed of the beam relative to the Earth is (c 2 2 v 2)1/2 in this 
case (see Fig. 39.3c), the time interval for travel for each half of the trip is Dt 5  
L/(c 2 2 v 2)1/2 and the total time interval for the round trip is

Dt arm 1 5
2L1c 2 2 v2 21/2 5

2L
c a1 2

v2

c 2b21/2

The time difference Dt between the horizontal round trip (arm 2) and the vertical 
round trip (arm 1) is

Dt 5 Dt arm 2 2 Dt arm 1 5
2L
c c a1 2

v2

c 2b21

2 a1 2
v2

c 2b21/2 d
Because v 2/c 2 ,, 1, we can simplify this expression by using the following bino-
mial expansion after dropping all terms higher than second order:

(1 2 x)n < 1 2 nx    (for x ,, 1)

In our case, x 5 v 2/c 2, and we find that

 Dt 5 Dt arm 2 2 Dt arm 1 <
Lv2

c 3  (39.3)

 This time difference between the two instants at which the reflected beams 
arrive at the viewing telescope gives rise to a phase difference between the beams, 
producing an interference pattern when they combine at the position of the tele-
scope. A shift in the interference pattern should be detected when the interferom-
eter is rotated through 90° in a horizontal plane so that the two beams exchange 
roles. This rotation results in a time difference twice that given by Equation 39.3. 
Therefore, the path difference that corresponds to this time difference is

Dd 5 c 12 Dt 2 5
2Lv2

c 2

Because a change in path length of one wavelength corresponds to a shift of one 
fringe, the corresponding fringe shift is equal to this path difference divided by the 
wavelength of the light:

 Shift 5
2Lv2

lc 2  (39.4)
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In the experiments by Michelson and Morley, each light beam was reflected by 
mirrors many times to give an effective path length L of approximately 11 m. Using 
this value, taking v to be equal to 3.0 3 104 m/s (the speed of the Earth around the 
Sun), and using 500 nm for the wavelength of the light, we expect a fringe shift of

Shift 5
2 111 m 2 13.0 3 104 m/s 2215.0 3 1027 m 2 13.0 3 108 m/s 22 5 0.44

The instrument used by Michelson and Morley could detect shifts as small as 0.01 
fringe, but it detected no shift whatsoever in the fringe pattern! The experiment has 
been repeated many times since by different scientists under a wide variety of condi-
tions, and no fringe shift has ever been detected. Therefore, it was concluded that 
the motion of the Earth with respect to the postulated ether cannot be detected.
 Many efforts were made to explain the null results of the Michelson–Morley 
experiment and to save the ether frame concept and the Galilean velocity trans-
formation equation for light. All proposals resulting from these efforts have been 
shown to be wrong. No experiment in the history of physics received such valiant 
efforts to explain the absence of an expected result as did the Michelson–Morley 
experiment. The stage was set for Einstein, who solved the problem in 1905 with his 
special theory of relativity.

39.3 Einstein’s Principle of Relativity
In the previous section, we noted the impossibility of measuring the speed of the 
ether with respect to the Earth and the failure of the Galilean velocity transforma-
tion equation in the case of light. Einstein proposed a theory that boldly removed 
these difficulties and at the same time completely altered our notion of space and 
time.3 He based his special theory of relativity on two postulates:

 1. The principle of relativity: The laws of physics must be the same in all iner-
tial reference frames.

 2. The constancy of the speed of light: The speed of light in vacuum has the 
same value, c 5 3.00 3 108 m/s, in all inertial frames, regardless of the 
velocity of the observer or the velocity of the source emitting the light.

 The first postulate asserts that all the laws of physics—those dealing with 
mechanics, electricity and magnetism, optics, thermodynamics, and so on—are the 
same in all reference frames moving with constant velocity relative to one another. 
This postulate is a generalization of the principle of Galilean relativity, which refers 
only to the laws of mechanics. From an experimental point of view, Einstein’s prin-
ciple of relativity means that any kind of experiment (measuring the speed of light, 
for example) performed in a laboratory at rest must give the same result when per-
formed in a laboratory moving at a constant velocity with respect to the first one. 
Hence, no preferred inertial reference frame exists, and it is impossible to detect 
absolute motion.
 Note that postulate 2 is required by postulate 1: if the speed of light were not the 
same in all inertial frames, measurements of different speeds would make it pos-
sible to distinguish between inertial frames. As a result, a preferred, absolute frame 
could be identified, in contradiction to postulate 1.
 Although the Michelson–Morley experiment was performed before Einstein 
published his work on relativity, it is not clear whether or not Einstein was aware 
of the details of the experiment. Nonetheless, the null result of the experiment 
can be readily understood within the framework of Einstein’s theory. According to 

39.3

1. The principle of relativity: The laws of physics must be the same in all iner-
tial reference frames.

2. The constancy of the speed of light: The speed of light in vacuum has the
same value, c 5 3.00 3 108 m/s, in all inertial frames, regardless of the
velocity of the observer or the velocity of the source emitting the light.

3A. Einstein, “On the Electrodynamics of Moving Bodies,” Ann. Physik 17:891, 1905. For an English translation of this 
article and other publications by Einstein, see the book by H. Lorentz, A. Einstein, H. Minkowski, and H. Weyl, The 
Principle of Relativity (New York: Dover, 1958).

Albert Einstein
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theory of relativity.
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the development of quantum mechan-

ics in the 1920s despite his own role as 

a scientific revolutionary. In particular, 

he could never accept the probabilistic 

view of events in nature that is a cen-
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to an unsuccessful search for a unified 
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his principle of relativity, the premises of the Michelson–Morley experiment were 
incorrect. In the process of trying to explain the expected results, we stated that 
when light traveled against the ether wind, its speed was c 2 v, in accordance with 
the Galilean velocity transformation equation. If the state of motion of the observer 
or of the source has no influence on the value found for the speed of light, how-
ever, one always measures the value to be c. Likewise, the light makes the return 
trip after reflection from the mirror at speed c, not at speed c 1 v. Therefore, the 
motion of the Earth does not influence the interference pattern observed in the 
Michelson–Morley experiment, and a null result should be expected.

If we accept Einstein’s theory of relativity, we must conclude that relative motion 
is unimportant when measuring the speed of light. At the same time, we must alter 
our commonsense notion of space and time and be prepared for some surprising 
consequences. As you read the pages ahead, keep in mind that our commonsense 
ideas are based on a lifetime of everyday experiences and not on observations of 
objects moving at hundreds of thousands of kilometers per second. Therefore, these 
results may seem strange, but that is only because we have no experience with them.

39.4 Consequences of the Special Theory  
of Relativity

As we examine some of the consequences of relativity in this section, we restrict 
our discussion to the concepts of simultaneity, time intervals, and lengths, all three 
of which are quite different in relativistic mechanics from what they are in Newto-
nian mechanics. In relativistic mechanics, for example, the distance between two 
points and the time interval between two events depend on the frame of reference 
in which they are measured.

Simultaneity and the Relativity of Time
A basic premise of Newtonian mechanics is that a universal time scale exists that is 
the same for all observers. Newton and his followers took simultaneity for granted. 
In his special theory of relativity, Einstein abandoned this assumption.

Einstein devised the following thought experiment to illustrate this point. A box-
car moves with uniform velocity, and two bolts of lightning strike its ends as illus-
trated in Figure 39.5a, leaving marks on the boxcar and on the ground. The marks 
on the boxcar are labeled A9 and B 9, and those on the ground are labeled A and B.
An observer O 9 moving with the boxcar is midway between A9 and B 9, and a ground 
observer O is midway between A and B. The events recorded by the observers are 
the striking of the boxcar by the two lightning bolts.

The light signals emitted from A and B at the instant at which the two bolts strike 
later reach observer O at the same time as indicated in Figure 39.5b. This observer 

39.4

vS vS

The events appear to be 
simultaneous to the stationary 
observer O who is standing 
midway between A and B.

The events do not appear to be 
simultaneous to observer O�, 
who claims that the front of the 
car is struck before the rear.

A� B�

OA B

O�
A� B�

OA B

O�

a b

Figure 39.5  (a) Two lightning 
bolts strike the ends of a moving 
boxcar. (b) The leftward-traveling 
light signal has already passed O9, 
but the rightward-traveling signal 
has not yet reached O9.
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realizes that the signals traveled at the same speed over equal distances and so con-
cludes that the events at A and B occurred simultaneously. Now consider the same 
events as viewed by observer O 9. By the time the signals have reached observer O, 
observer O 9 has moved as indicated in Figure 39.5b. Therefore, the signal from 
B 9 has already swept past O 9, but the signal from A9 has not yet reached O 9. In 
other words, O 9 sees the signal from B 9 before seeing the signal from A9. Accord-
ing to Einstein, the two observers must find that light travels at the same speed. Therefore, 
observer O 9 concludes that one lightning bolt strikes the front of the boxcar before 
the other one strikes the back.
 This thought experiment clearly demonstrates that the two events that appear 
to be simultaneous to observer O do not appear to be simultaneous to observer O 9. 
Simultaneity is not an absolute concept but rather one that depends on the state 
of motion of the observer. Einstein’s thought experiment demonstrates that two 
observers can disagree on the simultaneity of two events. This disagreement, how-
ever, depends on the transit time of light to the observers and therefore does not 
demonstrate the deeper meaning of relativity. In relativistic analyses of high-speed 
situations, simultaneity is relative even when the transit time is subtracted out. In 
fact, in all the relativistic effects we discuss, we ignore differences caused by the 
transit time of light to the observers.

Time Dilation
To illustrate that observers in different inertial frames can measure different time 
intervals between a pair of events, consider a vehicle moving to the right with a 
speed v such as the boxcar shown in Figure 39.6a. A mirror is fixed to the ceiling 
of the vehicle, and observer O 9 at rest in the frame attached to the vehicle holds a 
flashlight a distance d below the mirror. At some instant, the flashlight emits a pulse 
of light directed toward the mirror (event 1), and at some later time after reflecting 
from the mirror, the pulse arrives back at the flashlight (event 2). Observer O 9 car-
ries a clock and uses it to measure the time interval Dtp between these two events. 
(The subscript p stands for proper, as we shall see in a moment.) We model the pulse 
of light as a particle under constant speed. Because the light pulse has a speed c, 
the time interval required for the pulse to travel from O 9 to the mirror and back is

 Dtp 5
distance traveled

speed
5

2d
c

 (39.5)

a

Observer O � 
sees the light 
pulse move up 
and down 
vertically a total 
distance of 2d.

vS

d d

Observer O  sees the light pulse move 
on a diagonal path and measures a 
distance of travel greater than 2d.

vS

O

v Δt

c

v �t
2

b

c �t
2

O � O � O � O �

x �

y �

Mirror

Figure 39.6 (a) A mirror is fixed to a moving vehicle, and a light pulse is sent out by observer O9 at 
rest in the vehicle. (b) Relative to a stationary observer O standing alongside the vehicle, the mirror 
and O9 move with a speed v. (c) The right triangle for calculating the relationship between Dt and Dtp.

Pitfall Prevention 39.2
Who’s Right? You might wonder 
which observer in Figure 39.5 
is correct concerning the two 
lightning strikes. Both are correct 
because the principle of relativ-
ity states that there is no preferred 
inertial frame of reference. Although 
the two observers reach differ-
ent conclusions, both are correct 
in their own reference frame 
because the concept of simultane-
ity is not absolute. That, in fact, 
is the central point of relativity: 
any uniformly moving frame of 
reference can be used to describe 
events and do physics.
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Now consider the same pair of events as viewed by observer O in a second frame at 
rest with respect to the ground as shown in Figure 39.6b. According to this observer, 
the mirror and the flashlight are moving to the right with a speed v, and as a result, 
the sequence of events appears entirely different. By the time the light from the 
flashlight reaches the mirror, the mirror has moved to the right a distance v Dt/2, 
where Dt is the time interval required for the light to travel from O9 to the mirror 
and back to O9 as measured by O. Observer O concludes that because of the motion 
of the vehicle, if the light is to hit the mirror, it must leave the flashlight at an angle 
with respect to the vertical direction. Comparing Figure 39.6a with Figure 39.6b, we 
see that the light must travel farther in part (b) than in part (a). (Notice that neither 
observer “knows” that he or she is moving. Each is at rest in his or her own inertial 
frame.)

According to the second postulate of the special theory of relativity, both observ-
ers must measure c for the speed of light. Because the light travels farther accord-
ing to O, the time interval Dt measured by O is longer than the time interval Dtp
measured by O 9. To obtain a relationship between these two time intervals, let’s use 
the right triangle shown in Figure 39.6c. The Pythagorean theorem gives

ac Dt
2
b2

5 av Dt
2
b2

1 d2

Solving for Dt gives

Dt 5
2d

"c 2 2 v2
5

2d

c Å1 2
v2

c2

 (39.6)

Because Dtp 5 2d/c, we can express this result as

 Dt 5
Dtp

Å1 2
v2

c 2

5 g Dtp  (39.7)

where

 g 5
1

Å1 2
v2

c 2

 (39.8)

Because g is always greater than unity, Equation 39.7 shows that the time interval 
Dt measured by an observer moving with respect to a clock is longer than the time 
interval Dtp measured by an observer at rest with respect to the clock. This effect is 
known as time dilation.

 Time dilation is not observed in our everyday lives, which can be understood by 
considering the factor g. This factor deviates significantly from a value of 1 only for 
very high speeds as shown in Figure 39.7 and Table 39.1. For example, for a speed 
of 0.1c, the value of g is 1.005. Therefore, there is a time dilation of only 0.5% at  

Dt 5
Dtpt

Å1 2
v2

c 2Å
5 g Dtpt Time dilation

g 5
1

Å1 2
v2

c 2Å

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

10

15

20

5

1 v (108 m/s)

g

Figure 39.7  Graph of g versus 
v. As the speed approaches that of 
light, g increases rapidly.

Table 39.1 Approximate 

Values for g at Various 

Speeds
v/c g

0 1
0.001 0 1.000 000 5
0.010 1.000 05
0.10 1.005
0.20 1.021
0.30 1.048
0.40 1.091
0.50 1.155
0.60 1.250
0.70 1.400
0.80 1.667
0.90 2.294
0.92 2.552
0.94 2.931
0.96 3.571
0.98 5.025
0.99 7.089
0.995 10.01
0.999 22.37
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one-tenth the speed of light. Speeds encountered on an everyday basis are far 
slower than 0.1c, so we do not experience time dilation in normal situations.

The time interval Dtp in Equations 39.5 and 39.7 is called the proper time inter-

val. (Einstein used the German term Eigenzeit, which means “own-time.”) In gen-
eral, the proper time interval is the time interval between two events measured by 
an observer who sees the events occur at the same point in space.
 If a clock is moving with respect to you, the time interval between ticks of the 
moving clock is observed to be longer than the time interval between ticks of an 
identical clock in your reference frame. Therefore, it is often said that a moving 
clock is measured to run more slowly than a clock in your reference frame by a fac-
tor g. We can generalize this result by stating that all physical processes, including 
mechanical, chemical, and biological ones, are measured to slow down when those 
processes occur in a frame moving with respect to the observer. For example, the 
heartbeat of an astronaut moving through space keeps time with a clock inside the 
spacecraft. Both the astronaut’s clock and heartbeat are measured to slow down 
relative to a clock back on the Earth (although the astronaut would have no sensa-
tion of life slowing down in the spacecraft).

Q uick Quiz 39.3  Suppose the observer O9 on the train in Figure 39.6 aims her 
flashlight at the far wall of the boxcar and turns it on and off, sending a pulse 
of light toward the far wall. Both O9 and O measure the time interval between 
when the pulse leaves the flashlight and when it hits the far wall. Which observer 
measures the proper time interval between these two events? (a) O9 (b) O  
(c) both observers (d) neither observer

Q uick Quiz 39.4  A crew on a spacecraft watches a movie that is two hours long. 
The spacecraft is moving at high speed through space. Does an Earth-based 
observer watching the movie screen on the spacecraft through a powerful tele-
scope measure the duration of the movie to be (a) longer than, (b) shorter than, 
or (c) equal to two hours?

 Time dilation is a very real phenomenon that has been verified by various exper-
iments involving natural clocks. One experiment reported by J. C. Hafele and R. E. 
Keating provided direct evidence of time dilation.4 Time intervals measured with 
four cesium atomic clocks in jet flight were compared with time intervals measured 
by Earth-based reference atomic clocks. To compare these results with theory, 
many factors had to be considered, including periods of speeding up and slowing 
down relative to the Earth, variations in direction of travel, and the weaker gravi-
tational field experienced by the flying clocks than that experienced by the Earth-
based clock. The results were in good agreement with the predictions of the special 
theory of relativity and were explained in terms of the relative motion between the 
Earth and the jet aircraft. In their paper, Hafele and Keating stated that “relative 
to the atomic time scale of the U.S. Naval Observatory, the flying clocks lost 59 6 
10 ns during the eastward trip and gained 273 6 7 ns during the westward trip.”
 Another interesting example of time dilation involves the observation of muons, 
unstable elementary particles that have a charge equal to that of the electron and 
a mass 207 times that of the electron. Muons can be produced by the collision of 
cosmic radiation with atoms high in the atmosphere. Slow-moving muons in the 
laboratory have a lifetime that is measured to be the proper time interval Dtp 5  
2.2 ms. If we take 2.2 ms as the average lifetime of a muon and assume that muons 
created by cosmic radiation have a speed close to the speed of light, we find that 
these particles can travel a distance of approximately (3.0 3 108 m/s)(2.2 3 1026 s) <  
6.6 3 102 m before they decay (Fig. 39.8a). Hence, they are unlikely to reach the 

Q

Q
Pitfall Prevention 39.3
The Proper Time Interval It is 
very important in relativistic 
calculations to correctly identify 
the observer who measures the 
proper time interval. The proper 
time interval between two events 
is always the time interval mea-
sured by an observer for whom 
the two events take place at the 
same position.

4J. C. Hafele and R. E. Keating, “Around the World Atomic Clocks: Relativistic Time Gains Observed,” Science 177:168, 
1972.
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surface of the Earth from high in the atmosphere where they are produced. Experi-
ments show, however, that a large number of muons do reach the surface. The phe-
nomenon of time dilation explains this effect. As measured by an observer on the 
Earth, the muons have a dilated lifetime equal to g Dtp. For example, for v 5 0.99c, 
g < 7.1, and g Dtp < 16 ms. Hence, the average distance traveled by the muons 
in this time interval as measured by an observer on the Earth is approximately  
(0.99)(3.0 3 108 m/s)(16 3 1026 s) < 4.8 3 103 m as indicated in Figure 39.8b.
 In 1976, at the laboratory of the European Council for Nuclear Research 
(CERN) in Geneva, muons injected into a large storage ring reached speeds of 
approximately 0.999 4c. Electrons produced by the decaying muons were detected 
by counters around the ring, enabling scientists to measure the decay rate and 
hence the muon lifetime. The lifetime of the moving muons was measured to be 
approximately 30 times as long as that of the stationary muon, in agreement with 
the prediction of relativity to within two parts in a thousand.

� 4.8 � 103 m

� 6.6 � 102 m

Muon is created Muon is created

Muon decays

Muon decays

Without relativistic considerations, according to 
an observer on the Earth, muons created in the 
atmosphere and traveling downward with a speed 
close to c travel only about 6.6 � 102 m before 
decaying with an average lifetime of 2.2 ms. 
Therefore, very few muons would reach the 
surface of the Earth.

With relativistic considerations, the muon’s 
lifetime is dilated according to an observer 
on the Earth. Hence, according to this 
observer, the muon can travel about
4.8 � 103 m before decaying. The result is 
many of them arriving at the surface.

a b

Figure 39.8  Travel of muons 
according to an Earth-based 
observer.

Example 39.1   What Is the Period of the Pendulum?

The period of a pendulum is measured to be 3.00 s in the reference frame of the pendulum. What is the period when 
measured by an observer moving at a speed of 0.960c relative to the pendulum?

Conceptualize  Let’s change frames of reference. Instead of the observer moving at 0.960c, we can take the equivalent 
point of view that the observer is at rest and the pendulum is moving at 0.960c past the stationary observer. Hence, the 
pendulum is an example of a clock moving at high speed with respect to an observer.

Categorize  Based on the Conceptualize step, we can categorize this example as a substitution problem involving rela-
tivistic time dilation.

The proper time interval, measured in the rest frame of the pendulum, is Dtp 5 3.00 s.

S O L U T I O N

Use Equation 39.7 to find the dilated time interval: Dt 5 g Dtp 5
1

Å1 2
10.960c 22

c 2

 Dtp 5
1

"1 2 0.921 6
 Dtp

5 3.57(3.00 s) 5 10.7 s continued
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This result shows that a moving pendulum is indeed measured to take longer to complete a period than a pendulum at 
rest does. The period increases by a factor of g 5 3.57.

What if the speed of the observer increases by 4.00%? Does the dilated time interval increase by 4.00%?

Answer  Based on the highly nonlinear behavior of g as a function of v in Figure 39.7, we would guess that the increase 
in Dt would be different from 4.00%.

WHAT IF ?

Perform the time dilation calculation again: Dt 5 g Dtp 5
1

Å1 2
10.998 4c 22

c 2

 Dtp 5
1

"1 2 0.996 8
 Dtp

5 17.68(3.00 s) 5 53.1 s

Find the new speed if it increases by 4.00%: vnew 5 (1.040 0)(0.960c) 5 0.998 4c

Therefore, the 4.00% increase in speed results in almost a 400% increase in the dilated time!

Example 39.2   How Long Was Your Trip?

Suppose you are driving your car on a business trip and are traveling at 30 m/s. Your boss, who is waiting at your desti-
nation, expects the trip to take 5.0 h. When you arrive late, your excuse is that the clock in your car registered the pas-
sage of 5.0 h but that you were driving fast and so your clock ran more slowly than the clock in your boss’s office. If your 
car clock actually did indicate a 5.0-h trip, how much time passed on your boss’s clock, which was at rest on the Earth?

Conceptualize  The observer is your boss standing stationary on the Earth. The clock is in your car, moving at 30 m/s 
with respect to your boss.

Categorize  The low speed of 30 m/s suggests we might categorize this problem as one in which we use classical con-
cepts and equations. Based on the problem statement that the moving clock runs more slowly than a stationary clock, 
however, we categorize this problem as one involving time dilation.

Analyze  The proper time interval, measured in the rest frame of the car, is Dtp 5 5.0 h.

S O L U T I O N

Use Equation 39.8 to evaluate g: g 5
1

Å1 2
v2

c 2

5
1

Å1 2
13.0 3 101 m/s 2213.0 3 108 m/s 22

5
1

"1 2 10214

Finalize  Your boss’s clock would be only 0.090 ns ahead of your car clock. You might want to think of another excuse!

If you try to determine this value on your calculator, you 
will probably obtain g 5 1. Instead, perform a binomial 
expansion:

g 5 11 2 10214 221/2 < 1 1 1
2 110214 2 5 1 1 5.0 3 10215

Use Equation 39.7 to find the dilated time interval mea-
sured by your boss:

Dt 5 g Dtp 5 (1 1 5.0 3 10215)(5.0 h)

5 5.0 h 1 2.5 3 10214 h 5 5.0 h 1 0.090 ns

 

▸ 39.1 c o n t i n u e d

The Twin Paradox
An intriguing consequence of time dilation is the twin paradox (Fig. 39.9). Con-
sider an experiment involving a set of twins named Speedo and Goslo. When they 
are 20 years old, Speedo, the more adventuresome of the two, sets out on an epic 
journey from the Earth to Planet X, located 20 light-years away. One light-year (ly) 
is the distance light travels through free space in 1 year. Furthermore, Speedo’s 
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spacecraft is capable of reaching a speed of 0.95c relative to the inertial frame of his 
twin brother back home on the Earth. After reaching Planet X, Speedo becomes 
homesick and immediately returns to the Earth at the same speed 0.95c. Upon his 
return, Speedo is shocked to discover that Goslo has aged 42 years and is now 62 
years old. Speedo, on the other hand, has aged only 13 years.

The paradox is not that the twins have aged at different rates. Here is the appar-
ent paradox. From Goslo’s frame of reference, he was at rest while his brother trav-
eled at a high speed away from him and then came back. According to Speedo, 
however, he himself remained stationary while Goslo and the Earth raced away 
from him and then headed back. Therefore, we might expect Speedo to claim that 
Goslo ages more slowly than himself. The situation appears to be symmetrical from 
either twin’s point of view. Which twin actually ages more slowly?

The situation is actually not symmetrical. Consider a third observer moving at 
a constant speed relative to Goslo. According to the third observer, Goslo never 
changes inertial frames. Goslo’s speed relative to the third observer is always the 
same. The third observer notes, however, that Speedo accelerates during his jour-
ney when he slows down and starts moving back toward the Earth, changing reference 
frames in the process. From the third observer’s perspective, there is something very 
different about the motion of Goslo when compared to Speedo. Therefore, there is 
no paradox: only Goslo, who is always in a single inertial frame, can make correct 
predictions based on special relativity. Goslo finds that instead of aging 42 years, 
Speedo ages only (1 2 v 2/c 2)1/2(42 years) 5 13 years. Of these 13 years, Speedo 
spends 6.5 years traveling to Planet X and 6.5 years returning.

Q uick Quiz 39.5  Suppose astronauts are paid according to the amount of time 
they spend traveling in space. After a long voyage traveling at a speed approach-
ing c, would a crew rather be paid according to (a) an Earth-based clock, (b) their 
spacecraft’s clock, or (c) either clock?

Length Contraction
The measured distance between two points in space also depends on the frame of 
reference of the observer. The proper length Lp of an object is the length measured 
by an observer at rest relative to the object. The length of an object measured by some-
one in a reference frame that is moving with respect to the object is always less than 
the proper length. This effect is known as length contraction.

 To understand length contraction, consider a spacecraft traveling with a speed v 
from one star to another. There are two observers: one on the Earth and the other in 
the spacecraft. The observer at rest on the Earth (and also assumed to be at rest with 

Q

a b

As Speedo (on the
left) leaves his brother
on Earth, both twins
are the same age.

When Speedo returns
from his journey, Goslo
(on the right) is much
older than Speedo.

Figure 39.9  The twin paradox. 
Speedo takes a journey to a star 
20 light-years away and returns to 
the Earth.
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respect to the two stars) measures the distance between the stars to be the proper 
length Lp. According to this observer, the time interval required for the spacecraft 
to complete the voyage is given by the particle under constant velocity model as Dt 5  
Lp /v. The passages of the two stars by the spacecraft occur at the same position 
for the space traveler. Therefore, the space traveler measures the proper time inter-
val Dtp. Because of time dilation, the proper time interval is related to the Earth- 
measured time interval by Dtp 5 Dt/g. Because the space traveler reaches the second 
star in the time Dtp, he or she concludes that the distance L between the stars is

L 5 v Dtp 5 v 
Dt
g

Because the proper length is Lp 5 v Dt, we see that

 L 5
Lp

g
5 Lp Å1 2

v2

c 2  (39.9)

where !1 2 v2/c 2 is a factor less than unity. If an object has a proper length Lp
when it is measured by an observer at rest with respect to the object, its length 
L when it moves with speed v in a direction parallel to its length is measured to be 
shorter according to Equation 39.9.

For example, suppose a meterstick moves past a stationary Earth-based observer 
with speed v as in Figure 39.10. The length of the meterstick as measured by an 
observer in a frame attached to the stick is the proper length Lp shown in Figure 
39.10a. The length of the stick L measured by the Earth observer is shorter than Lp
by the factor (1 2 v 2/c 2)1/2 as suggested in Figure 39.10b. Notice that length con-
traction takes place only along the direction of motion.
 The proper length and the proper time interval are defined differently. The 
proper length is measured by an observer for whom the endpoints of the length 
remain fixed in space. The proper time interval is measured by someone for whom 
the two events take place at the same position in space. As an example of this point, 
let’s return to the decaying muons moving at speeds close to the speed of light. An 
observer in the muon’s reference frame measures the proper lifetime, whereas an 
Earth-based observer measures the proper length (the distance between the cre-
ation point and the decay point in Fig. 39.8b). In the muon’s reference frame, there 
is no time dilation, but the distance of travel to the surface is shorter when mea-
sured in this frame. Likewise, in the Earth observer’s reference frame, there is time 
dilation, but the distance of travel is measured to be the proper length. Therefore, 
when calculations on the muon are performed in both frames, the outcome of the 
experiment in one frame is the same as the outcome in the other frame: more 
muons reach the surface than would be predicted without relativistic effects.

Q uick Quiz 39.6  You are packing for a trip to another star. During the journey, 
you will be traveling at 0.99c. You are trying to decide whether you should buy 
smaller sizes of your clothing because you will be thinner on your trip due to 
length contraction. You also plan to save money by reserving a smaller cabin 
to sleep in because you will be shorter when you lie down. Should you (a) buy 
smaller sizes of clothing, (b) reserve a smaller cabin, (c) do neither of these 
things, or (d) do both of these things?

Q uick Quiz 39.7  You are observing a spacecraft moving away from you. You mea-
sure it to be shorter than when it was at rest on the ground next to you. You also 
see a clock through the spacecraft window, and you observe that the passage of 
time on the clock is measured to be slower than that of the watch on your wrist. 
Compared with when the spacecraft was on the ground, what do you measure 
if the spacecraft turns around and comes toward you at the same speed? (a) The 
spacecraft is measured to be longer, and the clock runs faster. (b) The space-
craft is measured to be longer, and the clock runs slower. (c) The spacecraft is 

L 5
LpL

g
5 Lp Å1 2

v2

c 2ÅLength contraction 

Q

Q

Pitfall Prevention 39.4
The Proper Length As with the 
proper time interval, it is very 
important in relativistic calcula-
tions to correctly identify the 
observer who measures the proper 
length. The proper length between 
two points in space is always the 
length measured by an observer 
at rest with respect to the points. 
Often, the proper time interval 
and the proper length are not mea-
sured by the same observer.

vS

A meterstick measured by an 
observer in a frame attached 
to the stick has its proper 
length Lp.

A meterstick measured by an 
observer in a frame in which 
the stick has a velocity relative 
to the frame is measured to be 
shorter than its proper length.

a

b

Lp

y�

O �
x�

L

y

O
x

Figure 39.10 The length of a 
meterstick is measured by two 
observers.
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measured to be shorter, and the clock runs faster. (d) The spacecraft is mea-
sured to be shorter, and the clock runs slower.

Space–Time Graphs
It is sometimes helpful to represent a physical situation with a space–time graph, 
in which ct is the ordinate and position x is the abscissa. The twin paradox is dis-
played in such a graph in Figure 39.11 from Goslo’s point of view. A path through 
space–time is called a world-line. At the origin, the world-lines of Speedo (blue) 
and Goslo (green) coincide because the twins are in the same location at the 
same time. After Speedo leaves on his trip, his world-line diverges from that of 
his brother. Goslo’s world-line is vertical because he remains fixed in location. At 
Goslo and Speedo’s reunion, the two world-lines again come together. It would be 
impossible for Speedo to have a world-line that crossed the path of a light beam 
that left the Earth when he did. To do so would require him to have a speed greater 
than c (which, as shown in Sections 39.6 and 39.7, is not possible).
 World-lines for light beams are diagonal lines on space–time graphs, typically 
drawn at 45° to the right or left of vertical (assuming the x and ct axes have the 
same scales), depending on whether the light beam is traveling in the direction 
of increasing or decreasing x. All possible future events for Goslo and Speedo lie 
above the x axis and between the red-brown lines in Figure 39.11 because neither 
twin can travel faster than light. The only past events that Goslo and Speedo could 
have experienced occur between two similar 45° world-lines that approach the ori-
gin from below the x axis.
 If Figure 39.11 is rotated about the ct axis, the red-brown lines sweep out a cone, 
called the light cone, which generalizes Figure 39.11 to two space dimensions. The 
y axis can be imagined coming out of the page. All future events for an observer 
at the origin must lie within the light cone. We can imagine another rotation that 
would generalize the light cone to three space dimensions to include z, but because 
of the requirement for four dimensions (three space dimensions and time), we can-
not represent this situation in a two-dimensional drawing on paper.

World-line of Speedo

World-line of 
light beam

World-line
of Goslo

ct

x

Figure 39.11  The twin paradox 
on a space–time graph. The twin 
who stays on the Earth has a world-
line along the ct axis (green). The 
path of the traveling twin through 
space–time is represented by a 
world-line that changes direction 
(blue). The red-brown lines are 
world-lines for light beams travel-
ing in the positive x direction (on 
the right) or the negative x direc-
tion (on the left).

Example 39.3   A Voyage to Sirius 

An astronaut takes a trip to Sirius, which is located a distance of 8 light-years from the Earth. The astronaut measures 
the time of the one-way journey to be 6 years. If the spaceship moves at a constant speed of 0.8c, how can the 8-ly dis-
tance be reconciled with the 6-year trip time measured by the astronaut?

Conceptualize  An observer on the Earth measures light to require 8 years to travel between Sirius and the Earth. The 
astronaut measures a time interval for his travel of only 6 years. Is the astronaut traveling faster than light?

Categorize  Because the astronaut is measuring a length of space between the Earth and Sirius that is in motion with 
respect to her, we categorize this example as a length contraction problem. We also model the astronaut as a particle 
under constant velocity.

Analyze  The distance of 8 ly represents the proper length from the Earth to Sirius measured by an observer on the 
Earth seeing both objects nearly at rest.

AM

S O L U T I O N

Use the particle under constant velocity model to find 
the travel time measured on the astronaut’s clock:

Dt 5
L
v

5
5 ly

0.8c
5

5 ly

0.8 11 ly/yr 2 5 6 yr

Calculate the contracted length measured by the astro-
naut using Equation 39.9:

L 5
8 ly

g
5 18 ly 2 Å1 2

v2

c 2 5 18 ly 2 Å1 2
10.8c 22

c 2 5 5 ly

continued
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Finalize  Notice that we have used the value for the speed of light as c 5 1 ly/yr. The trip takes a time interval shorter 
than 8 years for the astronaut because, to her, the distance between the Earth and Sirius is measured to be shorter.

What if this trip is observed with a very powerful telescope by a technician in Mission Control on the 
Earth? At what time will this technician see that the astronaut has arrived at Sirius?

Answer  The time interval the technician measures for the astronaut to arrive is

Dt 5
Lp

v
5

8 ly

0.8c
5 10 yr

For the technician to see the arrival, the light from the scene of the arrival must travel back to the Earth and enter the 
telescope. This travel requires a time interval of

Dt 5
Lp

v
5

8 ly

c
5 8 yr

Therefore, the technician sees the arrival after 10 yr 1 8 yr 5 18 yr. If the astronaut immediately turns around and 
comes back home, she arrives, according to the technician, 20 years after leaving, only 2 years after the technician saw her 
arrive! In addition, the astronaut would have aged by only 12 years.

WHAT IF ?

Analyze Use Equation 39.9 to find the contracted length 
of the pole according to the ground observer:

Lpole 5 LpÅ1 2
v 2

c 2 5 115 m 2 "1 2 10.75 22 5 9.9 m

Therefore, the ground observer measures the pole to be slightly shorter than the barn and there is no problem with 
momentarily capturing the pole inside it. The “paradox” arises when we consider the runner’s point of view.

Use Equation 39.9 to find the contracted length of the 
barn according to the running observer:

L barn 5 LpÅ1 2
v2

c 2 5 110 m 2 "1 2 10.75 22 5 6.6 m

 

▸ 39.3 c o n t i n u e d

Example 39.4   The Pole-in-the-Barn Paradox 

The twin paradox, discussed earlier, is a classic “paradox” in relativity. Another classic “paradox” is as follows. Suppose 
a runner moving at 0.75c carries a horizontal pole 15 m long toward a barn that is 10 m long. The barn has front and 
rear doors that are initially open. An observer on the ground can instantly and simultaneously close and open the 
two doors by remote control. When the runner and the pole are inside the barn, the ground observer closes and then 
opens both doors so that the runner and pole are momentarily captured inside the barn and then proceed to exit 
the barn from the back doorway. Do both the runner and the ground observer agree that the runner makes it safely 
through the barn?

Conceptualize  From your everyday experience, you would be surprised to see a 15-m pole fit inside a 10-m barn, but 
we are becoming used to surprising results in relativistic situations.

Categorize  The pole is in motion with respect to the ground observer so that the observer measures its length to be 
contracted, whereas the stationary barn has a proper length of 10 m. We categorize this example as a length contrac-
tion problem. The runner carrying the pole is modeled as a particle under constant velocity.

AM

S O L U T I O N

Because the pole is in the rest frame of the runner, the runner measures it to have its proper length of 15 m. Now the 
situation looks even worse: How can a 15-m pole fit inside a 6.6-m barn? Although this question is the classic one that 
is often asked, it is not the question we have asked because it is not the important one. We asked, “Does the runner make 
it safely through the barn?”
 The resolution of the “paradox” lies in the relativity of simultaneity. The closing of the two doors is measured to be 
simultaneous by the ground observer. Because the doors are at different positions, however, they do not close simulta-
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neously as measured by the runner. The rear door closes and 
then opens first, allowing the leading end of the pole to exit. 
The front door of the barn does not close until the trailing end 
of the pole passes by.
 We can analyze this “paradox” using a space–time graph. 
Figure 39.12a is a space–time graph from the ground observ-
er’s point of view. We choose x 5 0 as the position of the front 
doorway of the barn and t 5 0 as the instant at which the lead-
ing end of the pole is located at the front doorway of the barn. 
The world-lines for the two doorways of the barn are separated 
by 10 m and are vertical because the barn is not moving rela-
tive to this observer. For the pole, we follow two tilted world-
lines, one for each end of the moving pole. These world-lines 
are 9.9 m apart horizontally, which is the contracted length 
seen by the ground observer. As seen in Figure 39.12a, the pole 
is entirely within the barn at some time.
 Figure 39.12b shows the space–time graph according to 
the runner. Here, the world-lines for the pole are separated by 
15 m and are vertical because the pole is at rest in the runner’s 
frame of reference. The barn is hurtling toward the runner, so 
the world-lines for the front and rear doorways of the barn are 
tilted to the left. The world-lines for the barn are separated by 
6.6 m, the contracted length as seen by the runner. The lead-
ing end of the pole leaves the rear doorway of the barn long 
before the trailing end of the pole enters the barn. Therefore, 
the opening of the rear door occurs before the closing of the 
front door.

a

b

10

20

Front
doorway

Rear
doorway

Pole is
entirely
in barn

Leading
end of
pole

Trailing
end of
pole

�10
x (m)

x (m)

Front
doorway
arrives at
trailing end
of pole 10

20

10�10 0

Rear doorway
arrives at leading 
end of pole

ct (m)

ct (m)

Leading
end of
pole

Trailing
end of
pole

Rear
doorway

Front
doorway

0 10

Figure 39.12  (Example 39.4) Space–time graphs for the 
pole-in-the-barn paradox (a) from the ground observer’s 
point of view and (b) from the runner’s point of view.

From the ground observer’s point of view, use the particle 
under constant velocity model to find the time after  
t 5 0 at which the trailing end of the pole enters the barn:

(1)   t 5
Dx
v

5
9.9 m
0.75c

5
13.2 m

c

 

▸ 39.4 c o n t i n u e d

Find the time at which the trailing end of the pole enters 
the front door of the barn:

(3)   t 5
Dx
v

5
15 m
0.75c

5
20 m

c

From the runner’s point of view, use the particle under 
constant velocity model to find the time at which the lead-
ing end of the pole leaves the barn:

(2)   t 5
Dx
v

5
6.6 m
0.75c

5
8.8 m

c

Finalize  From Equation (1), the pole should be completely inside the barn at a time corresponding to ct 5 13.2 m. This 
situation is consistent with the point on the ct axis in Figure 39.12a where the pole is inside the barn. From Equation 
(2), the leading end of the pole leaves the barn at ct 5 8.8 m. This situation is consistent with the point on the ct axis 
in Figure 39.12b where the rear doorway of the barn arrives at the leading end of the pole. Equation (3) gives ct 5  
20 m, which agrees with the instant shown in Figure 39.12b at which the front doorway of the barn arrives at the trail-
ing end of the pole.

The Relativistic Doppler Effect
Another important consequence of time dilation is the shift in frequency observed 
for light emitted by atoms in motion as opposed to light emitted by atoms at rest. 
This phenomenon, known as the Doppler effect, was introduced in Chapter 17 as 
it pertains to sound waves. In the case of sound, the velocity vS of the source with 
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respect to the medium of propagation can be distinguished from the velocity vO of 
the observer with respect to the medium (the air). Light waves must be analyzed dif-
ferently, however, because they require no medium of propagation, and no method exists 
for distinguishing the velocity of a light source from the velocity of the observer. The 
only measurable velocity is the relative velocity v between the source and the observer.
 If a light source and an observer approach each other with a relative speed v, the 
frequency f 9 measured by the observer is

 f r 5
"1 1 v/c

"1 2 v/c
 f  (39.10)

where f is the frequency of the source measured in its rest frame. This relativistic 
Doppler shift equation, unlike the Doppler shift equation for sound, depends only 
on the relative speed v of the source and observer and holds for relative speeds as 
great as c. As you might expect, the equation predicts that f 9 . f when the source 
and observer approach each other. We obtain the expression for the case in which 
the source and observer recede from each other by substituting negative values for 
v in Equation 39.10.
 The most spectacular and dramatic use of the relativistic Doppler effect is the 
measurement of shifts in the frequency of light emitted by a moving astronomical 
object such as a galaxy. Light emitted by atoms and normally found in the extreme 
violet region of the spectrum is shifted toward the red end of the spectrum for 
atoms in other galaxies, indicating that these galaxies are receding from us. Ameri-
can astronomer Edwin Hubble (1889–1953) performed extensive measurements of 
this red shift to confirm that most galaxies are moving away from us, indicating that 
the Universe is expanding.

39.5 The Lorentz Transformation Equations
Suppose two events occur at points P and Q and are reported by two observers, one 
at rest in a frame S and another in a frame S9 that is moving to the right with speed 
v as in Figure 39.13. The observer in S reports the events with space–time coordi-
nates (x, y, z, t), and the observer in S9 reports the same events using the coordi-
nates (x 9, y 9, z 9, t 9). Equation 39.1 predicts that the distance between the two points 
in space at which the events occur does not depend on motion of the observer:  
Dx 5 Dx9. Because this prediction is contradictory to the notion of length contrac-
tion, the Galilean transformation is not valid when v approaches the speed of light. 
In this section, we present the correct transformation equations that apply for all 
speeds in the range 0 , v , c.
 The equations that are valid for all speeds and that enable us to transform coor-
dinates from S to S9 are the Lorentz transformation equations:

 x r 5 g 1x 2 vt 2  y r 5 y  z r 5 z  t r 5 gat 2
v
c 2 xb  (39.11)

These transformation equations were developed by Hendrik A. Lorentz (1853– 
1928) in 1890 in connection with electromagnetism. It was Einstein, however, who 
recognized their physical significance and took the bold step of interpreting them 
within the framework of the special theory of relativity.

Notice the difference between the Galilean and Lorentz time equations. In the 
Galilean case, t 5 t9. In the Lorentz case, however, the value for t 9 assigned to an 
event by an observer O9 in the S9 frame in Figure 39.13 depends both on the time 
t and on the coordinate x as measured by an observer O in the S frame, which is 
consistent with the notion that an event is characterized by four space–time coor-
dinates (x, y, z, t). In other words, in relativity, space and time are not separate con-
cepts but rather are closely interwoven with each other.

39.5

 Lorentz transformation 
for S S S9

y y� S�S

O
x�

P (event)

O�

Q (event)

vt
x

x� �x�
�x

vS

x

Figure 39.13  Events occur at 
points P and Q and are observed 
by an observer at rest in the S 
frame and another in the S9 
frame, which is moving to the 
right with a speed v.
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 If you wish to transform coordinates in the S9 frame to coordinates in the S 
frame, simply replace v by 2v and interchange the primed and unprimed coordi-
nates in Equations 39.11:

 x 5 g 1x r 1 vt r 2  y 5 y r  z 5 z r  t 5 g at r 1
v
c2 x rb  (39.12)

When v ,, c, the Lorentz transformation equations should reduce to the Galilean 
equations. As v approaches zero, v/c ,, 1; therefore, g S 1 and Equations 39.11 
indeed reduce to the Galilean space–time transformation equations in Equation 39.1.
 In many situations, we would like to know the difference in coordinates between 
two events or the time interval between two events as seen by observers O and O9. 
From Equations 39.11 and 39.12, we can express the differences between the four 
variables x, x 9, t, and t 9 in the form

 
Dx r 5 g 1Dx 2 v Dt 2
Dt r 5 gaDt 2

v
c 2 DxbsS   S   Sr (39.13)

 

Dx 5 g 1Dx r 1 v Dt r 2
Dt 5 gaDt r 1

v
c 2 Dx rbsS r    S   S (39.14)

where Dx9 5 x92 2 x91 and Dt 9 5 t92 2 t 91 are the differences measured by observer O9 
and Dx 5 x2 2 x1 and Dt 5 t2 2 t1 are the differences measured by observer O. (We 
have not included the expressions for relating the y and z coordinates because they 
are unaffected by motion along the x direction.5)

 Inverse Lorentz transforma-
tion for S9 S S

5Although relative motion of the two frames along the x axis does not change the y and z coordinates of an object, it 
does change the y and z velocity components of an object moving in either frame as noted in Section 39.6.

Example 39.5   Simultaneity and Time Dilation Revisited

(A)  Use the Lorentz transformation equations in difference form to show that simultaneity is not an absolute concept.

Conceptualize  Imagine two events that are simultaneous and separated in space as measured in the S9 frame such that 
Dt 9 5 0 and Dx 9 2 0. These measurements are made by an observer O9 who is moving with speed v relative to O.

Categorize  The statement of the problem tells us to categorize this example as one involving the use of the Lorentz 
transformation.

S O L U T I O N

Analyze  From the expression for Dt given in Equation 
39.14, find the time interval Dt measured by observer O:

Dt 5 gaDt r 1
v
c 2 Dx rb 5 ga0 1

v
c 2 Dx rb 5 g 

v
c 2 Dx r

Finalize  The time interval for the same two events as measured by O is nonzero, so the events do not appear to be 
simultaneous to O.

(B)  Use the Lorentz transformation equations in difference form to show that a moving clock is measured to run more 
slowly than a clock that is at rest with respect to an observer.

Conceptualize  Imagine that observer O 9 carries a clock that he uses to measure a time interval Dt 9. He finds that two 
events occur at the same place in his reference frame (Dx9 5 0) but at different times (Dt 9 2 0). Observer O9 is moving 
with speed v relative to O.

S O L U T I O N

continued
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39.6 The Lorentz Velocity Transformation Equations
Suppose two observers in relative motion with respect to each other are both 
observing an object’s motion. Previously, we defined an event as occurring at an 
instant of time. Now let’s interpret the “event” as the object’s motion. We know that 
the Galilean velocity transformation (Eq. 39.2) is valid for low speeds. How do the 
observers’ measurements of the velocity of the object relate to each other if the 
speed of the object or the relative speed of the observers is close to that of light? 
Once again, S9 is our frame moving at a speed v relative to S. Suppose an object has 
a velocity component u9x measured in the S9 frame, where

 u rx 5
dx r
dt r

 (39.15)

Using Equation 39.11, we have

dx9 5 g(dx 2 v dt)

dt r 5 gadt 2
v
c 2 dxb

Substituting these values into Equation 39.15 gives

u rx 5
dx 2 v dt

dt 2
v
c 2 dx

5

dx
dt

2 v

1 2
v
c 2  

dx
dt

The term dx/dt, however, is simply the velocity component ux of the object mea-
sured by an observer in S, so this expression becomes

 u rx 5
ux 2 v

1 2
uxv

c 2

 (39.16)

 If the object has velocity components along the y and z axes, the components as 
measured by an observer in S9 are

 u ry 5
uy

ga1 2
uxv

c 2 b
 and u rz 5

uz

g a1 2
uxv

c 2 b
 (39.17)

 Notice that u9y and u9z do not contain the parameter v in the numerator because 
the relative velocity is along the x axis.
 When v is much smaller than c (the nonrelativistic case), the denominator of 
Equation 39.16 approaches unity and so u9x < ux 2 v, which is the Galilean veloc-

39.6

u rx 5
ux 2 v

1 2
uxv

c 2

 Lorentz velocity trans- 
formation for S S S9

Analyze  From the expression for Dt given in Equation 
39.14, find the time interval Dt measured by observer O:

Dt 5 gaDt r 1
v
c 2 Dx rb 5 g cDt r 1

v
c 2 10 2 d 5 g Dt r

Finalize  This result is the equation for time dilation found earlier (Eq. 39.7), where Dt 9 5 Dtp is the proper time inter-
val measured by the clock carried by observer O 9. Therefore, O measures the moving clock to run slow.

 

▸ 39.5 c o n t i n u e d

Categorize  The statement of the problem tells us to categorize this example as one involving the use of the Lorentz 
transformation.
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ity transformation equation. In another extreme, when ux 5 c, Equation 39.16 
becomes

u rx 5
c 2 v

1 2
cv
c 2

5

c a1 2
v
c b

1 2
v
c

5 c

This result shows that a speed measured as c by an observer in S is also measured 
as c by an observer in S9, independent of the relative motion of S and S9. This con-
clusion is consistent with Einstein’s second postulate: the speed of light must be c 
relative to all inertial reference frames. Furthermore, we find that the speed of an 
object can never be measured as larger than c. That is, the speed of light is the ulti-
mate speed. We shall return to this point later.
 To obtain ux in terms of u9x, we replace v by 2v in Equation 39.16 and inter-
change the roles of ux and u9x:

 ux 5
u rx 1 v

1 1
u rx v

c 2

 (39.18)

Q uick Quiz 39.8  You are driving on a freeway at a relativistic speed. (i) Straight 
ahead of you, a technician standing on the ground turns on a searchlight and a 
beam of light moves exactly vertically upward as seen by the technician. As you 
observe the beam of light, do you measure the magnitude of the vertical compo- 
nent of its velocity as (a) equal to c, (b) greater than c, or (c) less than c? (ii) If 
the technician aims the searchlight directly at you instead of upward, do you 
measure the magnitude of the horizontal component of its velocity as (a) equal 
to c, (b) greater than c, or (c) less than c?

Q

Pitfall Prevention 39.5
What Can the Observers Agree 
On? We have seen several mea-
surements that the two observers 
O and O9 do not agree on: (1) the  
time interval between events that 
take place in the same position in 
one of their frames, (2) the dis-
tance between two points that  
remain fixed in one of their 
frames, (3) the velocity compo-
nents of a moving particle, and  
(4) whether two events occurring 
at different locations in both 
frames are simultaneous or not. 
The two observers can agree on 
(1) their relative speed of motion v 
with respect to each other, (2) the 
speed c of any ray of light, and  
(3) the simultaneity of two events 
that take place at the same posi-
tion and time in some frame.

Example 39.6   Relative Velocity of Two Spacecraft

Two spacecraft A and B are moving in opposite directions as 
shown in Figure 39.14. An observer on the Earth measures the 
speed of spacecraft A to be 0.750c and the speed of spacecraft B 
to be 0.850c. Find the velocity of spacecraft B as observed by the 
crew on spacecraft A.

Conceptualize  There are two observers, one (O) on the Earth and 
one (O9) on spacecraft A. The event is the motion of spacecraft B.

Categorize  Because the problem asks to find an observed veloc-
ity, we categorize this example as one requiring the Lorentz velocity transformation.

Analyze  The Earth-based observer at rest in the S frame makes two measurements, one of each spacecraft. We want 
to find the velocity of spacecraft B as measured by the crew on spacecraft A. Therefore, ux 5 20.850c. The velocity of 
spacecraft A is also the velocity of the observer at rest in spacecraft A (the S9 frame) relative to the observer at rest on 
the Earth. Therefore, v 5 0.750c.

S O L U T I O N

S� (attached to A)y�

0.750c �0.850c

BA
x�

O�

S (attached
to the Earth)

y

x
O

Figure 39.14  (Example 39.6) Two spacecraft A and 
B move in opposite directions. The speed of spacecraft 
B relative to spacecraft A is less than c and is obtained 
from the relativistic velocity transformation equation.

Obtain the velocity u9x of spacecraft B relative to space-
craft A using Equation 39.16:

u rx 5
ux 2 v

1 2
uxv

c 2

5
20.850c 2 0.750c

1 2
120.850c 2 10.750c 2

c 2

5 20.977c

Finalize  The negative sign indicates that spacecraft B is moving in the negative x direction as observed by the crew on 
spacecraft A. Is that consistent with your expectation from Figure 39.14? Notice that the speed is less than c. That is, an 

continued
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Example 39.7   Relativistic Leaders of the Pack

Two motorcycle pack leaders named David and Emily are racing at relativistic 
speeds along perpendicular paths as shown in Figure 39.15. How fast does 
Emily recede as seen by David over his right shoulder?

Conceptualize  The two observers are David and the police officer in Figure 
39.15. The event is the motion of Emily. Figure 39.15 represents the situa-
tion as seen by the police officer at rest in frame S. 
Frame S9 moves along with David.

Categorize  Because the problem asks to find an 
observed velocity, we categorize this problem as 
one requiring the Lorentz velocity transforma-
tion. The motion takes place in two dimensions.

S O L U T I O N

Emily
0.75c

x

y

David

Police officer
at rest in S

�0.90c

Figure 39.15  (Example 
39.7) David moves east with 
a speed 0.75c relative to the 
police officer, and Emily 
travels south at a speed 0.90c 
relative to the officer.

Using the Pythagorean theorem, find the speed of 
Emily as measured by David:

u r 5 "1u rx 22 1 1u ry 22 5 "120.75c 22 1 120.60c 22 5 0.96c

Using Equations 39.16 and 39.17, calculate u9x and u9y 
for Emily as measured by David:

u rx 5
ux 2 v

1 2
uxv

c 2

5
0 2 0.75c

1 2
10 2 10.75c 2

c 2

5 20.75c

u ry 5
uy

ga1 2
uxv

c 2 b
5
Å1 2

10.75c 22
c 2  120.90c 2

1 2
10 2 10.75c 2

c 2

5 20.60c

Analyze  Identify the velocity components for David 
and Emily according to the police officer:

David: vx 5 v 5 0.75c    vy 5 0

Emily: ux 5 0    uy 5 20.90c

Finalize  This speed is less than c, as required by the special theory of relativity.

object whose speed is less than c in one frame of reference must have a speed less than c in any other frame. (Had you 
used the Galilean velocity transformation equation in this example, you would have found that u9x 5 ux 2 v 5 20.850c 2  
0.750c 5 21.60c, which is impossible. The Galilean transformation equation does not work in relativistic situations.)

 What if the two spacecraft pass each other? What is their relative speed now?

Answer  The calculation using Equation 39.16 involves only the velocities of the two spacecraft and does not depend on 
their locations. After they pass each other, they have the same velocities, so the velocity of spacecraft B as observed by 
the crew on spacecraft A is the same, 20.977c. The only difference after they pass is that spacecraft B is receding from 
spacecraft A, whereas it was approaching spacecraft A before it passed.

WHAT IF ?

 

▸ 39.6 c o n t i n u e d

39.7 Relativistic Linear Momentum
To describe the motion of particles within the framework of the special theory 
of relativity properly, you must replace the Galilean transformation equations by 
the Lorentz transformation equations. Because the laws of physics must remain 
unchanged under the Lorentz transformation, we must generalize Newton’s laws 
and the definitions of linear momentum and energy to conform to the Lorentz 

39.7
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transformation equations and the principle of relativity. These generalized defini-
tions should reduce to the classical (nonrelativistic) definitions for v ,, c.

First, recall from the isolated system model that when two particles (or objects 
that can be modeled as particles) collide, the total momentum of the isolated sys-
tem of the two particles remains constant. Suppose we observe this collision in a 
reference frame S and confirm that the momentum of the system is conserved. 
Now imagine that the momenta of the particles are measured by an observer in a 
second reference frame S9 moving with velocity vS relative to the first frame. Using 
the Lorentz velocity transformation equation and the classical definition of lin-
ear momentum, pS 5 muS (where uS is the velocity of a particle), we find that lin-
ear momentum of the system is not measured to be conserved by the observer in 
S9. Because the laws of physics are the same in all inertial frames, however, linear 
momentum of the system must be conserved in all frames. We have a contradic-
tion. In view of this contradiction and assuming the Lorentz velocity transforma-
tion equation is correct, we must modify the definition of linear momentum so that 
the momentum of an isolated system is conserved for all observers. For any particle, 
the correct relativistic equation for linear momentum that satisfies this condition is

 pS ;
muS

Å1 2
u2

c 2

5 gmuS  (39.19)

where m is the mass of the particle and uS is the velocity of the particle. When u 
is much less than c, g 5 (1 2 u2/c 2)21/2 approaches unity and pS approaches muS.
Therefore, the relativistic equation for pS reduces to the classical expression when u 
is much smaller than c, as it should.
 The relativistic force F

S
 acting on a particle whose linear momentum is pS is 

defined as

 F
S
;

d pS

dt
 (39.20)

where pS is given by Equation 39.19. This expression, which is the relativistic form of 
Newton’s second law, is reasonable because it preserves classical mechanics in the 
limit of low velocities and is consistent with conservation of linear momentum for 
an isolated system ( F

S
ext 5 0) both relativistically and classically.

 It is left as an end-of-chapter problem (Problem 88) to show that under rela-
tivistic conditions, the acceleration aS of a particle decreases under the action of  
a constant force, in which case a ~ 11 2 u2/c 2 23/2. This proportionality shows that 
as the particle’s speed approaches c, the acceleration caused by any finite force 
approaches zero. Hence, it is impossible to accelerate a particle from rest to a speed 
u $ c. This argument reinforces that the speed of light is the ultimate speed, the 
speed limit of the Universe. It is the maximum possible speed for energy transfer 
and for information transfer. Any object with mass must move at a lower speed.

pS ;
muS

Å1 2
u2

c 2Å
5 gmuS  Definition of relativistic 

linear momentum

Pitfall Prevention 39.6
Watch Out for “Relativistic Mass” 
Some older treatments of relativ-
ity maintained the conservation 
of momentum principle at high 
speeds by using a model in which 
a particle’s mass increases with 
speed. You might still encounter 
this notion of “relativistic mass” 
in your outside reading, especially 
in older books. Be aware that 
this notion is no longer widely 
accepted; today, mass is consid-
ered as invariant, independent of 
speed. The mass of an object in 
all frames is considered to be the 
mass as measured by an observer 
at rest with respect to the object.

Example 39.8   Linear Momentum of an Electron

An electron, which has a mass of 9.11 3 10231 kg, moves with a speed of 0.750c. Find the magnitude of its relativistic 
momentum and compare this value with the momentum calculated from the classical expression.

Conceptualize  Imagine an electron moving with high speed. The electron carries momentum, but the magnitude of 
its momentum is not given by p 5 mu because the speed is relativistic.

Categorize  We categorize this example as a substitution problem involving a relativistic equation.

S O L U T I O N

continued
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Use Equation 39.19 with u 5 0.750c to find the magni-
tude of the momentum:

p 5
meu

Å1 2
u2

c 2

p 5
19.11 3 10231 kg 2 10.750 2 13.00 3 108 m/s 2

Å1 2
10.750c 22

c 2

5 3.10 3 10222 kg # m/s

The classical expression (used incorrectly here) gives pclassical 5 meu 5 2.05 3 10222 kg ? m/s. Hence, the correct relativ-
istic result is 50% greater than the classical result!

39.8 Relativistic Energy
We have seen that the definition of linear momentum requires generalization to 
make it compatible with Einstein’s postulates. This conclusion implies that the defi-
nition of kinetic energy must most likely be modified also.

To derive the relativistic form of the work–kinetic energy theorem, imagine a 
particle moving in one dimension along the x axis. A force in the x direction causes 
the momentum of the particle to change according to Equation 39.20. In what fol-
lows, we assume the particle is accelerated from rest to some final speed u. The 
work done by the force F on the particle is

W 5 3
x2

x1

 F dx 5 3
x2

x1

dp

dt
 dx  (39.21)

To perform this integration and find the work done on the particle and the relativ-
istic kinetic energy as a function of u, we first evaluate dp/dt:

dp

dt
5

d
dt

 
mu

Å1 2
u2

c 2

5
m

a1 2
u2

c 2 b3/2 
du
dt

Substituting this expression for dp/dt and dx 5 u dt into Equation 39.21 gives

W 5 3
t

0
 

m

a1 2
u2

c 2 b3/2  
du
dt
1u dt 2 5 m 3

u

0
 

u

a1 2
u2

c 2 b3/2 du

where we use the limits 0 and u in the integral because the integration variable has 
been changed from t to u. Evaluating the integral gives

 W 5
mc 2

Å1 2
u2

c 2

2 mc2  (39.22)

Recall from Chapter 7 that the work done by a force acting on a system consist-
ing of a single particle equals the change in kinetic energy of the particle: W 5 
DK. Because we assumed the initial speed of the particle is zero, its initial kinetic 
energy is zero, so W 5 K 2 Ki 5 K 2 0 5 K. Therefore, the work W in Equation 
39.22 is equivalent to the relativistic kinetic energy K :

 K 5
mc 2

Å1 2
u2

c 2

2 mc 2 5 gmc 2 2 mc 2 5 1g 2 1 2mc 2  (39.23)

39.8

Relativistic kinetic energy K 5
mc 2

Å1 2
u2

c 2Å
2 mc 2 5 gmc 2 2 mc 2 5 1g 2 1 2mc 2

 

▸ 39.8 c o n t i n u e d
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This equation is routinely confirmed by experiments using high-energy particle 
accelerators.

At low speeds, where u/c ,, 1, Equation 39.23 should reduce to the classi-
cal expression K 5 1

2mu2. We can check that by using the binomial expansion 11 2 b2 221/2 < 1 1 1
2 b2 1 c

  for b ,, 1, where the higher-order powers of b are 
neglected in the expansion. (In treatments of relativity, b is a common symbol used 
to represent u/c or v/c.) In our case, b 5 u/c, so

g 5
1

Å1 2
u2

c 2

5 a1 2
u2

c 2 b21/2

< 1 1 1
2 

u2

c 2

Substituting this result into Equation 39.23 gives

K < c a1 1 1
2 

u2

c 2 b 2 1 dmc 2 5 1
2mu2 1 for u/c ,, 1 2

which is the classical expression for kinetic energy. A graph comparing the relativ-
istic and nonrelativistic expressions is given in Figure 39.16. In the relativistic case, 
the particle speed never exceeds c, regardless of the kinetic energy. The two curves 
are in good agreement when u ,, c.
 The constant term mc 2 in Equation 39.23, which is independent of the speed of 
the particle, is called the rest energy ER of the particle:

 ER 5 mc 2 (39.24)

Equation 39.24 shows that mass is a form of energy, where c 2 is simply a constant 
conversion factor. This expression also shows that a small mass corresponds to an 
enormous amount of energy, a concept fundamental to nuclear and elementary-
particle physics.
 The term gmc 2 in Equation 39.23, which depends on the particle speed, is the 
sum of the kinetic and rest energies. It is called the total energy E :

Total energy 5 kinetic energy 1 rest energy

 E 5 K 1 mc 2 (39.25)

or

 E 5
mc 2

Å1 2
u2

c 2

5 gmc 2  (39.26)

 In many situations, the linear momentum or energy of a particle rather than its 
speed is measured. It is therefore useful to have an expression relating the total 
energy E to the relativistic linear momentum p, which is accomplished by using the 
expressions E 5 gmc 2 and p 5 gmu. By squaring these equations and subtracting, 
we can eliminate u (Problem 58). The result, after some algebra, is6

 E 2 5 p2c 2 1 (mc 2)2 (39.27)

When the particle is at rest, p 5 0, so E 5 ER 5 mc 2.
 In Section 35.1, we introduced the concept of a particle of light, called a photon. 
For particles that have zero mass, such as photons, we set m 5 0 in Equation 39.27 
and find that

 E 5 pc (39.28)

ERE 5 mc 2

E 5 K 1 mc 2

E 5
mc 2

Å1 2
u2

c 2Å
5 gmc 2  Total energy of a relativistic 

particle

E 2 5 p2c 2 1 (mc 2)2  Energy–momentum relation-
ship for a relativistic particle

The relativistic 
calculation, 
using 
Equation 
39.23, shows 
correctly that 
u is always less 
than c.

K/mc 

2

0.5c 1.0c 1.5c 2.0c

0.5

0

1.0

1.5

2.0

u

The 
nonrelativistic 
calculation,

using K �   mu2, 

predicts a
parabolic curve 
and the speed
u grows without 
limit.

2
1

Figure 39.16  A graph compar-
ing relativistic and nonrelativistic 
kinetic energy of a moving par-
ticle. The energies are plotted as a 
function of particle speed u.

6One way to remember this relationship is to draw a right triangle having a hypotenuse of length E and legs of 
lengths pc and mc 2.
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Example 39.9   The Energy of a Speedy Proton

(A)  Find the rest energy of a proton in units of electron volts.

Conceptualize  Even if the proton is not moving, it has energy associated with its mass. If it moves, the proton possesses 
more energy, with the total energy being the sum of its rest energy and its kinetic energy.

Categorize  The phrase “rest energy” suggests we must take a relativistic rather than a classical approach to this problem.

S O L U T I O N

This equation is an exact expression relating total energy and linear momentum 
for photons, which always travel at the speed of light (in vacuum).

Finally, because the mass m of a particle is independent of its motion, m must 
have the same value in all reference frames. For this reason, m is often called the 
invariant mass. On the other hand, because the total energy and linear momen-
tum of a particle both depend on velocity, these quantities depend on the reference 
frame in which they are measured.

When dealing with subatomic particles, it is convenient to express their energy 
in electron volts (Section 25.1) because the particles are usually given this energy 
by acceleration through a potential difference. The conversion factor, as you recall 
from Equation 25.5, is

1 eV 5 1.602 3 10219 J

For example, the mass of an electron is 9.109 3 10231 kg. Hence, the rest energy of 
the electron is

mec 2 5 (9.109 3 10231 kg)(2.998 3 108 m/s)2 5 8.187 3 10214 J

5 (8.187 3 10214 J)(1 eV/1.602 3 10219 J) 5 0.511 MeV

Q uick Quiz 39.9  The following pairs of energies—particle 1: E, 2E; particle 2: E, 
3E; particle 3: 2E, 4E—represent the rest energy and total energy of three dif-
ferent particles. Rank the particles from greatest to least according to their  
(a) mass, (b) kinetic energy, and (c) speed.

Q

Analyze  Use Equation 39.24 to find the rest energy: ER 5 mpc 2 5 (1.672 6 3 10227 kg)(2.998 3 108 m/s)2

5 11.504 3 10210 J 2 a 1.00 eV
1.602 3 10219 J

b 5 938 MeV

(B)  If the total energy of a proton is three times its rest energy, what is the speed of the proton?

S O L U T I O N

Use Equation 39.26 to relate the total energy of the pro-
ton to the rest energy:

E 5 3mpc
2 5

mpc
2

Å1 2
u2

c 2

   S   3 5
1

Å1 2
u2

c 2

(C)  Determine the kinetic energy of the proton in units of electron volts.

Solve for u: 1 2
u2

c 2 5 1
9   S   

u2

c 2 5 8
9

u 5
"8

3
 c 5 0.943c 5 2.83 3 108 m/s
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Use Equation 39.25 to find the kinetic energy of the 
proton:

K 5 E 2 mpc 2 5 3mpc 2 2 mpc 2 5 2mpc 2

5 2(938 MeV) 5 1.88 3 103 MeV

(D)  What is the proton’s momentum?

S O L U T I O N

Use Equation 39.27 to calculate the momentum: E 2 5 p2c 2 1 (mpc 2)2 5 (3mpc 2)2

p 2c 2 5 9(mpc 2)2 2 (mpc 2)2 5 8(mpc 2)2

p 5 "8 
mpc

2

c
5 "8 

938 MeV
c

5 2.65 3 103 MeV/c

Finalize  The unit of momentum in part (D) is written MeV/c, which is a common unit in particle physics. For compari-
son, you might want to solve this example using classical equations.

In classical physics, if the momentum of a particle doubles, the kinetic energy increases by a factor of 4. 
What happens to the kinetic energy of the proton in this example if its momentum doubles?

Answer  Based on what we have seen so far in relativity, it is likely you would predict that its kinetic energy does not 
increase by a factor of 4.

Find the new doubled momentum: pnew 5 2 a"8 
mpc

2

c
b 5 4"2 

mpc
2

c

S O L U T I O N

 

▸ 39.9 c o n t i n u e d

WHAT IF ?

Use Equation 39.25 to find the new kinetic energy: K new 5 E new 2 mpc 2 5 5.7mpc 2 2 mpc 2 5 4.7mpc 2

Use this result in Equation 39.27 to find the new total 
energy:

E 2
new 5 p2

newc 2 1 (mpc 2)2

E 2
new 5 a4"2 

mpc
2

c
b2

c 2 1 1mpc
2 22 5 33 1mpc

2 22
Enew 5 "33mpc

2 5 5.7mpc
2

This value is a little more than twice the kinetic energy found in part (C), not four times. In general, the factor by 
which the kinetic energy increases if the momentum doubles depends on the initial momentum, but it approaches 4 as 
the momentum approaches zero. In this latter situation, classical physics correctly describes the situation.

 Equation 39.26, E 5 gmc 2, represents the total energy of a particle. This impor-
tant equation suggests that even when a particle is at rest (g 5 1), it still possesses 
enormous energy through its mass. The clearest experimental proof of the equiva-
lence of mass and energy occurs in nuclear and elementary-particle interactions 
in which the conversion of mass into kinetic energy takes place. Consequently, we 
cannot use the principle of conservation of energy in relativistic situations as it was 
outlined in Chapter 8. We must modify the principle by including rest energy as 
another form of energy storage.
 This concept is important in atomic and nuclear processes, in which the change 
in mass is a relatively large fraction of the initial mass. In a conventional nuclear 
reactor, for example, the uranium nucleus undergoes fission, a reaction that results 
in several lighter fragments having considerable kinetic energy. In the case of 235U, 
which is used as fuel in nuclear power plants, the fragments are two lighter nuclei 
and a few neutrons. The total mass of the fragments is less than that of the 235U by an 
amount Dm. The corresponding energy Dmc 2 associated with this mass difference is 
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exactly equal to the sum of the kinetic energies of the fragments. The kinetic energy 
is absorbed as the fragments move through water, raising the internal energy of the 
water. This internal energy is used to produce steam for the generation of electricity.

Next, consider a basic fusion reaction in which two deuterium atoms combine to 
form one helium atom. The decrease in mass that results from the creation of one 
helium atom from two deuterium atoms is Dm 5 4.25 3 10229 kg. Hence, the cor-
responding energy that results from one fusion reaction is Dmc 2 5 3.83 3 10212 J 5 
23.9 MeV. To appreciate the magnitude of this result, consider that if only 1 g of 
deuterium were converted to helium, the energy released would be on the order of 
1012 J! In 2013’s cost of electrical energy, this energy would be worth approximately 
$35 000. We shall present more details of these nuclear processes in Chapter 45 of 
the extended version of this textbook.

Example 39.10   Mass Change in a Radioactive Decay

The 216Po nucleus is unstable and exhibits radioactivity (Chapter 44). It decays to 212Pb by emitting an alpha particle, 
which is a helium nucleus, 4He. The relevant masses, in atomic mass units (see Table A.1 in Appendix A), are mi 5 
m(216Po) 5 216.001 915 u and mf 5 m(212Pb) 1 m(4He) 5 211.991 898 u 1 4.002 603 u.

(A)  Find the mass change of the system in this decay.

Conceptualize  The initial system is the 216Po nucleus. Imagine the mass of the system decreasing during the decay and 
transforming to kinetic energy of the alpha particle and the 212Pb nucleus after the decay.

Categorize  We use concepts discussed in this section, so we categorize this example as a substitution problem.

S O L U T I O N

Calculate the change in mass using the mass 
values given in the problem statement. Dm 5 216.001 915 u 2 (211.991 898 u 1 4.002 603 u)

5 0.007 414 u 5 1.23 3 10229 kg

Use Equation 39.24 to find the energy associated with 
this mass change:

E 5 Dmc 2 5 (1.23 3 10229 kg)(3.00 3 108 m/s)2

5 1.11 3 10212 J 5 6.92 MeV

(B)  Find the energy this mass change represents.

S O L U T I O N

39.9 The General Theory of Relativity
Up to this point, we have sidestepped a curious puzzle. Mass has two seemingly dif-
ferent properties: a gravitational attraction for other masses and an inertial property 
that represents a resistance to acceleration. We first discussed these two attributes 
for mass in Section 5.5. To designate these two attributes, we use the subscripts g 
and i and write

Gravitational property:  Fg 5 mg g

 Inertial property: o F 5 mia

The value for the gravitational constant G was chosen to make the magnitudes of 
mg and mi numerically equal. Regardless of how G is chosen, however, the strict 
proportionality of mg and mi has been established experimentally to an extremely 
high degree: a few parts in 1012. Therefore, it appears that gravitational mass and 
inertial mass may indeed be exactly proportional.

39.9



 39.9 The General Theory of Relativity 1221

 Why, though? They seem to involve two entirely different concepts: a force of 
mutual gravitational attraction between two masses and the resistance of a single 
mass to being accelerated. This question, which puzzled Newton and many other 
physicists over the years, was answered by Einstein in 1916 when he published his 
theory of gravitation, known as the general theory of relativity. Because it is a math-
ematically complex theory, we offer merely a hint of its elegance and insight.
 In Einstein’s view, the dual behavior of mass was evidence for a very intimate and 
basic connection between the two behaviors. He pointed out that no mechanical 
experiment (such as dropping an object) could distinguish between the two situa-
tions illustrated in Figures 39.17a and 39.17b. In Figure 39.17a, a person standing in 
an elevator on the surface of a planet feels pressed into the floor due to the gravi-
tational force. If he releases his briefcase, he observes it moving toward the floor 
with acceleration gS 5 2g ĵ. In Figure 39.17b, the person is in an elevator in empty 
space accelerating upward with aSel 5 1g ĵ. The person feels pressed into the floor 
with the same force as in Figure 39.17a. If he releases his briefcase, he observes it 
moving toward the floor with acceleration g, exactly as in the previous situation. In 
each situation, an object released by the observer undergoes a downward accelera-
tion of magnitude g relative to the floor. In Figure 39.17a, the person is at rest in 
an inertial frame in a gravitational field due to the planet. In Figure 39.17b, the 
person is in a noninertial frame accelerating in gravity-free space. Einstein’s claim 
is that these two situations are completely equivalent.
 Einstein carried this idea further and proposed that no experiment, mechani-
cal or otherwise, could distinguish between the two situations. This extension to 
include all phenomena (not just mechanical ones) has interesting consequences. 
For example, suppose a light pulse is sent horizontally across the elevator as in Fig-
ure 39.17c, in which the elevator is accelerating upward in empty space. From the 
point of view of an observer in an inertial frame outside the elevator, the light trav-
els in a straight line while the floor of the elevator accelerates upward. According to 
the observer on the elevator, however, the trajectory of the light pulse bends down-
ward as the floor of the elevator (and the observer) accelerates upward. Therefore, 
based on the equality of parts (a) and (b) of the figure, Einstein proposed that a 

a b

vel � 0 S

ael � 0 S
vel � 0 S

ael � 0 S

ael � �gˆ  S
j

g � �g jS

The observer in the 
nonaccelerating elevator 
drops his briefcase, 
which he observes to 
move downward with 
acceleration g.

The observer in the 
accelerating elevator drops 
his briefcase, which he 
observes to move downward 
with acceleration g.

dc

ael � �gˆ   S
j

In an accelerating 
elevator, the observer 
sees a light beam bend 
downward.

Because of the equivalence 
in  a  and  b  ,  we expect a 
light ray to bend downward 
in a gravitational field.     

a b

ˆ g � �g jS ˆ

Figure 39.17  (a) The observer is at rest in an elevator in a uniform gravitational field gS 5 2g ĵ, 
directed downward. (b) The observer is in a region where gravity is negligible, but the elevator moves 
upward with an acceleration aSel 5 1g ĵ. According to Einstein, the frames of reference in (a) and 
(b) are equivalent in every way. No local experiment can distinguish any difference between the two 
frames. (c) An observer watches a beam of light in an accelerating elevator. (d) Einstein’s prediction 
of the behavior of a beam of light in a gravitational field.
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beam of light should also be bent downward by a gravitational field as in Figure 
39.17d. Experiments have verified the effect, although the bending is small. A laser 
aimed at the horizon falls less than 1 cm after traveling 6 000 km. (No such bend-
ing is predicted in Newton’s theory of gravitation.)
 Einstein’s general theory of relativity has two postulates:

 All the laws of nature have the same form for observers in any frame of refer-
ence, whether accelerated or not.

 In the vicinity of any point, a gravitational field is equivalent to an accelerated 
frame of reference in gravity-free space (the principle of equivalence).

 One interesting effect predicted by the general theory is that time is altered by 
gravity. A clock in the presence of gravity runs slower than one located where grav-
ity is negligible. Consequently, the frequencies of radiation emitted by atoms in the 
presence of a strong gravitational field are redshifted to lower frequencies when com-
pared with the same emissions in the presence of a weak field. This gravitational 
redshift has been detected in spectral lines emitted by atoms in massive stars. It has 
also been verified on the Earth by comparing the frequencies of gamma rays emit-
ted from nuclei separated vertically by about 20 m.
 The second postulate suggests a gravitational field may be “transformed away” at 
any point if we choose an appropriate accelerated frame of reference, a freely falling 
one. Einstein developed an ingenious method of describing the acceleration neces-
sary to make the gravitational field “disappear.” He specified a concept, the curva-
ture of space–time, that describes the gravitational effect at every point. In fact, the 
curvature of space–time completely replaces Newton’s gravitational theory. Accord-
ing to Einstein, there is no such thing as a gravitational force. Rather, the presence 
of a mass causes a curvature of space–time in the vicinity of the mass, and this cur-
vature dictates the space–time path that all freely moving objects must follow.
 As an example of the effects of curved space–time, imagine two travelers moving 
on parallel paths a few meters apart on the surface of the Earth and maintaining an 
exact northward heading along two longitude lines. As they observe each other near 
the equator, they will claim that their paths are exactly parallel. As they approach 
the North Pole, however, they notice that they are moving closer together and will 
meet at the North Pole. Therefore, they claim that they moved along parallel paths, 
but moved toward each other, as if there were an attractive force between them. The trav-
elers make this conclusion based on their everyday experience of moving on flat 
surfaces. From our mental representation, however, we realize they are walking on 
a curved surface, and it is the geometry of the curved surface, rather than an attrac-
tive force, that causes them to converge. In a similar way, general relativity replaces 
the notion of forces with the movement of objects through curved space–time.
 One prediction of the general theory of relativity is that a light ray passing near 
the Sun should be deflected in the curved space–time created by the Sun’s mass. 
This prediction was confirmed when astronomers detected the bending of starlight 
near the Sun during a total solar eclipse that occurred shortly after World War I 
(Fig. 39.18). When this discovery was announced, Einstein became an international 
celebrity.

Einstein’s cross. The four outer 
bright spots are images of the 
same galaxy that have been bent 
around a massive object located 
between the galaxy and the Earth. 
The massive object acts like a lens, 
causing the rays of light that were 
diverging from the distant galaxy 
to converge on the Earth. (If the 
intervening massive object had 
a uniform mass distribution, we 
would see a bright ring instead of 
four spots.)

C
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In his general 
theory of 
relativity, Einstein 
calculated that 
starlight just 
grazing the Sun’s 
surface should be 
deflected by an 
angle of 1.75 s of 
arc.

1.75"

Sun

Light from star
(actual
direction)

Apparent
direction to star

Deflected path of 
light from star

Earth
Figure 39.18  Deflection of 
starlight passing near the Sun. 
Because of this effect, the Sun or 
some other remote object can act 
as a gravitational lens.
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 If the concentration of mass becomes very great as is believed to occur when 
a large star exhausts its nuclear fuel and collapses to a very small volume, a black 

hole may form as discussed in Chapter 13. Here, the curvature of space–time is so 
extreme that within a certain distance from the center of the black hole all matter 
and light become trapped as discussed in Section 13.6.

 Three consequences of the special theory of relativity are as follows:

are not necessarily measured to be simultaneous for another 
observer who is in motion relative to the first.

slower by a factor g 5 (1 2 v 2/c 2)21/2. This phenomenon is 
known as time dilation.

the direction of motion by a factor 1/g 5 (1 2 v 2/c 2)1/2. This 
phenomenon is known as length contraction.

 The relativistic expression for the kinetic energy of a particle is

 K 5
mc 2

Å1 2
u2

c 2

2 mc 2 5 1g 2 1 2mc 2  (39.23)

 The total energy E of a particle is given by

 E 5
mc 2

Å1 2
u2

c 2

5 gmc 2  (39.26)

 The two basic postulates of the special 
theory of relativity are as follows:

in all inertial reference frames.

the same value, c 5 3.00 3 108 m/s, 
in all inertial frames, regardless of 
the velocity of the observer or the 
velocity of the source emitting the 
light.

 The constant term mc 2 in Equation 
39.23 is called the rest energy ER of the 
particle:

 ER 5 mc 2 (39.24)

 The relativistic linear momentum of a particle is 
related to its total energy through the equation

 E 2 5 p2c 2 1 (mc 2)2 (39.27)

Summary

Definitions

Concepts and Principles

 The relativistic force F
S

 acting on a particle whose 
linear momentum is pS is defined as

 F
S
;

d pS

dt
 (39.20)

 The relativistic form of the Lorentz velocity 

transformation equation is

 u rx 5
ux 2 v

1 2
uxv

c 2

 (39.16)

where u9x is the x component of the velocity of an 
object as measured in the S9 frame and ux is its 
component as measured in the S frame.

 The relativistic expression for the linear momentum 
of a particle moving with a velocity uS is

 pS ;
muS

Å1 2
u2

c 2

5 gm uS  (39.19)

 To satisfy the postulates of special relativity, the Galilean 
transformation equations must be replaced by the Lorentz 

transformation equations:

 x r 5 g 1x 2 vt 2 y r 5 y z r 5 z t r 5 gat 2
v
c 2 xb  (39.11)

where g 5 (1 2 v 2/c 2)21/2 and the S9 frame moves in the x 
direction at speed v relative to the S frame.



1224 Chapter 39 Relativity

of the dimensions of her spacecraft would be shorter.  
(e) None of those answers is correct.

 6. You measure the volume of a cube at rest to be V0. You 
then measure the volume of the same cube as it passes 
you in a direction parallel to one side of the cube. The 
speed of the cube is 0.980c, so g < 5. Is the volume you 
measure close to (a) V0/25, (b) V0/5, (c) V0, (d) 5V0, or 
(e) 25V0?

 7. Two identical clocks are set side by side and synchro-
nized. One remains on the Earth. The other is put into 
orbit around the Earth moving rapidly toward the east. 
(i) As measured by an observer on the Earth, does the 
orbiting clock (a) run faster than the Earth-based clock, 
(b) run at the same rate, or (c) run slower? (ii) The 
orbiting clock is returned to its original location and 
brought to rest relative to the Earth-based clock. There-
after, what happens? (a) Its reading lags farther and far-
ther behind the Earth-based clock. (b) It lags behind 
the Earth-based clock by a constant amount. (c) It is syn-
chronous with the Earth-based clock. (d) It is ahead of 
the Earth-based clock by a constant amount. (e) It gets 
farther and farther ahead of the Earth-based clock.

 8. The following three particles all have the same total 
energy E: (a) a photon, (b) a proton, and (c) an elec-
tron. Rank the magnitudes of the particles’ momenta 
from greatest to smallest.

 9. Which of the following statements are fundamental 
postulates of the special theory of relativity? More than 
one statement may be correct. (a) Light moves through 
a substance called the ether. (b) The speed of light 
depends on the inertial reference frame in which it is 
measured. (c) The laws of physics depend on the iner-
tial reference frame in which they are used. (d) The 
laws of physics are the same in all inertial reference 
frames. (e) The speed of light is independent of the 
inertial reference frame in which it is measured.

 10. A distant astronomical object (a quasar) is moving away 
from us at half the speed of light. What is the speed of 
the light we receive from this quasar? (a) greater than c 
(b) c (c) between c/2 and c (d) c/2 (e) between 0 and c/2

 1. (i) Does the speed of an electron have an upper limit? 
(a) yes, the speed of light c (b) yes, with another value 
(c) no (ii) Does the magnitude of an electron’s momen-
tum have an upper limit? (a) yes, mec (b) yes, with 
another value (c)  no (iii) Does the electron’s kinetic 
energy have an upper limit? (a) yes, mec 2 (b) yes, 1

2mec
2 

(c) yes, with another value (d) no

 2. A spacecraft zooms past the Earth with a constant 
velocity. An observer on the Earth measures that an 
undamaged clock on the spacecraft is ticking at one-
third the rate of an identical clock on the Earth. What 
does an observer on the spacecraft measure about 
the Earth-based clock’s ticking rate? (a) It runs more 
than three times faster than his own clock. (b) It runs 
three times faster than his own. (c) It runs at the same 
rate as his own. (d) It runs at one-third the rate of 
his own. (e) It runs at less than one-third the rate of  
his own.

 3. As a car heads down a highway traveling at a speed v 
away from a ground observer, which of the following 
statements are true about the measured speed of the 
light beam from the car’s headlights? More than one 
statement may be correct. (a) The ground observer 
measures the light speed to be c 1 v. (b) The driver 
measures the light speed to be c. (c) The ground 
observer measures the light speed to be c. (d) The 
driver measures the light speed to be c 2 v. (e) The 
ground observer measures the light speed to be c 2 v.

 4. A spacecraft built in the shape of a sphere moves past 
an observer on the Earth with a speed of 0.500c. What 
shape does the observer measure for the spacecraft as 
it goes by? (a) a sphere (b) a cigar shape, elongated 
along the direction of motion (c) a round pillow shape, 
flattened along the direction of motion (d) a conical 
shape, pointing in the direction of motion

 5. An astronaut is traveling in a spacecraft in outer space 
in a straight line at a constant speed of 0.500c. Which 
of the following effects would she experience? (a) She 
would feel heavier. (b) She would find it harder to 
breathe. (c) Her heart rate would change. (d) Some 

Objective Questions 1. denotes answer available in Student Solutions Manual/Study Guide

Conceptual Questions 1. denotes answer available in Student Solutions Manual/Study Guide

 1. In several cases, a nearby star has been found to have a 
large planet orbiting about it, although light from the 
planet could not be seen separately from the starlight. 
Using the ideas of a system rotating about its center of 
mass and of the Doppler shift for light, explain how an 
astronomer could determine the presence of the invis-
ible planet.

 2. Explain why, when defining the length of a rod, it is 
necessary to specify that the positions of the ends of 
the rod are to be measured simultaneously.

 3. A train is approaching you at very high speed as you 
stand next to the tracks. Just as an observer on the 
train passes you, you both begin to play the same 

recorded version of a Beethoven symphony on identi-
cal iPods. (a) According to you, whose iPod finishes 
the symphony first? (b) What If? According to the 
observer on the train, whose iPod finishes the sym-
phony first? (c) Whose iPod actually finishes the sym-
phony first?

 4. List three ways our day-to-day lives would change if the 
speed of light were only 50 m/s.

 5. How is acceleration indicated on a space–time graph?

 6. (a) “Newtonian mechanics correctly describes objects 
moving at ordinary speeds, and relativistic mechanics 
correctly describes objects moving very fast.” (b) “Rela-
tivistic mechanics must make a smooth transition as 
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 2. In a laboratory frame of reference, an observer notes 
that Newton’s second law is valid. Assume forces and 
masses are measured to be the same in any reference 
frame for speeds small compared with the speed of 
light. (a) Show that Newton’s second law is also valid 
for an observer moving at a constant speed, small 
compared with the speed of light, relative to the  
laboratory frame. (b) Show that Newton’s second law 
is not valid in a reference frame moving past the labo-
ratory frame with a con-
stant acceleration.

 3. The speed of the Earth in 
its orbit is 29.8 km/s. If that 
is the magnitude of the 
velocity vS of the ether wind 
in Figure P39.3, find the 
angle f between the velocity  
of light cS in vacuum and 
the resultant velocity of 
light if there were an ether.

Section 39.1  The Principle of Galilean Relativity

Problems 46–48, 50, 51, 53–54, and 79 in Chapter 4 can 
be assigned with this section.

 1. The truck in Figure P39.1 is moving at a speed of  
10.0 m/s relative to the ground. The person on the 
truck throws a baseball in the backward direction at a 
speed of 20.0 m/s relative to the truck. What is the 
velocity of the baseball as measured by the observer on 
the ground?

vtruck

vS
S

Figure P39.1

light. (ii) A laser pointer is suspended in a horizontal 
plane and set into rapid rotation as shown in Figure 
CQ39.12b. Show that the spot of light it produces on 
a distant screen can move across the screen at a speed 
greater than the speed of light. (If you carry out this 
experiment, make sure the direct laser light cannot 
enter a person’s eyes.) (iii) Argue that the experiments 
in parts (i) and (ii) do not invalidate the principle that 
no material, no energy, and no information can move 
faster than light moves in a vacuum.

a

p

f

F

b

Figure CQ39.12

 13. With regard to reference frames, how does general rel-
ativity differ from special relativity?

 14. Two identical clocks are in the same house, one 
upstairs in a bedroom and the other downstairs in the 
kitchen. Which clock runs slower? Explain.

it reduces to Newtonian mechanics in a case in which 
the speed of an object becomes small compared with 
the speed of light.” Argue for or against statements (a) 
and (b).

 7. The speed of light in water is 230 Mm/s. Suppose an 
electron is moving through water at 250 Mm/s. Does 
that violate the principle of relativity? Explain.

 8. A particle is moving at a speed less than c/2. If the 
speed of the particle is doubled, what happens to its 
momentum?

 9. Give a physical argument that shows it is impossible to 
accelerate an object of mass m to the speed of light, 
even with a continuous force acting on it.

 10. Explain how the Doppler effect with microwaves is 
used to determine the speed of an automobile.

 11. It is said that Einstein, in his teenage years, asked the 
question, “What would I see in a mirror if I carried it in 
my hands and ran at a speed near that of light?” How 
would you answer this question?

 12. (i) An object is placed at a position p . f from a con-
cave mirror as shown in Figure CQ39.12a, where f is 
the focal length of the mirror. In a finite time inter-
val, the object is moved to the right to a position at 
the focal point F of the mirror. Show that the image of 
the object moves at a speed greater than the speed of 

Problems

 
The problems found in this  

 chapter may be assigned 

online in Enhanced WebAssign
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3. challenging
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 W   Watch It video solution available in 
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 4. A car of mass 2 000 kg moving with a speed of 20.0 m/s 
collides and locks together with a 1 500-kg car at rest 
at a stop sign. Show that momentum is conserved in a 
reference frame moving at 10.0 m/s in the direction of 
the moving car.

Section 39.2  The Michelson–Morley Experiment

Section 39.3  Einstein’s Principle of Relativity

Section 39.4  Consequences of the Special Theory of Relativity

Problem 82 in Chapter 4 can be assigned with this section.

 5. A star is 5.00 ly from the Earth. At what speed must 
a spacecraft travel on its journey to the star such that 
the Earth–star distance measured in the frame of the 
spacecraft is 2.00 ly?

 6. A meterstick moving at 0.900c relative to the Earth’s 
surface approaches an observer at rest with respect to 
the Earth’s surface. (a) What is the meterstick’s length 
as measured by the observer? (b) Qualitatively, how 
would the answer to part (a) change if the observer 
started running toward the meterstick?

 7. At what speed does a clock move if it is measured to 
run at a rate one-half the rate of a clock at rest with 
respect to an observer?

 8. A muon formed high in the Earth’s atmosphere is mea-
sured by an observer on the Earth’s surface to travel 
at speed v 5 0.990c for a distance of 4.60 km before 
it decays into an electron, a neutrino, and an antineu-
trino (m2  S  e2 1 n 1 n). (a) For what time interval 
does the muon live as measured in its reference frame? 
(b) How far does the Earth travel as measured in the 
frame of the muon?

 9. How fast must a meterstick be moving if its length is 
measured to shrink to 0.500 m?

 10. An astronaut is traveling in a space vehicle moving at 
0.500c relative to the Earth. The astronaut measures 
her pulse rate at 75.0 beats per minute. Signals gen-
erated by the astronaut’s pulse are radioed to the 
Earth when the vehicle is moving in a direction per-
pendicular to the line that connects the vehicle with 
an observer on the Earth. (a)  What pulse rate does 
the Earth-based observer measure? (b) What If? What 
would be the pulse rate if the speed of the space vehi-
cle were increased to 0.990c?

 11. A physicist drives through a stop light. When he is pulled 
over, he tells the police officer that the Doppler shift 
made the red light of wavelength 650 nm appear green 
to him, with a wavelength of 520 nm. The police officer 
writes out a traffic citation for speeding. How fast was 
the physicist traveling, according to his own testimony?

 12. A fellow astronaut passes by you in a spacecraft trav-
eling at a high speed. The astronaut tells you that his 
craft is 20.0 m long and that the identical craft you are 
sitting in is 19.0 m long. According to your observa-
tions, (a) how long is your craft, (b) how long is the 
astronaut’s craft, and (c) what is the speed of the astro-
naut’s craft relative to your craft?
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 13. A deep-space vehicle moves away from the Earth with a 
speed of 0.800c. An astronaut on the vehicle measures 
a time interval of 3.00 s to rotate her body through 
1.00 rev as she floats in the vehicle. What time interval 
is required for this rotation according to an observer 
on the Earth?

 14. For what value of v does g 5 1.010 0? Observe that for 
speeds lower than this value, time dilation and length 
contraction are effects amounting to less than 1%.

 15. A supertrain with a proper length of 100 m travels at 
a speed of 0.950c as it passes through a tunnel hav-
ing a proper length of 50.0 m. As seen by a trackside 
observer, is the train ever completely within the tun-
nel? If so, by how much do the train’s ends clear the 
ends of the tunnel?

 16. The average lifetime of a pi meson in its own frame of 
reference (i.e., the proper lifetime) is 2.6 3 1028 s. If 
the meson moves with a speed of 0.98c, what is (a) its 
mean lifetime as measured by an observer on Earth, 
and (b) the average distance it travels before decay-
ing, as measured by an observer on Earth? (c) What 
distance would it travel if time dilation did not occur?

 17. An astronomer on the Earth observes a meteoroid in 
the southern sky approaching the Earth at a speed of 
0.800c. At the time of its discovery the meteoroid is 
20.0 ly from the Earth. Calculate (a) the time interval 
required for the meteoroid to reach the Earth as mea-
sured by the Earthbound astronomer, (b) this time 
interval as measured by a tourist on the meteoroid, 
and (c) the distance to the Earth as measured by the 
tourist.

 18. A cube of steel has a volume of 1.00 cm3 and a mass 
of 8.00 g when at rest on the Earth. If this cube is now 
given a speed u 5 0.900c, what is its density as mea-
sured by a stationary observer? Note that relativistic 
density is defined as ER/c2V.

 19. A spacecraft with a proper length of 300 m passes by 
an observer on the Earth. According to this observer, it 
takes 0.750 ms for the spacecraft to pass a fixed point. 
Determine the speed of the spacecraft as measured by 
the Earth-based observer.

 20. A spacecraft with a proper length of Lp passes by an 
observer on the Earth. According to this observer, it 
takes a time interval Dt for the spacecraft to pass a 
fixed point. Determine the speed of the object as mea-
sured by the Earth-based observer.

 21. A light source recedes from an observer with a speed 
vS that is small compared with c. (a) Show that the frac-
tional shift in the measured wavelength is given by the 
approximate expression

Dl

l
<

vS

c
  This phenomenon is known as the redshift because the 

visible light is shifted toward the red. (b) Spectroscopic 
measurements of light at l 5 397 nm coming from a 
galaxy in Ursa Major reveal a redshift of 20.0 nm. What 
is the recessional speed of the galaxy?
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end of the 1.00-h interval, how many nanoseconds slow 
will the moving clock be compared with the Earth-
based clock?

 26. Review. An alien civilization occupies a planet circling 
a brown dwarf, several light-years away. The plane of 
the planet’s orbit is perpendicular to a line from the 
brown dwarf to the Sun, so the planet is at nearly a 
fixed position relative to the Sun. The extraterrestrials 
have come to love broadcasts of MacGyver, on television 
channel 2, at carrier frequency 57.0 MHz. Their line of 
sight to us is in the plane of the Earth’s orbit. Find the 
difference between the highest and lowest frequencies 
they receive due to the Earth’s orbital motion around 
the Sun.

Section 39.5  The Lorentz Transformation Equations

 27. A red light flashes at position x R 5 3.00 m and time  
t R 5 1.00 3 1029 s, and a blue light flashes at x B 5  
5.00 m and t B 5 9.00 3 1029 s, all measured in the S 
reference frame. Reference frame S9 moves uniformly 
to the right and has its origin at the same point as S at 
t 5 t 9 5 0. Both flashes are observed to occur at the 
same place in S9. (a) Find the relative speed between 
S and S9. (b) Find the location of the two flashes in 
frame S9. (c) At what time does the red flash occur in 
the S9 frame?

 28. Shannon observes two light pulses to be emitted from 
the same location, but separated in time by 3.00 ms. 
Kimmie observes the emission of the same two pulses 
to be separated in time by 9.00 ms. (a) How fast is Kim-
mie moving relative to Shannon? (b) According to Kim-
mie, what is the separation in space of the two pulses?

 29. A moving rod is observed 
to have a length of , 5 
2.00  m and to be ori-
ented at an angle of u 5 
30.0° with respect to the 
direction of motion as 
shown in Figure P39.29. 
The rod has a speed of 
0.995c. (a)  What is the 
proper length of the rod? 
(b) What is the orientation angle in the proper frame?

 30. A rod moving with a speed v along the horizontal direc-
tion is observed to have length , and to make an angle 
u with respect to the direction of motion as shown in 
Figure P39.29. (a) Show that the length of the rod as 
measured by an observer at rest with respect to the rod 
is ,p 5 ,[1 2 (v2/c 2) cos2 u]1/2. (b) Show that the angle 
up that the rod makes with the x axis according to an 
observer at rest with respect to the rod can be found 
from tan up 5 g tan u. These results show that the rod is 
observed to be both contracted and rotated. (Take the 
lower end of the rod to be at the origin of the coordi-
nate system in which the rod is at rest.)

 31. Keilah, in reference frame S, measures two events to be 
simultaneous. Event A occurs at the point (50.0 m, 0, 
0) at the instant 9:00:00 Universal time on January 15, 

W

Direction of motion

u

,

Figure P39.29
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 22. Review. In 1963, astronaut Gordon Cooper orbited the 
Earth 22 times. The press stated that for each orbit, 
he aged two-millionths of a second less than he would 
have had he remained on the Earth. (a) Assuming 
Cooper was 160 km above the Earth in a circular orbit, 
determine the difference in elapsed time between 
someone on the Earth and the orbiting astronaut for 
the 22 orbits. You may use the approximation

 
1

"1 2 x
< 1 1

x
2

  for small x. (b) Did the press report accurate informa-
tion? Explain.

 23. Police radar detects the speed of a car (Fig. P39.23) as 
follows. Microwaves of a precisely known frequency are 
broadcast toward the car. The moving car reflects the 
microwaves with a Doppler shift. The reflected waves 
are received and combined with an attenuated version 
of the transmitted wave. Beats occur between the two 
microwave signals. The beat frequency is measured. 
(a) For an electromagnetic wave reflected back to its 
source from a mirror approaching at speed v, show 
that the reflected wave has frequency

f r 5
c 1 v
c 2 v

 f

  where f is the source frequency. (b) Noting that v is 
much less than c, show that the beat frequency can 
be written as fbeat 5 2v/l. (c) What beat frequency is 
measured for a car speed of 30.0 m/s if the microwaves 
have frequency 10.0 GHz? (d) If the beat frequency 
measurement in part (c) is accurate to 65.0 Hz, how 
accurate is the speed measurement?

Figure P39.23
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 24. The identical twins Speedo and Goslo join a migration 
from the Earth to Planet X, 20.0 ly away in a reference 
frame in which both planets are at rest. The twins, of 
the same age, depart at the same moment on different 
spacecraft. Speedo’s spacecraft travels steadily at 0.950c 
and Goslo’s at 0.750c. (a) Calculate the age difference 
between the twins after Goslo’s spacecraft lands on 
Planet X. (b) Which twin is older?

 25. An atomic clock moves at 1 000 km/h for 1.00 h as 
measured by an identical clock on the Earth. At the 

Q/C
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2013. Event B occurs at the point (150 m, 0, 0) at the 
same moment. Torrey, moving past with a velocity of 
0.800c î, also observes the two events. In her reference 
frame S9, which event occurred first and what time 
interval elapsed between the events?

Section 39.6 The Lorentz Velocity Transformation Equations

 32. Figure P39.32 shows a jet of material (at the upper 
right) being ejected by galaxy M87 (at the lower left). 
Such jets are believed to be evidence of supermassive 
black holes at the center of a galaxy. Suppose two jets 
of material from the center of a galaxy are ejected in 
opposite directions. Both jets move at 0.750c relative to 
the galaxy center. Determine the speed of one jet rela-
tive to the other.

Figure P39.32
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 33. An enemy spacecraft moves away from the Earth at a 
speed of v 5 0.800c (Fig. P39.33). A galactic patrol 
spacecraft pursues at a speed of u 5 0.900c relative to 
the Earth. Observers on the Earth measure the patrol 
craft to be overtaking the enemy craft at a relative speed 
of 0.100c. With what speed is the patrol craft overtaking 
the enemy craft as measured by the patrol craft’s crew?

S

Galactic patrol
spacecraft

Enemy spacecraft

x

S �

x �

v
S

u
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Figure P39.33

 34. A spacecraft is launched from the surface of the Earth 
with a velocity of 0.600c at an angle of 50.0° above the 
horizontal positive x axis. Another spacecraft is mov-
ing past with a velocity of 0.700c in the negative x direc-
tion. Determine the magnitude and direction of the 
velocity of the first spacecraft as measured by the pilot 
of the second spacecraft.

 35. A rocket moves with a velocity of 0.92c to the right 
with respect to a stationary observer A. An observer 
B moving relative to observer A finds that the rocket 
is moving with a velocity of 0.95c to the left. What is 
the velocity of observer B relative to observer A? (Hint: 

M

M

Consider observer B’s velocity in the frame of refer-
ence of the rocket.)

Section 39.7  Relativistic Linear Momentum

 36. Calculate the momentum of an electron moving with a 
speed of (a) 0.010 0c, (b) 0.500c, and (c) 0.900c.

 37. An electron has a momentum that is three times larger 
than its classical momentum. (a) Find the speed of the 
electron. (b) What If? How would your result change if 
the particle were a proton?

 38. Show that the speed of an object having momentum of 
magnitude p and mass m is 

  u 5
c

"1 1 1mc/p 22
 39. (a) Calculate the classical momentum of a proton travel-

ing at 0.990c, neglecting relativistic effects. (b) Repeat 
the calculation while including relativistic effects.  
(c) Does it make sense to neglect relativity at such 
speeds?

 40. The speed limit on a certain roadway is 90.0 km/h. 
Suppose speeding fines are made proportional to 
the amount by which a vehicle’s momentum exceeds 
the momentum it would have when traveling at the 
speed limit. The fine for driving at 190 km/h (that is,  
100 km/h over the speed limit) is $80.0. What, then, 
is the fine for traveling (a) at 1 090 km/h? (b) At 
1 000 000 090 km/h?

 41. A golf ball travels with a speed of 90.0 m/s. By what 
fraction does its relativistic momentum magnitude p 
differ from its classical value mu? That is, find the ratio 
(p 2 mu)/mu.

 42. The nonrelativistic expression for the momentum of a 
particle, p 5 mu, agrees with experiment if u ,, c. For 
what speed does the use of this equation give an error in 
the measured momentum of (a) 1.00% and (b) 10.0%?

 43. An unstable particle at rest spontaneously breaks into 
two fragments of unequal mass. The mass of the first 
fragment is 2.50 3 10228 kg, and that of the other is 
1.67 3 10227  kg. If the lighter fragment has a speed 
of 0.893c after the breakup, what is the speed of the 
heavier fragment?

Section 39.8  Relativistic Energy

 44. Determine the energy required to accelerate an elec-
tron from (a) 0.500c to 0.900c and (b) 0.900c to 0.990c.

 45. An electron has a kinetic energy five times greater than 
its rest energy. Find (a) its total energy and (b) its speed.

 46. Protons in an accelerator at the Fermi National Labo-
ratory near Chicago are accelerated to a total energy 
that is 400 times their rest energy. (a) What is the 
speed of these protons in terms of c? (b) What is their 
kinetic energy in MeV?

 47. A proton moves at 0.950c. Calculate its (a) rest energy, 
(b) total energy, and (c) kinetic energy.

 48. (a) Find the kinetic energy of a 78.0-kg spacecraft 
launched out of the solar system with speed 106 km/s 
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(c) assuming both particles have kinetic energies of  
2 000 MeV.

 60. Consider a car moving at highway speed u. Is its actual 
kinetic energy larger or smaller than 1

2mu2? Make an 
order-of-magnitude estimate of the amount by which 
its actual kinetic energy differs from 12mu2. In your solu-
tion, state the quantities you take as data and the val-
ues you measure or estimate for them. You may find 
Appendix B.5 useful.

 61. A pion at rest (m p 5 273me) decays to a muon (mm 5 
207me) and an antineutrino (mn– < 0). The reaction is 
written p2  S  m2 1 n. Find (a) the kinetic energy of 
the muon and (b) the energy of the antineutrino in 
electron volts.

 62. An unstable particle with mass m 5 3.34 3 10227 kg is 
initially at rest. The particle decays into two fragments 
that fly off along the x axis with velocity components 
u1 5 0.987c and u2 5 20.868c. From this information, 
we wish to determine the masses of fragments 1 and 2. 
(a) Is the initial system of the unstable particle, which 
becomes the system of the two fragments, isolated or 
nonisolated? (b) Based on your answer to part (a), what 
two analysis models are appropriate for this situation? 
(c) Find the values of g for the two fragments after the 
decay. (d) Using one of the analysis models in part (b), 
find a relationship between the masses m 1 and m 2 of 
the fragments. (e) Using the second analysis model in 
part (b), find a second relationship between the masses 
m 1 and m 2. (f) Solve the relationships in parts (d) and 
(e) simultaneously for the masses m 1 and m 2.

 63. Massive stars ending their lives in supernova explo-
sions produce the nuclei of all the atoms in the bottom 
half of the periodic table by fusion of smaller nuclei. 
This problem roughly models that process. A particle 
of mass m 5 1.99 3 10226 kg moving with a velocity 
uS 5 0.500c î collides head-on and sticks to a particle of 
mass m9 5 m/3 moving with the velocity uS 5 20.500c î. 
What is the mass of the resulting particle?

 64. Massive stars ending their lives in supernova explosions 
produce the nuclei of all the atoms in the bottom half 
of the periodic table by fusion of smaller nuclei. This 
problem roughly models that process. A particle of mass 
m moving along the x axis with a velocity component 
1u collides head-on and sticks to a particle of mass m/3 
moving along the x axis with the velocity component 
2u. (a) What is the mass M of the resulting particle? 
(b) Evaluate the expression from part (a) in the limit 
u S 0. (c) Explain whether the result agrees with what 
you should expect from nonrelativistic physics.

Section 39.9  The General Theory of Relativity

 65. Review. A global positioning system (GPS) satellite 
moves in a circular orbit with period 11 h 58 min.  
(a) Determine the radius of its orbit. (b) Determine its 
speed. (c) The nonmilitary GPS signal is broadcast at 
a frequency of 1 575.42 MHz in the reference frame of 
the satellite. When it is received on the Earth’s surface 
by a GPS receiver (Fig. P39.65 on page 1230), what is 
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by using the classical equation K 5 1
2mu2. (b) What If? 

Calculate its kinetic energy using the relativistic equa-
tion. (c) Explain the result of comparing the answers 
of parts (a) and (b).

 49. A proton in a high-energy accelerator moves with a 
speed of c/2. Use the work–kinetic energy theorem 
to find the work required to increase its speed to  
(a) 0.750c and (b) 0.995c.

 50. Show that for any object moving at less than one-tenth 
the speed of light, the relativistic kinetic energy agrees  
with the result of the classical equation K 5 1

2mu2 to 
within less than 1%. Therefore, for most purposes, the 
classical equation is sufficient to describe these objects.

 51. The total energy of a proton is twice its rest energy. 
Find the momentum of the proton in MeV/c units.

 52. Consider electrons accelerated to a total energy of 
20.0  GeV in the 3.00-km-long Stanford Linear Accel-
erator. (a) What is the factor g for the electrons?  
(b) What is the electrons’ speed at the given energy? 
(c) What is the length of the accelerator in the elec-
trons’ frame of reference when they are moving at 
their highest speed?

 53. When 1.00 g of hydrogen combines with 8.00 g of 
oxygen, 9.00 g of water is formed. During this chemi-
cal reaction, 2.86 3 105 J of energy is released. (a) Is 
the mass of the water larger or smaller than the mass 
of the reactants? (b) What is the difference in mass? 
(c) Explain whether the change in mass is likely to be 
detectable.

 54. In a nuclear power plant, the fuel rods last 3 yr before 
they are replaced. The plant can transform energy at a 
maximum possible rate of 1.00 GW. Supposing it oper-
ates at 80.0% capacity for 3.00 yr, what is the loss of 
mass of the fuel?

 55. The power output of the Sun is 3.85 3 1026 W. By how 
much does the mass of the Sun decrease each second?

 56. A gamma ray (a high-energy photon) can produce an 
electron (e2) and a positron (e1) of equal mass when it 
enters the electric field of a heavy nucleus: g S e1 1 e2.  
What minimum gamma-ray energy is required to 
accomplish this task?

 57. A spaceship of mass 2.40 3 106 kg is to be accelerated 
to a speed of 0.700c. (a) What minimum amount of 
energy does this acceleration require from the space-
ship’s fuel, assuming perfect efficiency? (b) How much 
fuel would it take to provide this much energy if all the 
rest energy of the fuel could be transformed to kinetic 
energy of the spaceship?

 58. Show that the energy–momentum relationship in 
Equation 39.27, E 2 5 p2c 2 1 (mc 2)2, follows from the 
expressions E 5 gmc 2 and p 5 gmu.

 59. The rest energy of an electron is 0.511 MeV. The rest 
energy of a proton is 938 MeV. Assume both particles 
have kinetic energies of 2.00 MeV. Find the speed of 
(a) the electron and (b) the proton. (c) By what factor 
does the speed of the electron exceed that of the pro-
ton? (d) Repeat the calculations in parts (a) through 
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delay, with a frequency shifted downward by 254 Hz. 
These pulses have the highest and lowest frequencies 
the station receives. (a) Calculate the radial velocity 
components of both batches of raindrops. (b) Assume 
that these raindrops are swirling in a uniformly rotat-
ing vortex. Find the angular speed of their rotation.

 70. An object having mass 900 kg and traveling at speed 
0.850c collides with a stationary object having mass 
1 400 kg. The two objects stick together. Find (a) the 
speed and (b) the mass of the composite object.

 71. An astronaut wishes to visit the Andromeda galaxy, 
making a one-way trip that will take 30.0 years in the 
spaceship’s frame of reference. Assume the galaxy is 
2.00 million light-years away and his speed is constant. 
(a) How fast must he travel relative to Earth? (b) What 
will be the kinetic energy of his spacecraft, which 
has mass of 1.00 3 106 kg? (c) What is the cost of this 
energy if it is purchased at a typical consumer price for 
electric energy, 13.0¢ per kWh? The following approxi-
mation will prove useful:

  
1

"1 1 x
< 1 2

x
2

 for x ,, 1

 72. A physics professor on the Earth gives an exam to her 
students, who are in a spacecraft traveling at speed v 
relative to the Earth. The moment the craft passes the 
professor, she signals the start of the exam. She wishes 
her students to have a time interval T0 (spacecraft 
time) to complete the exam. Show that she should wait 
a time interval (Earth time) of

  T 5 T0Å 1 2 v/c
1 1 v/c

  before sending a light signal telling them to stop. (Sug-
gestion: Remember that it takes some time for the second 
light signal to travel from the professor to the students.)

 73. An interstellar space probe is launched from Earth. 
After a brief period of acceleration, it moves with 
a constant velocity, 70.0% of the speed of light. Its 
nuclear-powered batteries supply the energy to keep 
its data transmitter active continuously. The batter-
ies have a lifetime of 15.0 years as measured in a rest 
frame. (a) How long do the batteries on the space 
probe last as measured by mission control on Earth? 
(b) How far is the probe from Earth when its batter-
ies fail as measured by mission control? (c) How far is 
the probe from Earth as measured by its built-in trip 
odometer when its batteries fail? (d) For what total 
time after launch are data received from the probe 
by mission control? Note that radio waves travel at the 
speed of light and fill the space between the probe and 
Earth at the time the battery fails.

 74. The equation

K 5 a 1

"1 2 u2/c 2
2 1bmc 2

  gives the kinetic energy of a particle moving at speed 
u. (a) Solve the equation for u. (b) From the equation 
for u, identify the minimum possible value of speed 
and the corresponding kinetic energy. (c) Identify 
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the fractional change in this frequency due to time 
dilation as described by special relativity? (d)  The 
gravitational “blueshift” of the frequency according to  
general relativity is a separate effect. It is called a blue-
shift to indicate a change to a higher frequency. The 
magnitude of that fractional change is given by

 
Df

f
5

DUg

mc 2

  where Ug is the change in gravitational potential 
energy of an object–Earth system when the object of 
mass m is moved between the two points where the 
signal is observed. Calculate this fractional change 
in frequency due to the change in position of the sat-
ellite from the Earth’s surface to its orbital position.  
(e) What is the overall fractional change in frequency 
due to both time dilation and gravitational blueshift?

Figure P39.65
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Additional Problems

 66. An electron has a speed of 0.750c. (a) Find the speed of 
a proton that has the same kinetic energy as the elec-
tron. (b) What If? Find the speed of a proton that has 
the same momentum as the electron.

 67. The net nuclear fusion reaction inside the Sun can 
be written as 41H S 4He 1 E. The rest energy of each 
hydrogen atom is 938.78 MeV, and the rest energy of 
the helium-4 atom is 3 728.4 MeV. Calculate the per-
centage of the starting mass that is transformed to 
other forms of energy.

 68. Why is the following situation impossible? On their 40th 
birthday, twins Speedo and Goslo say good-bye as 
Speedo takes off for a planet that is 50 ly away. He trav-
els at a constant speed of 0.85c and immediately turns 
around and comes back to the Earth after arriving at 
the planet. Upon arriving back at the Earth, Speedo 
has a joyous reunion with Goslo.

 69. A Doppler weather radar station broadcasts a pulse of 
radio waves at frequency 2.85 GHz. From a relatively 
small batch of raindrops at bearing 38.6° east of north, 
the station receives a reflected pulse after 180 ms with 
a frequency shifted upward by 254 Hz. From a similar 
batch of raindrops at bearing 39.6° east of north, the 
station receives a reflected pulse after the same time 
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the maximum possible speed and the correspond-
ing kinetic energy. (d) Differentiate the equation for 
u with respect to time to obtain an equation describ-
ing the acceleration of a particle as a function of its 
kinetic energy and the power input to the particle.  
(e) Observe that for a nonrelativistic particle we have  
u 5 (2K/m)1/2 and that differentiating this equa-
tion with respect to time gives a 5 P/(2mK )1/2. State 
the limiting form of the expression in part (d) at low 
energy. State how it compares with the nonrelativistic 
expression. (f) State the limiting form of the expres-
sion in part (d) at high energy. (g) Consider a particle 
with constant input power. Explain how the answer to 
part (f) helps account for the answer to part (c).

 75. Consider the astronaut planning the trip to Androm-
eda in Problem 71. (a) To three significant figures, 
what is the value for g for the speed found in part  
(a) of Problem 71? (b) Just as the astronaut leaves on 
his constant-speed trip, a light beam is also sent in 
the direction of Andromeda. According to the Earth 
observer, how much later does the astronaut arrive at 
Andromeda after the arrival of the light beam?

 76. An object disintegrates into two fragments. One frag-
ment has mass 1.00 MeV/c 2 and momentum 1.75 MeV/c 
in the positive x direction, and the other has mass  
1.50 MeV/c 2 and momentum 2.00 MeV/c in the positive 
y direction. Find (a) the mass and (b) the speed of the 
original object.

 77. The cosmic rays of highest energy are protons that 
have kinetic energy on the order of 1013 MeV. (a) As 
measured in the proton’s frame, what time interval 
would a proton of this energy require to travel across 
the Milky Way galaxy, which has a proper diameter  
, 105 ly? (b) From the point of view of the proton, how 
many kilometers across is the galaxy?

 78. Spacecraft I, containing students taking a physics 
exam, approaches the Earth with a speed of 0.600c 
(relative to the Earth), while spacecraft II, containing 
professors proctoring the exam, moves at 0.280c (rela-
tive to the Earth) directly toward the students. If the 
professors stop the exam after 50.0 min have passed on 
their clock, for what time interval does the exam last as 
measured by (a)  the students and (b) an observer on 
the Earth?

 79. Review. Around the core of a nuclear reactor shielded 
by a large pool of water, Cerenkov radiation appears as 
a blue glow. (See Fig. P17.38 on page 528.) Cerenkov 
radiation occurs when a particle travels faster through 
a medium than the speed of light in that medium. It is 
the electromagnetic equivalent of a bow wave or a sonic 
boom. An electron is traveling through water at a speed 
10.0% faster than the speed of light in water. Deter-
mine the electron’s (a) total energy, (b) kinetic energy, 
and (c) momentum. (d)  Find the angle between the 
shock wave and the electron’s direction of motion.

 80. The motion of a transparent medium influences the 
speed of light. This effect was first observed by Fizeau 
in 1851. Consider a light beam in water. The water 
moves with speed v in a horizontal pipe. Assume the 

M

M

Q/C

light travels in the same direction as the water moves. 
The speed of light with respect to the water is c/n, 
where n 5 1.33 is the index of refraction of water. 
(a) Use the velocity transformation equation to show 
that the speed of the light measured in the laboratory 
frame is

u 5
c
n
a1 1 nv/c

1 1 v/nc
b

  (b) Show that for v ,, c, the expression from part (a) 
becomes, to a good approximation,

u <
c
n

1 v 2
v
n2

  (c) Argue for or against the view that we should expect 
the result to be u 5 (c/n) 1 v according to the Gali-
lean transformation and that the presence of the term 
2v/n2 represents a relativistic effect appearing even at 
“nonrelativistic” speeds. (d) Evaluate u in the limit as 
the speed of the water approaches c.

 81. Imagine that the entire Sun, of mass MS , collapses 
to a sphere of radius Rg such that the work required 
to remove a small mass m from the surface would be 
equal to its rest energy mc2. This radius is called the 
gravitational radius for the Sun. (a) Use this approach 
to show that Rg 5 GMS/c2. (b) Find a numerical value 
for Rg.

 82. Why is the following situation impossible? An experimenter 
is accelerating electrons for use in probing a material. 
She finds that when she accelerates them through a 
potential difference of 84.0 kV, the electrons have half 
the speed she wishes. She quadruples the potential 
difference to 336 kV, and the electrons accelerated 
through this potential difference have her desired 
speed.

 83. An alien spaceship traveling at 0.600c toward the Earth 
launches a landing craft. The landing craft travels 
in the same direction with a speed of 0.800c relative 
to the mother ship. As measured on the Earth, the 
spaceship is 0.200 ly from the Earth when the landing 
craft is launched. (a) What speed do the Earth-based 
observers measure for the approaching landing craft? 
(b) What is the distance to the Earth at the moment of 
the landing craft’s launch as measured by the aliens? 
(c) What travel time is required for the landing craft 
to reach the Earth as measured by the aliens on the 
mother ship? (d) If the landing craft has a mass of  
4.00 3 105 kg, what is its kinetic energy as measured in 
the Earth reference frame?

 84. (a) Prepare a graph of the relativistic kinetic energy 
and the classical kinetic energy, both as a function of 
speed, for an object with a mass of your choice. (b) At 
what speed does the classical kinetic energy underesti-
mate the experimental value by 1%? (c) By 5%? (d) By 
50%?

 85. An observer in a coasting spacecraft moves toward a 
mirror at speed v 5 0.650c relative to the reference 
frame labeled S in Figure P39.85 (page 1232). The mir-
ror is stationary with respect to S. A light pulse emit-
ted by the spacecraft travels toward the mirror and is 
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momentum requires that the system as a whole still must 
have some kinetic energy after the collision. Therefore, 
only a fraction of the energy of the incident particle 
is available to create a new particle. (a) Show that the 
energy available to create a product particle is given by

Mc 2 5 2mpc
2Å1 1

K
2mpc

2

  This result shows that when the kinetic energy K of the 
incident proton is large compared with its rest energy 
mpc2, then M approaches (2mpK)1/2/c. Therefore, if the 
energy of the incoming proton is increased by a fac-
tor of 9, the mass you can create increases only by a 
factor of 3, not by a factor of 9 as would be expected.  
(b) This problem can be alleviated by using colliding 
beams as is the case in most modern accelerators. Here 
the total momentum of a pair of interacting particles 
can be zero. The center of mass can be at rest after the 
collision, so, in principle, all the initial kinetic energy 
can be used for particle creation. Show that

Mc 2 5 2mc 2a1 1
K

mc 2b
  where K is the kinetic energy of each of the two identi-

cal colliding particles. Here, if K .. mc2, we have M 
directly proportional to K as we would desire.

 90. Suppose our Sun is about to explode. In an effort to 
escape, we depart in a spacecraft at v 5 0.800c and head 
toward the star Tau Ceti, 12.0 ly away. When we reach 
the midpoint of our journey from the Earth, we see our 
Sun explode, and, unfortunately, at the same instant, 
we see Tau Ceti explode as well. (a) In the spacecraft’s 
frame of reference, should we conclude that the two 
explosions occurred simultaneously? If not, which 
occurred first? (b) What If? In a frame of reference in 
which the Sun and Tau Ceti are at rest, did they explode 
simultaneously? If not, which exploded first?

 91. Owen and Dina are at rest in frame S9, which is moving 
at 0.600c with respect to frame S. They play a game of 
catch while Ed, at rest in frame S, watches the action 
(Fig. P39.91). Owen throws the ball to Dina at 0.800c 
(according to Owen), and their separation (measured 
in S9) is equal to 1.80 3 1012 m. (a) According to Dina, 
how fast is the ball moving? (b) According to Dina, 
what time interval is required for the ball to reach her? 
According to Ed, (c) how far apart are Owen and Dina, 
(d) how fast is the ball moving, and (e) what time inter-
val is required for the ball to reach Dina?

0.600c

Owen

Ed

Dina

0.800c
1.80 � 1012 m

x �

x

S�

S

Figure P39.91
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reflected back to the spacecraft. The spacecraft is a 
distance d 5 5.66 3 1010 m from the mirror (as mea-
sured by observers in S) at the moment the light pulse 
leaves the spacecraft. What is the total travel time of 
the pulse as measured by observers in (a) the S frame 
and (b) the spacecraft?

Mirror
S

v
S

d

O

Figure P39.85 Problems 85 and 86.

 86. An observer in a coasting spacecraft moves toward a 
mirror at speed v relative to the reference frame 
labeled S in Figure P39.85. The mirror is stationary 
with respect to S. A light pulse emitted by the space-
craft travels toward the mirror and is reflected back to 
the spacecraft. The spacecraft is a distance d from the 
mirror (as measured by observers in S) at the moment 
the light pulse leaves the spacecraft. What is the total 
travel time of the pulse as measured by observers in  
(a) the S frame and (b) the spacecraft?

 87. A 57Fe nucleus at rest emits a 14.0-keV photon. Use con-
servation of energy and momentum to find the kinetic 
energy of the recoiling nucleus in electron volts. Use 
Mc2 5 8.60 3 1029 J for the final state of the 57Fe 
nucleus.

Challenge Problems

 88. A particle with electric charge q moves along a straight 
line in a uniform electric field E

S
 with speed u. The  

electric force exerted on the charge is q E
S

. The velocity 
of the particle and the electric field are both in the x 
direction. (a) Show that the acceleration of the particle 
in the x direction is given by

a 5
du
dt

5
qE

m
a1 2

u2

c 2b3/2

  (b) Discuss the significance of the dependence of the 
acceleration on the speed. (c) What If? If the particle 
starts from rest at x 5 0 at t 5 0, how would you pro-
ceed to find the speed of the particle and its position at 
time t?

 89. The creation and study of new and very massive elemen-
tary particles is an important part of contemporary phys-
ics. To create a particle of mass M requires an energy 
Mc2. With enough energy, an exotic particle can be cre-
ated by allowing a fast-moving proton to collide with a 
similar target particle. Consider a perfectly inelastic 
collision between two protons: an incident proton with 
mass mp , kinetic energy K, and momentum magnitude  
p joins with an originally stationary target proton to 
form a single product particle of mass M. Not all the 
kinetic energy of the incoming proton is available to 
create the product particle because conservation of 

S

Q/C

S

S


