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7.1: Angular Momenum Operators

In classical mechanics, the vector angular momentum, L, of a particle of position vector  and linear momentum  is defined as

It follows that

Let us, first of all, consider whether it is possible to use the previous expressions as the definitions of the operators corresponding

to the components of angular momentum in quantum mechanics, assuming that the  and  (where , , ,

etc.) correspond to the appropriate quantum mechanical position and momentum operators. The first point to note is that

expressions ([e8.1])–([e8.3]) are unambiguous with respect to the order of the terms in multiplicative factors, because the various

position and momentum operators appearing in them all commute with one another. [See Equations ([commxp]).] Moreover, given

that the  and the  are Hermitian operators, it is easily seen that the  are also Hermitian. This is important, because only

Hermitian operators can represent physical variables in quantum mechanics. (See Section [s4.6].) We, thus, conclude that Equations

([e8.1])–([e8.3]) are plausible definitions for the quantum mechanical operators that represent the components of angular

momentum.

Let us now derive the commutation relations for the . For instance,

where use has been made of the definitions of the  [see Equations ([e8.1])–([e8.3])], and commutation relations ([commxx])–

([commxp]) for the  and . There are two similar commutation relations: one for  and , and one for  and . Collecting

all of these commutation relations together, we obtain

By analogy with classical mechanics, the operator , that represents the magnitude squared of the angular momentum vector, is

defined

Now, it is easily demonstrated that if  and  are two general operators then

Hence,

where use has been made of Equations ([e8.6])–([e8.8]). In other words,  commutes with . Likewise, it is easily demonstrated

that  also commutes with , and with . Thus,

Recall, from Section [smeas], that in order for two physical quantities to be (exactly) measured simultaneously, the operators that

represent them in quantum mechanics must commute with one another. Hence, the commutation relations ([e8.6])–([e8.8]) and

([e8.12]) imply that we can only simultaneously measure the magnitude squared of the angular momentum vector, , together

with, at most, one of its Cartesian components. By convention, we shall always choose to measure the -component, .
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Finally, it is helpful to define the operators

Note that  and  are not Hermitian operators, but are the Hermitian conjugates of one another (see Section [s4.6]): that is,

Moreover, it is easily seen that

Likewise,

giving

We also have

and, similarly,
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7.2: Representation of Angular Momentum

Now, we saw earlier, in Section [s7.2], that the operators, , which represent the Cartesian components of linear momentum in

quantum mechanics, can be represented as the spatial differential operators . Let us now investigate whether angular

momentum operators can similarly be represented as spatial differential operators.

It is most convenient to perform our investigation using conventional spherical polar coordinates: that is, , , and . These are

defined with respect to our usual Cartesian coordinates as follows:

We deduce, after some tedious analysis, that

Making use of the definitions ([e8.1])–([e8.3]), ([e8.9]), and ([e8.13]), the fundamental representation ([e6.12])–([e6.14]) of the 

operators as spatial differential operators, Equations ([e8.21])–([e8zz]), and a great deal of tedious analysis, we finally obtain

as well as

and

We, thus, conclude that all of our angular momentum operators can be represented as differential operators involving the angular

spherical coordinates,  and , but not involving the radial coordinate, .
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7.3: Eigenstates of Angular Momentum

Let us find the simultaneous eigenstates of the angular momentum operators  and . Because both of these operators can be

represented as purely angular differential operators, it stands to reason that their eigenstates only depend on the angular coordinates

 and . Thus, we can write

Here, the  are the eigenstates in question, whereas the dimensionless quantities  and  parameterize the eigenvalues of 

 and , which are  and , respectively. Of course, we expect the  to be both mutually orthogonal and

properly normalized (see Section [seig]), so that

where  is an element of solid angle, and the integral is over all solid angle.

Now,

where use has been made of Equation ([e8.19]). We, thus, conclude that when the operator  operates on an eigenstate of 

corresponding to the eigenvalue  it converts it to an eigenstate corresponding to the eigenvalue . Hence,  is

known as the raising operator (for ). It is also easily demonstrated that

In other words, when  operates on an eigenstate of  corresponding to the eigenvalue  it converts it to an eigenstate

corresponding to the eigenvalue . Hence,  is known as the lowering operator (for ).

Writing

we obtain

where use has been made of Equation ([e8.17]). Likewise,

where use has been made of Equation ([e8.15]). It follows that

These equations are satisfied when

Hence, we can write
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7.4: Eigenvalues of Lz

It seems reasonable to attempt to write the eigenstate  in the separable form

We can satisfy the orthonormality constraint ([e8.31]) provided that

Note, from Equation ([e8.26]), that the differential operator which represents  only depends on the azimuthal angle , and is

independent of the polar angle . It therefore follows from Equations ([e8.26]), ([e8.29]), and ([e8.34]) that

The solution of this equation is

Here, the symbol  just means that we are neglecting multiplicative constants.

Our basic interpretation of a wavefunction as a quantity whose modulus squared represents the probability density of finding a

particle at a particular point in space suggests that a physical wavefunction must be single-valued in space. Otherwise, the

probability density at a given point would not, in general, have a unique value, which does not make physical sense. Hence, we

demand that the wavefunction ([e8.38]) be single-valued: that is,  for all . This immediately implies that

the quantity  is quantized. In fact,  can only take integer values. Thus, we conclude that the eigenvalues of  are also

quantized, and take the values , where  is an integer. [A more rigorous argument is that  must be continuous in order

to ensure that  is an Hermitian operator, because the proof of hermiticity involves an integration by parts in  that has canceling

contributions from  and . ]

Finally, we can easily normalize the eigenstate ([e8.38]) by making use of the orthonormality constraint ([e8.36]). We obtain

This is the properly normalized eigenstate of  corresponding to the eigenvalue .

Contributors and Attributions

{ {template.ContribFitzpatrick()}}

This page titled 7.4: Eigenvalues of Lz is shared under a not declared license and was authored, remixed, and/or curated by Richard Fitzpatrick.

  !!""

#!$

  !!" #   "  !"$"

#!$

%

#!$

&

$

 %$&$'"

  "   " ()* '  

(

+

%

,

!#

-

$

-

%

#!$

 !"  !"'! 

.(

+

&

,

$

-

&

$

# !)

##

-

# $)

$$

-

*

+

!

 

/) 0 #$ 0 $

'&

$

'!

&

$

 %$&$."

 !" 1 $&

$

2

) $!

 %$&$3"

1

 !4. (" #  !"&

$

&

$

!

$ $ *

+

$5! 0 $  !"&

$

*

+

!

! # + ! # .(

 !" # $&

$

2

) $!

.(

//

6

 %$&$&"

*

+

$ 0



7.5.1 https://phys.libretexts.org/@go/page/15768

7.5: Eigenvalues of L²

Consider the angular wavefunction . We know that

because  is a positive-definite real quantity. Hence, making use of Equations ([e5.48]) and ([e8.14]), we find that

It follows from Equations ([e8.17]), and ([e8.29])–([e8.31]) that

We, thus, obtain the constraint

Likewise, the inequality

leads to a second constraint:

Without loss of generality, we can assume that . This is reasonable, from a physical standpoint, because  is

supposed to represent the magnitude squared of something, and should, therefore, only take non-negative values. If  is non-

negative then the constraints ([e8.42]) and ([e8.44]) are equivalent to the following constraint:

We, thus, conclude that the quantum number  can only take a restricted range of integer values.

Now, if  can only take a restricted range of integer values then there must exist a lowest possible value that it can take. Let us call

this special value , and let  be the corresponding eigenstate. Suppose we act on this eigenstate with the lowering operator 

. According to Equation ([e8.32]), this will have the effect of converting the eigenstate into that of a state with a lower value of 

. However, no such state exists. A non-existent state is represented in quantum mechanics by the null wavefunction, .

Thus, we must have

From Equation ([e8.15]),

Hence,

or

where use has been made of ([e8.29]), ([e8.30]), and ([e8.46]). It follows that
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Assuming that  is negative, the solution to the previous equation is

We can similarly show that the largest possible value of  is

The previous two results imply that  is an integer, because  and  are both constrained to be integers.

We can now formulate the rules that determine the allowed values of the quantum numbers  and . The quantum number  takes

the non-negative integer values . Once  is given, the quantum number  can take any integer value in the range

Thus, if  then  can only take the value , if  then  can take the values , if  then  can take the values 

, and so on.
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7.6: Spherical Harmonics

The simultaneous eigenstates, , of  and  are known as the spherical harmonics . Let us investigate their functional

form.

We know that

because there is no state for which  has a larger value than . Writing

[see Equations ([e8.34]) and ([e8.38])], and making use of Equation ([e8.28]), we obtain

This equation yields

which can easily be solved to give

Hence, we conclude that

Likewise, it is easy to demonstrate that

Once we know , we can obtain  by operating on  with the lowering operator . Thus,

where use has been made of Equation ([e8.28]). The previous equation yields

Now,

where  is a general function. Hence, we can write

ikewise, we can show that

We can now obtain  by operating on  with the lowering operator. We get
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which reduces to

Finally, making use of Equation ([e8.64]), we obtain

Likewise, we can show that

A comparison of Equations ([e8.59]), ([e8.64a]), and ([e8.68]) reveals the general functional form of the spherical harmonics:

Here,  is assumed to be non-negative. Making the substitution , we can also write

Finally, it is clear from Equations ([e8.60]), ([e8.65]), and ([e8.69]) that

Figure 18: The  plotted as a functions of . The solid, short-dashed, and long-dashed curves correspond to 

, respectively.

We now need to normalize our spherical harmonic functions so as to ensure that

After a great deal of tedious analysis, the normalized spherical harmonic functions are found to take the form
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for , where the  are known as associated Legendre polynomials , and are written

for . Alternatively,

for . The spherical harmonics characterized by  can be calculated from those characterized by  via the identity

The spherical harmonics are orthonormal: that is,

and also form a complete set. In other words, any well-behaved function of  and  can be represented as a superposition of

spherical harmonics. Finally, and most importantly, the spherical harmonics are the simultaneous eigenstates of  and 

corresponding to the eigenvalues  and , respectively.

Figure 19: The  plotted as a functions of  . The solid, short-dashed, and long-dashed curves correspond to  

 respectively.

All of the , , and  spherical harmonics are listed below:
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The  variation of these functions is illustrated in Figures [ylm1] and [ylm2].
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7.E: Orbital Angular Momentum (Exercises)

1. A system is in the state . Calculate  and .

2. Find the eigenvalues and eigenfunctions (in terms of the angles  and ) of .

3. Consider a beam of particles with . A measurement of  yields the result . What values will be obtained by a

subsequent measurement of , and with what probabilities? Repeat the calculation for the cases in which the measurement of 

 yields the results  and .

4. The Hamiltonian for an axially symmetric rotator is given by

What are the eigenvalues of ?
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CHAPTER OVERVIEW

8: Central Potentials

In this chapter, we shall investigate the interaction of a non-relativistic particle of mass  and energy  with various so-called

central potentials, , where  is the radial distance from the origin. It is, of course, most convenient to

work in spherical coordinates— , , —during such an investigation. (See Section [s8.3].) Thus, we shall be searching for

stationary wavefunctions, , that satisfy the time-independent Schrödinger equation (see Section [sstat])

where the Hamiltonian takes the standard non-relativistic form

8.1: Derivation of Radial Equation

8.2: Infinite Spherical Potential Well

8.3: Hydrogen Atom

8.4: Rydberg Formula

8.E: Central Potentials (Exercises)

This page titled 8: Central Potentials is shared under a not declared license and was authored, remixed, and/or curated by Richard Fitzpatrick.
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8.1: Derivation of Radial Equation

Now, we have seen that the Cartesian components of the momentum, , can be represented as (see Section [s7.2])

for , where , , , and . Likewise, it is easily demonstrated, from the previous

expressions, and the basic definitions of the spherical coordinates [see Equations ([e8.21])–([e8zz])], that the radial component of

the momentum can be represented as

Recall that the angular momentum vector, , is defined

[See Equation ([e8.0]).] This expression can also be written in the following form:

Here, the  (where  all run from 1 to 3) are elements of the so-called totally anti-symmetric tensor . The values of the

various elements of this tensor are determined via a simple rule:

Thus, , , and , et cetera. Equation ([e9.6]) also makes use of the Einstein

summation convention, according to which repeated indices are summed (from 1 to 3) . For instance, 

. Making use of this convention, as well as Equation ([e9.7]), it is easily seen that Equations ([e9.5])

and ([e9.6]) are indeed equivalent.

Let us calculate the value of  using Equation ([e9.6]). According to our new notation,  is the same as . Thus, we obtain

Note that we are able to shift the position of  because its elements are just numbers, and, therefore, commute with all of the 

and the . Now, it is easily demonstrated that

Here  is the usual Kronecker delta, whose elements are determined according to the rule

It follows from Equations ([e9.8]) and ([e9.9]) that

Here, we have made use of the fairly self-evident result that . We have also been careful to preserve the order of the

various terms on the right-hand side of the previous expression, because the  and the  do not necessarily commute with one

another.

We now need to rearrange the order of the terms on the right-hand side of Equation ([e9.11]). We can achieve this goal by making

use of the fundamental commutation relation for the  and the :

[See Equation ([commxp]).] Thus,
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Here, we have made use of the fact that , because the  commute with one another. [See Equation ([commpp]).] Next,

Now, according to Equation ([e9.12]),

Hence, we obtain

When expressed in more conventional vector notation, the previous expression becomes

Note that if we had attempted to derive the previous expression directly from Equation ([e9.5]), using standard vector identities,

then we would have missed the final term on the right-hand side. This term originates from the lack of commutation between the 

and  operators in quantum mechanics. Of course, standard vector analysis assumes that all terms commute with one another.

Equation ([e9.17]) can be rearranged to give

Now,

where use has been made of Equation ([e9.4]). Hence, we obtain

Finally, the previous equation can be combined with Equation ([e9.2]) to give the following expression for the Hamiltonian:

Let us now consider whether the previous Hamiltonian commutes with the angular momentum operators  and . Recall, from

Section [s8.3], that  and  are represented as differential operators that depend solely on the angular spherical coordinates, 

and , and do not contain the radial coordinate, . Thus, any function of , or any differential operator involving  (but not  and 

), will automatically commute with  and . Moreover,  commutes both with itself, and with . (See Section [s8.2].) It is,

therefore, clear that the previous Hamiltonian commutes with both  and .

According to Section [smeas], if two operators commute with one another then they possess simultaneous eigenstates. We thus

conclude that for a particle moving in a central potential the eigenstates of the Hamiltonian are simultaneous eigenstates of  and 

. Now, we have already found the simultaneous eigenstates of  and —they are the spherical harmonics, ,

discussed in Section [sharm]. It follows that the spherical harmonics are also eigenstates of the Hamiltonian. This observation leads

us to try the following separable form for the stationary wavefunction:

It immediately follows, from Equation ([e8.29]) and ([e8.30]), and the fact that  and  both obviously commute with , that

Recall that the quantum numbers  and  are restricted to take certain integer values, as explained in Section [slsq].
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Finally, making use of Equations ([e9.1]), ([e9.21]), and ([e9.24]), we obtain the following differential equation which determines

the radial variation of the stationary wavefunction:

Here, we have labeled the function  by two quantum numbers,  and . The second quantum number, , is, of course, related to

the eigenvalue of . [Note that the azimuthal quantum number, , does not appear in the previous equation, and, therefore, does

not influence either the function  or the energy, .] As we shall see, the first quantum number, , is determined by the

constraint that the radial wavefunction be square-integrable.
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8.2: Infinite Spherical Potential Well

Consider a particle of mass  and energy  moving in the following simple central potential:

Clearly, the wavefunction  is only non-zero in the region . Within this region, it is subject to the physical boundary

conditions that it be well behaved (i.e., square-integrable) at , and that it be zero at . (See Section [s5.2].) Writing the

wavefunction in the standard form

we deduce (see the previous section) that the radial function  satisfies

in the region , where

Defining the scaled radial variable , the previous differential equation can

be transformed into the standard form

\[\frac{d^{\,2} R_{n,l}}{dz^{\,2}} + \frac{2}{z}\frac{dR_{n,l}}{dz} + \left[1 - \frac{l\,(l+1

)}{z^{\,2}}\right] R_{n,l} = 0.\]

The two independent solutions to this well-known second-order differential equation are called spherical Bessel functions, and can

be written

Thus, the first few spherical Bessel functions take the form

These functions are also plotted in Figure [sph]. It can be seen that the spherical Bessel functions are oscillatory in nature, passing

through zero many times. However, the  functions are badly behaved (i.e., they are not square integrable) at , whereas

the  functions are well behaved everywhere. It follows from our boundary condition at  that the  are unphysical,

and that the radial wavefunction  is thus proportional to  only. In order to satisfy the boundary condition at 

[i.e., ], the value of  must be chosen such that  corresponds to one of the zeros of . Let us denote the th

zero of  as . It follows that

for . Hence, from Equation ([e9.29]), the allowed energy levels are
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The first few values of  are listed in Table [tsph]. It can be seen that  is an increasing function of both  and .

The first few zeros of the spherical Bessel function .

3.142 6.283 9.425 12.566

[0.5ex] 4.493 7.725 10.904 14.066

[0.5ex] 5.763 9.095 12.323 15.515

[0.5ex] 6.988 10.417 13.698 16.924

[0.5ex] 8.183 11.705 15.040 18.301

We are now in a position to interpret the three quantum numbers— , , and —which determine the form of the wavefunction

specified in Equation ([e9.27]). As is clear from Chapter [sorb], the azimuthal quantum number  determines the number of nodes

in the wavefunction as the azimuthal angle  varies between 0 and . Thus,  corresponds to no nodes,  to a single

node,  to two nodes, et cetera. Likewise, the polar quantum number  determines the number of nodes in the wavefunction as

the polar angle  varies between 0 and . Again,  corresponds to no nodes,  to a single node, et cetera. Finally, the radial

quantum number  determines the number of nodes in the wavefunction as the radial variable  varies between 0 and  (not

counting any nodes at  or ). Thus,  corresponds to no nodes,  to a single node,  to two nodes, et

cetera. Note that, for the case of an infinite potential well, the only restrictions on the values that the various quantum numbers can

take are that  must be a positive integer,  must be a non-negative integer, and  must be an integer lying between  and . Note,

further, that the allowed energy levels ([e9.39]) only depend on the values of the quantum numbers  and . Finally, it is easily

demonstrated that the spherical Bessel functions are mutually orthogonal: that is,

when  . Given that the  are mutually orthogonal (see Chapter [sorb]), this ensures that wavefunctions ([e9.27])

corresponding to distinct sets of values of the quantum numbers , , and  are mutually orthogonal.
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8.3: Hydrogen Atom

A hydrogen atom consists of an electron, of charge  and mass , and a proton, of charge  and mass , moving in the

Coulomb potential

where  is the position vector of the electron with respect to the proton. Now, according to the analysis in Section [stwo], this two-

body problem can be converted into an equivalent one-body problem. In the latter problem, a particle of mass

moves in the central potential

Note, however, that because  the difference between  and  is very small. Hence, in the following, we shall

write neglect this difference entirely.

Writing the wavefunction in the usual form,

it follows from Section 1.2 that the radial function  satisfies

Let , with

where  and  are defined in Equations ([e9.56]) and ([e9.57]), respectively. Here, it is assumed that , because we are

only interested in bound-states of the hydrogen atom. The previous differential equation transforms to

where

Suppose that . It follows that

We now need to solve the previous differential equation in the domain  to , subject to the constraint that  be

square-integrable.

Let us look for a power-law solution of the form

Substituting this solution into Equation ([e9.48]), we obtain
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Equating the coefficients of  gives the recursion relation

Now, the power series ([e9.49]) must terminate at small , at some positive value of , otherwise  behaves unphysically as 

 [i.e., it yields an  that is not square integrable as ]. From the previous recursion relation, this is only possible if 

, where the first term in the series is . There are two possibilities:  or 

. However, the former possibility predicts unphysical behavior of  at . Thus, we conclude that 

. Note that, because  at small , there is a finite probability of finding the electron

at the nucleus for an  state, whereas there is zero probability of finding the electron at the nucleus for an  state [i.e., 

 at , except when ].

For large values of , the ratio of successive coefficients in the power series ([e9.49]) is

according to Equation ([e9.51]). This is the same as the ratio of successive coefficients in the power series

which converges to . We conclude that  as . It thus follows that 

 as . This does not correspond to physically acceptable behavior

of the wavefunction, because  must be finite. The only way in which we can avoid this unphysical behavior is if the

power series ([e9.49]) terminates at some maximum value of . According to the recursion relation ([e9.51]), this is only possible if

where  is an integer, and the last term in the series is . Because the first term in the series is , it follows that  must

be greater than , otherwise there are no terms in the series at all. Finally, it is clear from Equations ([e9.45]), ([e9.47]), and

([e9.54]) that

and

where

and

Here,  is the energy of so-called ground-state (or lowest energy state) of the hydrogen atom, and the length  is known as the

Bohr radius. Note that , where  is the dimensionless fine-structure constant. The

fact that  is the ultimate justification for our non-relativistic treatment of the hydrogen atom.

We conclude that the wavefunction of a hydrogen atom takes the form

Here, the  are the spherical harmonics (see Section [sharm]), and  is the solution of
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which varies as  at small . Furthermore, the quantum numbers , , and  can only take values that satisfy the inequality

where  is a positive integer,  a non-negative integer, and  an integer.

We expect the stationary states of the hydrogen atom to be orthonormal: that is,

where  is a volume element, and the integral is over all space. Of course, , where  is an element of solid

angle. Moreover, we already know that the spherical harmonics are orthonormal [see Equation ([spho])]: that is,

It, thus, follows that the radial wavefunction satisfies the orthonormality constraint

The first few radial wavefunctions for the hydrogen atom are listed below:

These functions are illustrated in Figures [coul1] and [coul2].
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Figure 21: The  plotted as a functions of  . The solid, short-dashed, and long-dashed curves correspond to 

 respectively.

Figure 22: The  plotted as a functions of  .The solid, short-dashed, and long-dashed curves correspond to 

 respectively. 

Given the (properly normalized) hydrogen wavefunction ([e9.59]), plus our interpretation of  as a probability density, we can

calculate
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where the angle-brackets denote an expectation value. For instance, it can be demonstrated (after much tedious algebra) that

According to Equation ([e9.55]), the energy levels of the bound-states of a hydrogen atom only depend on the radial quantum

number . It turns out that this is a special property of a  potential. For a general central potential, , the quantized energy

levels of a bound-state depend on both  and . (See Section 1.3.)

The fact that the energy levels of a hydrogen atom only depend on , and not on  and , implies that the energy spectrum of a

hydrogen atom is highly degenerate: that is, there are many different states which possess the same energy. According to the

inequality ([e9.61]) (and the fact that , , and  are integers), for a given value of , there are  different allowed values of 

 (i.e., ). Likewise, for a given value of , there are  different allowed values of  (i.e., ).

Now, all states possessing the same value of  have the same energy (i.e., they are degenerate). Hence, the total number of

degenerate states corresponding to a given value of  is

Thus, the ground-state ( ) is not degenerate, the first excited state ( ) is four-fold degenerate, the second excited state (

) is nine-fold degenerate, et cetera (Actually, when we take into account the two spin states of an electron, the degeneracy of

the th energy level becomes .)
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8.4: Rydberg Formula

An electron in a given stationary state of a hydrogen atom, characterized by the quantum numbers , , and , should, in principle,

remain in that state indefinitely. In practice, if the state is slightly perturbed—for instance, via interaction with a photon—then the

electron can make a transition to another stationary state with different quantum numbers. (See Chapter [s13].)

Suppose that an electron in a hydrogen atom makes a transition from an initial state whose radial quantum number is  to a final

state whose radial quantum number is . According to Equation ([e9.55]), the energy of the electron will change by

If  is negative then we would expect the electron to emit a photon of frequency . [See Equation ([ee3.15]).]

Likewise, if  is positive then the electron must absorb a photon of energy . Given that , the possible

wavelengths of the photons emitted by a hydrogen atom as its electron makes transitions between different energy levels are

where

Here, it is assumed that . Note that the emission spectrum of hydrogen is quantized: that is, a hydrogen atom can only emit

photons with certain fixed set of wavelengths. Likewise, a hydrogen atom can only absorb photons that have the same fixed set of

wavelengths. This set of wavelengths constitutes the characteristic emission/absorption spectrum of the hydrogen atom, and can be

observed as “spectral lines” using a spectroscope.

Equation ([e9.77]) is known as the Rydberg formula. Likewise,  is called the Rydberg constant. The Rydberg formula was

actually discovered empirically in the nineteenth century by spectroscopists, and was first explained theoretically by Bohr in 1913

using a primitive version of quantum mechanics . Transitions to the ground-state ( ) give rise to spectral lines in the

ultraviolet band—this set of lines is called the Lyman series. Transitions to the first excited state ( ) give rise to spectral lines

in the visible band—this set of lines is called the Balmer series. Transitions to the second excited state ( ) give rise to

spectral lines in the infrared band—this set of lines is called the Paschen series, and so on.
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8.E: Central Potentials (Exercises)

1. A particle of mass  is placed in a finite spherical well:

with  and . Find the ground-state by solving the radial equation with . Show that there is no ground-state if 

.

2. Consider a particle of mass  in the three-dimensional harmonic oscillator potential . Solve the

problem by separation of variables in spherical coordinates, and, hence, determine the energy eigenvalues of the system.

3. The normalized wavefunction for the ground-state of a hydrogen-like atom (neutral hydrogen, , , et cetera.) with

nuclear charge  has the form

where  and  are constants, and  is the distance between the nucleus and the electron. Show the following:

1. .

2. , where .

3. The energy is  where .

4. The expectation values of the potential and kinetic energies are  and , respectively.

5. The expectation value of  is .

6. The most probable value of  is .

4. An atom of tritium is in its ground-state. Suddenly the nucleus decays into a helium nucleus, via the emission of a fast electron

that leaves the atom without perturbing the extranuclear electron, Find the probability that the resulting  ion will be left in

an ,  state. Find the probability that it will be left in a ,  state. What is the probability that the ion will be

left in an  state?

5. Calculate the wavelengths of the photons emitted from the ,  to ,  transition in hydrogen, deuterium, and

positronium.

6. To conserve linear momentum, an atom emitting a photon must recoil, which means that not all of the energy made available in

the downward jump goes to the photon. Find a hydrogen atom’s recoil energy when it emits a photon in an  to 

transition. What fraction of the transition energy is the recoil energy?
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CHAPTER OVERVIEW

9: Spin Angular Momentum

Broadly speaking, a classical extended object (e.g., the Earth) can possess two different types of angular momentum. The first type

is due to the rotation of the object’s center of mass about some fixed external point (e.g., the Sun)—this is generally known as

orbital angular momentum. The second type is due to the object’s internal motion—this is generally known as spin angular

momentum (because, for a rigid object, the internal motion consists of spinning about an axis passing through the center of mass).

By analogy, quantum particles can possess both orbital angular momentum due to their motion through space (see Chapter [sorb]),

and spin angular momentum due to their internal motion. Actually, the analogy with classical extended objects is not entirely

accurate, because electrons, for instance, are structureless point particles. In fact, in quantum mechanics, it is best to think of spin

angular momentum as a kind of intrinsic angular momentum possessed by particles. It turns out that each type of elementary

particle has a characteristic spin angular momentum, just as each type has a characteristic charge and mass.

9.1: Spin Operators

9.2: Spin Space

9.3: Eigenstates of Sz and S²

9.4: Pauli Representation

9.5: Spin Precession

9.E: Spin Angular Momentum (Exercises)
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9.1: Spin Operators

Because spin is a type of angular momentum, it is reasonable to suppose that it possesses similar properties to orbital angular

momentum. Thus, by analogy with Section [s8.2], we would expect to be able to define three operators— , , and —that

represent the three Cartesian components of spin angular momentum. Moreover, it is plausible that these operators possess

analogous commutation relations to the three corresponding orbital angular momentum operators, , , and . [See Equations

([e8.6])–([e8.8]).] In other words,

We can represent the magnitude squared of the spin angular momentum vector by the operator

By analogy with the analysis in Section [s8.2], it is easily demonstrated that

We thus conclude (see Section [smeas]) that we can simultaneously measure the magnitude squared of the spin angular momentum

vector, together with, at most, one Cartesian component. By convention, we shall always choose to measure the -component, .

By analogy with Equation ([e8.13]), we can define raising and lowering operators for spin angular momentum:

If , , and  are Hermitian operators, as must be the case if they are to represent physical quantities, then  are the

Hermitian conjugates of one another: that is,

Finally, by analogy with Section [s8.2], it is easily demonstrated that
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9.2: Spin Space

We now have to discuss the wavefunctions upon which the previously introduced spin operators act. Unlike regular wavefunctions,

spin wavefunctions do not exist in real space. Likewise, the spin angular momentum operators cannot be represented as differential

operators in real space. Instead, we need to think of spin wavefunctions as existing in an abstract (complex) vector space. The

different members of this space correspond to the different internal configurations of the particle under investigation. Note that only

the directions of our vectors have any physical significance (just as only the shape of a regular wavefunction has any physical

significance). Thus, if the vector  corresponds to a particular internal state then  corresponds to the same state, where  is a

complex number. Now, we expect the internal states of our particle to be superposable, because the superposibility of states is one

of the fundamental assumptions of quantum mechanics . It follows that the vectors making up our vector space must also be

superposable. Thus, if  and  are two vectors corresponding to two different internal states then  is another vector

corresponding to the state obtained by superposing  times state 1 with  times state 2 (where  and  are complex numbers).

Finally, the dimensionality of our vector space is simply the number of linearly independent vectors required to span it (i.e., the

number of linearly independent internal states of the particle under investigation).

We now need to define the length of our vectors. We can do this by introducing a second, or dual, vector space whose elements are

in one to one correspondence with the elements of our first space . Let the element of the second space that corresponds to the

element  of the first space be called . Moreover, the element of the second space that corresponds to  is . We shall

assume that it is possible to combine  and  in a multiplicative fashion to generate a real positive-definite number that we shall

interpret as the length, or norm, of . Let us denote this number . Thus, we have

for all . We shall also assume that it is possible to combine unlike states in an analogous multiplicative fashion to produce

complex numbers. The product of two unlike states  and  is denoted . Two states  and  are said to be mutually

orthogonal, or independent, if .

Now, when a general spin operator, , operates on a general spin-state, , it converts it into a different spin-state that we shall

denote . The dual of this state is , where  is the Hermitian conjugate of  (this is the definition of an

Hermitian conjugate in spin space). An eigenstate of  corresponding to the eigenvalue  satisfies

As before, if  corresponds to a physical variable then a measurement of  will result in one of its eigenvalues. (See Section

[smeas].) In order to ensure that these eigenvalues are all real,  must be Hermitian: that is, . (See Section [seig].) We

expect the  to be mutually orthogonal. We can also normalize them such that they all have unit length. In other words,

Finally, a general spin state can be written as a superposition of the normalized eigenstates of : that is,

A measurement of  will then yield the result  with probability .
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9.3: Eigenstates of Sz and S²

Because the operators  and  commute, they must possess simultaneous eigenstates. (See Section [smeas].) Let these

eigenstates take the form [see Equations ([e8.29]) and ([e8.30])]:

Now, it is easily demonstrated, from the commutation relations ([e10.9]) and ([e10.10]), that

and

Thus,  and  are indeed the raising and lowering operators, respectively, for spin angular momentum. (See Section [seian].)

The eigenstates of  and  are assumed to be orthonormal: that is,

Consider the wavefunction . Because we know, from Equation ([e10.11]), that , it follows that

where use has been made of Equation ([e10.7]). Equations ([e10.8]), ([e10.16]), ([e10.17]), and ([e10.20]) yield

Likewise, if  then we obtain

Assuming that , the previous two inequalities imply that

Hence, at fixed , there is both a maximum and a minimum possible value that  can take.

Let  be the minimum possible value of . It follows that (see Section [slsq])

Now, from Equation ([e10.7a]),

Hence,

giving

Assuming that , this equation yields

Likewise, it is easily demonstrated that

Moreover,

 

!

 

 

 

!

"

#!$

#

 

 

"

#!$

#

" # !$

#

"

#!$

#

" # $#%&' (#

 

"

#!$

#

$ ' " $ %&' # $ '! 

!

 

%

"

#!$

#

$

#

 

%

"

#!$

#

$)(*(&'

$ ' " $ +&' # $ '( 

!

 

+

"

#!$

#

$

#

 

+

"

#!$

#

$)(*( '

 

%

 

+

 

!

 

 

" ("

,

#!$

#

"

!#

-

$

-

#

%

##

-

%

$

#

$

-

#

$)(*(*'

""  

%

"

#!$

#

". /"

,

$ $ ' " " . /! 

%

"

#!$

#

'

,

 

%

"

#!$

#

"

,

#!$

#

 

,

%

 

%

"

#!$

#

"

,

#!$

#

 

+

 

%

"

#!$

#

$)(*(0'

# $#%&' . $ %&'($

#

$

#

$)(*(1'

""  

+

"

#!$

#

# $#%&' . $ +&'($

#

$

#

$)(*(2'

#. /

+#3 3 #($

#

$)(*(4'

# $

#

$

#567

$

#

" /( 

+

"

#!$

# 567

$)(*(8'

" % +# ( 

 

 

%

 

+

 

 

!

 

!

$)(*()'

" $ % +# ' ! 

 

"

#!$

# 567

 

%

 

+

 

 

!

 

!

"

#!$

# 567

$)(*(&/'

# $#%&' " $ +&'($

#567

$

#567

$)(*(&&'

9 /$

#567

"+#($

#567

$)(*(& '

"%#($

#5:;

$)(*(&*'

" " /( 

+

"

#!+#

 

%

"

#!#

$)(*(&0'



9.3.2 https://phys.libretexts.org/@go/page/15780

Now, the raising operator , acting upon , converts it into some multiple of . Employing the raising operator a

second time, we obtain a multiple of . However, this process cannot continue indefinitely, because there is a maximum

possible value of . Indeed, after acting upon  a sufficient number of times with the raising operator , we must obtain a

multiple of , so that employing the raising operator one more time leads to the null state. [See Equation ([e10.31]).] If this is

not the case then we will inevitably obtain eigenstates of  corresponding to , which we have already demonstrated is

impossible.

It follows, from the previous argument, that

where  is a positive integer. Hence, the quantum number  can either take positive integer or positive half-integer values. Up to

now, our analysis has been very similar to that which we used earlier to investigate orbital angular momentum. (See Section

[sorb].) Recall, that for orbital angular momentum the quantum number , which is analogous to , is restricted to take integer

values. (See Section [slz].) This implies that the quantum number , which is analogous to , is also restricted to take integer values.

However, the origin of these restrictions is the representation of the orbital angular momentum operators as differential operators in

real space. (See Section [s8.3].) There is no equivalent representation of the corresponding spin angular momentum operators.

Hence, we conclude that there is no reason why the quantum number  cannot take half-integer, as well as integer, values.

In 1940, Wolfgang Pauli proved the so-called spin-statistics theorem using relativistic quantum mechanics . According to this

theorem, all fermions possess half-integer spin (i.e., a half-integer value of ), whereas all bosons possess integer spin (i.e., an

integer value of ). In fact, all presently known fermions, including electrons and protons, possess spin one-half. In other words,

electrons and protons are characterized by  and .
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