

Course Outline

Tunneling in QFT

Much richer now that we have an infinite number of degrees of freedom.

- Spin glasses
- Stability of electroweak vacuum
- Multiple vacuaa in QCD
- Superfluid ³He
- Chemical reactions
- • •

Spin glasses: instanton mediated transition

Higgs field and the early universe

The Higgs field $\phi(x)$ V() pervades all space The Higgs field $\phi(x)$ has charge under the weak force False Vacuum Since $\langle \phi \rangle \neq 0$ the vacuum also has weak True charge Quantum Vacuum Tunneling The Higgs field $\phi(x)$ has a potential $V(\phi)$

Anticipating the O(4) Instanton

False vacuum

 ϕ_+

O(4) symmetry is invariance under rotations in 4 dimensions, i.e. $\phi=\phi(\rho)$ $\rho^2=\tau^2+x^2+y^2+z^2$

Quantum field ϕ in its true vacuum state ϕ_{-}

Transition layer where one vacuum merges into into another (roughly equal to the size of instanton).

Tunnelling via bouncing instantons – peek at the final result

$$\Gamma = A e^{-B}$$
 is the probability of tunnelling out of the unstable
vacuum per unit time per unit volume of space.
$$B = \frac{S[\phi_B]}{\hbar} = \frac{1}{\hbar} \int d^4x \, V(\phi_B)$$
 is the bounce action

From this we see that the false vacuum cannot tunnel into a spatially homogeneous true vacuum. The only possibility is through nucleation, i.e. bubble formation.

Thin wall approximation

An explicit solution for Γ is possible provided ϵ , i.e. the difference in energy per unit volume of space between the true and false vacuum, is small.

$$\Gamma = A \, e^{-B}$$

$$B = \frac{27\pi^2 S_1^4}{2\epsilon^3} \qquad S_1 = \int_0^a d\phi \sqrt{2V(\phi)}$$

Basics of relativistic QFT in imaginary time

$$\begin{split} x^{\mu} &= (t, \vec{x}) \\ \phi &= \phi(t, \vec{x}) \\ \text{is the field} &\text{is the Lagrangian density} \\ \text{Imaginary time: let, } t \to -i\tau. \quad \mathcal{L} \to \mathcal{L}_E = -\frac{1}{2} \left(\frac{\partial \phi}{\partial \tau}\right)^2 - \frac{1}{2} (\nabla \phi)^2 - V(\phi) \\ \hline \\ V(\phi) \\ \psi \\ quantum tunneling \\ \phi_+ \\ \end{split} \quad \begin{aligned} & \mathcal{L} = \frac{1}{2} \left(\frac{\partial \phi}{\partial \tau}\right)^2 - \frac{1}{2} (\nabla \phi)^2 - V(\phi) \\ d^4x_E &= d\tau d^3x \\ \mathcal{L} = \frac{1}{2} \left(\frac{\partial \phi}{\partial \tau}\right)^2 - \frac{1}{2} (\nabla \phi)^2 - V(\phi) \\ d^4x_E &= d\tau d^3x \\ \mathcal{L} = \frac{1}{2} \left(\frac{\partial \phi}{\partial \tau}\right)^2 - \frac{1}{2} (\nabla \phi)^2 - V(\phi) \\ \mathcal{L} = \frac{1}{2} \left(\frac{\partial \phi}{\partial \tau}\right)^2 - \frac{1}{2} (\nabla \phi)^2 - V(\phi) \\ \mathcal{L} = \frac{1}{2} \left(\frac{\partial \phi}{\partial \tau}\right)^2 - \frac{1}{2} (\nabla \phi)^2 - V(\phi) \\ \mathcal{L} = \frac{1}{2} \left(\frac{\partial \phi}{\partial \tau}\right)^2 - \frac{1}{2} (\nabla \phi)^2 - V(\phi) \\ \mathcal{L} = \frac{1}{2} \left(\frac{\partial \phi}{\partial \tau}\right)^2 - \frac{1}{2} (\nabla \phi)^2 - V(\phi) \\ \mathcal{L} = \frac{1}{2} \left(\frac{\partial \phi}{\partial \tau}\right)^2 - \frac{1}{2} \left(\frac{\partial \phi}{\partial \tau}\right)^2 - \frac{1}{2} (\nabla \phi)^2 - V(\phi) \\ \mathcal{L} = \frac{1}{2} \left(\frac{\partial \phi}{\partial \tau}\right)^2 - \frac{1}{2} \left(\frac{\partial$$

The O(4) Instanton - Introduction

Bounce solutions needed for EOM, $\left(\frac{\partial^2}{\partial \tau^2} + \nabla^2\right)\phi_b = V'(\phi_b)$ or, $\partial_\mu \partial_\mu \phi_b = V'(\phi_b)$ BC's are: $\lim_{\tau \to \pm \infty} \phi_b(\tau, \vec{x}) = \phi_F$, $\frac{\partial \phi_b}{\partial \tau}\Big|_{\tau=0} = 0$, $\lim_{|\vec{x}| \to \pm \infty} \phi_b(\tau, \vec{x}) = 0$ Laplacian in 4-D: $\frac{\partial^2}{\partial \rho^2} + \frac{3}{\rho} \frac{\partial}{\partial \rho} + \cdots$ where, $\rho^2 = \tau^2 + \vec{x}^2$ EOM simplifies to this with above BC's $\frac{d^2\phi_b}{d\rho^2} + \frac{3}{\rho}\frac{d\phi_b}{d\rho} = V'(\phi_b)$ gives $\phi_b(\rho) = \phi_b(\sqrt{\tau^2 + \vec{x}^2})$ $S[\phi] = \int d^4x \,\mathscr{L} = 2\pi^2 \int_0^\infty \rho^3 d\rho \,\mathscr{L} = 2\pi^2 \int_0^\infty \rho^3 d\rho \left[\frac{1}{2} \left(\frac{\partial \phi_b}{\partial \tau} \right)^2 + \frac{1}{2} (\nabla \phi_b)^2 + V(\phi_b) \right]$ $=2\pi^2 \int_0^\infty \rho^3 d\rho \left[\frac{1}{2} \left(\frac{\partial \phi_b}{\partial \rho}\right)^2 + V(\phi_b)\right] \qquad \text{Must impose BC: } \left.\frac{d\phi_b}{d\rho}\right|_{\rho=0} = 0$ to avoid EOM disaster.

The O(4) Instanton – informal proof of existence

Does
$$\frac{d^2\phi_b}{d\rho^2} + \frac{3}{\rho}\frac{d\phi_b}{d\rho} = V'(\phi_b)$$
 with $\lim_{\rho \to \infty} \phi_b(\rho) = \phi_+$, $\frac{\partial\phi_b}{\partial\rho}\Big|_{\rho=0} = 0$ have a solution?
To see why it does, rewrite this as: $\ddot{x} + \frac{3}{t}\dot{x} = V'(x(t))$ with BC's: $\dot{x}(0) = 0, \ x(\infty) = 0$.
Start here
 $x_+ = 0$
 $x_- = 0$
 $x_+ = 0$
 $x_$

Very similar! What exactly separates classical particle mechanics from classical field theory?
a) φ = φ(t, x) → φ(τ, x) → φ(ρ). Now we have an infinite number of degrees of freedom.
b) The gradient term |∇φ|² gives us an extra kinetic energy density. Hence an infinite amount of energy is needed to change φ everywhere because we must integrate over all spatial x.

Now remember time translation invariance of EOM says we can send
$$\rho \to \rho - \rho_0$$

For $V_S(x) = \frac{\omega^2}{8a^2} (x^2 - a^2)^2$
Solution of $\frac{d^2\phi}{d\rho^2} = V'_S(\phi)$ is, $\phi_b(\rho) = \begin{cases} a(1 - 2e^{-\omega(\rho - \rho_0)}), \ \rho \gg \rho_0 \\ a \tanh\left(\frac{\omega(\rho - \rho_0)}{2}\right), \ \rho \approx \rho_0 \\ -a(1 - 2e^{-\omega(\rho_0 - \rho)}), \ \rho_0 \gg \rho \\ -a(1 - 2e^{-\omega(\rho_0 - \rho)}), \ \rho_0 \gg \rho \end{cases}$

The location of the instanton ρ_0 appears arbitrary. Is it?

Instanton energetics

Consider an observer who is moving with the wall. At time of formation there no KE and bubble radius is $r = \rho_0$. The energy per unit area of the bubble is,

$$\mathcal{E} = \frac{1}{4\pi\rho_0^2} \int d^3x \left(\frac{1}{2} |\nabla\phi_b|^2 + V_S(\phi_b)\right) \approx \frac{1}{4\pi\rho_0^2} \int_{r\approx\rho_0} 4\pi r^2 dr \left(\frac{1}{2} |\nabla\phi_b|^2 + V_S(\phi_b)\right)$$
$$\approx \int_{-\infty}^{+\infty} dr \left(\frac{1}{2} |\nabla\phi_b|^2 + V_S(\phi_b)\right) = S_1 \quad \text{So the single instanton action and the} \text{ instanton energy are equal at } t = \tau = 0.$$

How fast does the wall move? Recall: constant = $\rho_0^2 = -c^2 t^2 + r^2$ Energy transforms to a moving frame as, $\mathcal{E} \to \gamma \mathcal{E}, \ \gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$ Now need v: $v = \frac{dr}{dt} = c^2 \frac{t}{r} = c \frac{ct}{\sqrt{\rho_0^2 + c^2 t^2}}$

From this, $\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} = \frac{r}{\rho_0}$ $\therefore \mathcal{E} = \frac{r}{\rho_0} 4\pi r^2 S_1 = \frac{4}{3}\pi r^3 \frac{3S_1}{\rho_0} = \frac{4}{3}\pi r^3 \epsilon$

- The bubble is expanding at speed
$$\approx c$$

- There's only true vacuum inside
- All energy from false vacuum goes into the wall

Once the false to true transition happens everything will be over, so bye-bye!

References

- False vacuum decay: an introductory review, Federica Devoto, Simone Devoto, Luca Di Luzio, Giovanni Ridolfi, J. Phys. G: Nucl. Part. Phys. 49 (2022).
- The Theory and Applications of Instanton Calculations, Manu Paranjape (2022).
- Advanced Topics in Quantum Field Theory, M. Shifman, Cambridge University Press (2012).
- Field Theory A Path Integral Approach, Ashok Das, World Scientific (2006)