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Tunneling in QFT

Much richer now that we have an infinite number of degrees of freedom.
® Spin glasses
Stability of electroweak vacuum

Multiple vacuaa in QCD

Chemical reactions

®
®
® Superfluid *He
®
®



True vacuum




ion

instanton mediated transiti

Spin glasses

~
L »
f.ff— Ay l...v
l..r; s
A e ~
~ 1M
~ hS _al
~ iy \
- P—
-t
~
~
~

:

Fmm—m———-
-
- e - -

-
#
’




Higgs field and the early universe

@ The Higgs field ¢(z)
pervades all space

® The Higgs field ¢(x)
has charge under the
weak force

V(o)

® Since < ¢ ># 0 the
vacuum also has weak

charge Quantum|

® The Higes feld qzb(x) Tunneling|
has a potential V' (¢)




Anticipating the O(4) Instanton
O(4) symmetry is invariance under rotations in 4 dimensions, i.e. ¢ = ¢(p)

pP=1"+1"+y +2°

Quantum field ¢

in its true vacuum
state ¢_

Transition layer where

one vacuum merges into

into another (roughly

equal to the size of instanton).



Tunnelling via bouncing instantons — peek at the final result

= Ae— B is the probability of tunnelling out of the unstable

— € vacuum per unit time per unit volume of space.
Slop 1

B = [2 ) =z /d433 V(¢p) is the bounce action

From this we see that the false vacuum cannot tunnel into a spatially homogeneous true
vacuum. The only possibility is through nucleation, i.e. bubble formation.
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Thin wall approximation

V(@) | An explicit solution for I' is
possible provided e, i.e. the
difference in energy per unit
/ volume of space between the true

and false vacuum, is small.

QUantUmt nnel; ~>\d }6 F — Ae_
elng
2 o4 a
B — 2151 g 2/ dor/2V (o)

2e3 0



Basics of relativistic QFT in imaginary time

ot = (¢, T) c:%(aﬁ)Q (Vo V()  S= /d%g

¢ — Qb(ta f) ot B 5 . .
is the field is the Lagrangian density 1s the action
2
Imaginary time: let, { = —i7. £ — Lp = —% (Z_Cb) — %(qu)2 — V(o)
T
V(¢) d4£ISE — deSx SE [Cb] = /d4$EG§,ﬂE
true

vacuiJm iy = /(:_ [Dqﬁ(x)]exp(—}liSE[ﬁb(iU)])

false/" quantym, tu”‘ > This integration is over all possible paths
vacuum neling P

b connecting ¢, to ¢_ at each spacetime
point . Henceforth suppress “Euclidean”.




Expand the action Slp + d¢] = S[¢p] + /dgb(m’) 5§[¢(:,1:)] dp(z)
S[¢| to second order . 52 o)
i a Taylor series: 15 [ doa')do(e") 5 0 S soasota) +
05[¢(x)] _ (8_2 v ) — ¢p(7, Z) is the bounce
Sp(x’) o - oT? " P (@) (classical) path.
— true Same as: Buauqbb = V’(gbb)
¢4 = false Vacuum . :
vacuum Boundary conditions for bounce solutions:
T~ T
o

\/ x——) gbb(a:z)—qb+asT—>oo
Ay (T, 7)

Bounce reaches — () bounce velocity is zero at
the classical dr =0 the classical turning point

turning point ¢

ou(|Z), 7)) = ¢+ as|F| —



The O(4) Instanton - Introduction

2
Bounce solutions needed for EOM, (6 + V2>q§b =V'(¢p) or, 0,0, = V'(¢hp)

ot?2

BC’s are: hm Ob(T,T) = OF, %% =0, lim ¢p(7,7)=0

T—+00 or =0 |Z| —+o00

2
Laplacian in 4-D: 8— -+ §2 + ... where, p? =724 2?
dp*  pIp

EOM simplifies to d*dp, 3 dgbb _ -
this with above BC's 7,2 T o dp = V() gives dy(p) = do(V T2 + T2)

S|(¢] —fd4x$—27r2/000p3dp$ —27r2f000 Sdp [2(%%) %(qub) +V(q5b)]

> 8@, dcbb
— 272 3 Must impose BC:
o [ [3(55 ) +vien) i,

to avoid EOM disaster

:O




The O(4) Instanton — informal proof of existence

d? 3d 0 :
i + 340 _ V'(¢p) with lim ¢@p(p) = ¢, 9 | _ 0 have a solution?

dp* ~ p dp p—ro0 9p | =0

To see why it does, rewrite this as: a:—l—%:z: = V'(z(t)) with BC’s: z(0) =0, z(oc0) = 0.

start here
~ Sdil ., 3., .*. frictional
zy =0 Cb’fl\ GEE: dr 12t Viz)| = T energy loss

T _—
\/ Suppose the ball is initially (¢ = 0) at z(0) > a

and passes a at some finite time .

Does

by 3 (Y |dx
Energy loss :/ d]’fgd—ZE <—/ dt —‘
to t|dt to Ji, dt
- If start is too close to x_ you overshoot
3 [tr dr 3a
- If start too far from x_ you undershoot ~ dt |==| ~ .
- In between lies the right starting value! to to dt 0

So friction can be neglected for large tg.




V(z)
------ P+
T —
zero final
friction high initial
friction at field
particle T = 7o hence th
mechanics very slow roll eory
€ €
V(z) =Vs(z) + %(3’3 —a) V(g) =Vs(e) + %(Cb —a)
Vs(z) = Ve(—2), Vi(xa) = 0,V (+a) =w?  Vs(¢) = Vs(—¢), Vg(£a) =0, Vg (£a) = w*
2 w?
Example of Vg : Vg(x) = ;?(a:Q — a%)* Example of Vs : Vs(¢) = @(ﬁbz — a?)?

Very similar! What exactly separates classical particle mechanics from classical field theory?

a) ¢ = o(t, %) = ¢(1,%) — ¢(p). Now we have an infinite number of degrees of freedom.

b) The gradient term |V¢|* gives us an extra kinetic energy density. Hence an infinite amount
of energy is needed to change ¢ everywhere because we must integrate over all spatial Z.



The O(4) Instanton - quantitative

2
o Vi9) b_ To zero’th order in e, % = Vi(¢) is the EOM.
2 do
¢— . 1{de\" _ _ _
5\ @ Vs(qb) 0 — dp 2|VS(¢)|

high initial
friction hence

_ do Expand Vg(¢) about ¢ =0
p = S )
\/2|VS(¢)’ V3(¢):0+0+1w2¢2

field
theory very slow roll 9
| 1 [do 1 _
p=E 3 =x-log ¢(1) . p~e W, e’
Now remember time translation invariance of EOM says we can send p — p — po
2
w
For Vg(x) = @(ag — @ a(l — QG—W(P—PO)), P> po gb g
g d2(lb / . W(p — PO)
Solution of w = Vg(d)) 1S, gbb(p) — atanh(T), P = pPo oo P —
o(p) = atanh(%) —a(l—2e72P0=P)) | py > p
—a

The location of the instanton pgy appears arbitrary. Is it?



The O(4) Instanton — deciding the location

¢
V(g) = Vs(6) + o= (6 - a) .
¢ — a, p>po -
pPo P
oo(p) = atanh(M), P = po
—1
—a p < po

B 5 00 5 1 8¢b 2 € B Po—0 Po+0 oo
S[¢] = 2r /0 Pdp li(a_p) +vs(¢b)+%(¢b—a)]/o d”[po_a dp+/po+5dp

po—0 ) Pot+0 5 5
= 27r2/ p’dp (—€) 4+ 2w p%/ dp L +27 / p°dp (0)
0 Po—0 po+90

1 54 2 oo 1 0g )\ Sy
= =57 Po € + 212 p S, where, S %/ dp[ () +Vs(¢b)] :/ dp/2Vs(9)

5 2\ 9p —a

d S
dS = —272p3 e+ 672p2S; —>|po =3
Po

O

1 277’[’28%
2L and S =
€ a 2e3

Minimize wrt pg : 0 =




Instanton energetics

Consider an observer who is moving with the wall. At time of formation there
no KE and bubble radius is » = pg. The energy per unit area of the bubble is,

1 1 1 1
&= fdgx(—v¢b2+V5 ¢b) ~ / Anr?dr | =|Vép|? + V.
+o00 1 . y ’
" [ dr (—|V¢b|2 I VS(@b)) =5 So the single instanton action and the
& 2 instanton energy are equal at t =7 = 0.
How fast does the wall move? From this, v = 1 _
Recall: constant = pg = —c%t% 4+ r? ’ /1 v2 P0
2
Energy transforms to a moving frame as, ‘
1 Le="4 ZS_E 335 _4 3
8—>7€,fy:—2 Now need v: | ~~“ = po " P73 T, T3¢
g1 —
c? - The bubble is expanding at speed ~ ¢
B — @ _ CQE _ A ct - There’s only true vacuum inside
dt r \/ P% + c2¢2 - All energy from false vacuum goes
into the wall




Once the false to true transition happens everything will be over, so bye-bye!

Quantum field ¢

in its true vacuum
state ¢_

Transition layer where

one vacuum merges into

into another (roughly

equal to the size of instanton).
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