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* Imaginarytime
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particle QM * Decay of metastable states

 The functional determinant \Y;

* Basic QFT for a scalar field
* Tunneling of field configurations \w
Tunneling of  The O(4) instanton
quantum fields * How/when will the universe end? 4
e Gauge fields and multiple vacuaa x
* Effective action



Instantons in gauge theories

F=mg

Particle on a 1-dim topologically
non-trivial manifold, the circle.



Instantons in gauge theories

indicates strength
of “gauge” potential

F=mg ~

K
Nontrivial topology in the space
of gauge fields in the x (Chern-
Simons current) direction.

Particle on a 1-dim topologically
non-trivial manifold, the circle.



Perturbation
Theory

> Sphaleron

Instanton




Standard Model also has sphalerons

sphaleron (NCS =

1
25

vacuum

Zero energy vacuaa,
connected by tunneling
transitions that

violate baryon and lepton
number conservation

Possible model for
baryogenesis in the
early universe



Basics of Gauge Theory - |

Suppose we have two independent real scalar fields ¢q, ¢o with,
1 1
o = 5 Mqﬁlc’?"‘fbl + 58u¢28M¢2 - V(lea ¢52) with V' = V(gb% + gb%)

Let the fields take complex values and assemble them into column and row vectors:

510 st 6] L=0.10m - V(sTe).
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¢—\/§ @2] and, ¢ NG

Suppose U(N) is a constant N x N matrix (N = 2 here) with UTU = 1.
d(z) = Ud(z), ¢'(x) = ¢'(z)UT and so ¢'p — ¢'¢, 0,6'0"¢ — 0,¢"0"¢
The Lagrangian is therefore invariant under global transformations, £ — £

The Yang-Mills idea (1953): make £ invariant under local transformations.
The original motivation came from electrodynamics but now extends far
beyond. All of modern particle physics depends on gauge theories.



Basics of Gauge Theory - 2

Now suppose U = U(z) with UT(2)U(x) = 1. Then under, ¢(z) — Udp(z),
Oyt — 0,(U¢) = (0,U)p + U, and 9,¢" — (0,6"UT + ¢'0,U"

® This means that 9,0"0*¢ —~ 9,,0T0"¢. So should one give up hope?
H 1z

e YM said no, let’s invent a new Lagrangian, £ = D,¢'D*¢ — V (¢'¢)
where, D, ¢(x) = 0,¢(z) — 1A, (z)¢(x) (called covariant derivative)

® Now under the combined transformation, ¢ -+ U¢ and A, — U TAHU +iU T(’?}LU
we do have the desired invariance, i.e, £ — L. (Plug in and verify!)

® Up to this point the gauge field A, is a “dead field”, i.e. it has no dynamics.
How to make it come alive? Quick answer: Include this term in the Lagrangian,

1
_EFWFW where F,, = 0,4, —0,A, — |Au A,



Basics of Gauge Theory - 3

Up to this point the gauge field A, is a “dead field”, i.e. it has no dynamics.
How to make it come alive? Quick answer: Include this term in the Lagrangian,

1
—1 wE? where Fy,, = 0, A, —0,A, — [4,,A,]
So the invariant Lagrangian of a scalar field coupled to a gauge field is,
1
L= DM¢TD”¢ - V(¢T¢) - ZFMVFW

D,é(x) = 8,6(x) — i, (2)9(x)

But why this particular structure of F},,7 Yang and Mills did it by trial and error.
Is it possible to do better?



NEW MATH FOR QFT



Physics is becoming so
unbelievably complex that it is
taking longer and longer to
train a physicist. It is taking so
long, in fact, to train a physicist
to the place where he
understands the nature of
physical problems that he is
already too old to solve them.

Eugene P. Wigner



Calculus

Linear Algebra

Differential Equations
Complex Variables

Optional: Probability Theory
Optional: Group Theory




Does this “heavy stuff” really help ?



PHILOSOPHICAL
TRANSACTIONS:

A Dynamical Theory of the Electromagnetic Field

J. Clerk Maxwell
Phil. Trans. R. Soc. Lond. 1865 155, 459-512, published 1 January 1865




df dg dh
€+£+§+E:D (1} Gauss’ Law
dH dG
Bt = — -~ —
The Original (Twenty) Maxwell’s o T
. HE = W A (2) for magnetism
Equations (1865) 5 _dF
dx  dy
dy dz ) dF AF
F= st i B et A L
# (y i P ai'r.J : &
Faraday's Law
dz ) 45 4
Q= ,M[ —= ;V—x] e (3} (with the Lorentz Force
dt at t dy and Poisson’s Law)
adx dv dH &Y
E = —_— g | —
’M[ﬁ i .:x‘z] di dz
dy d
=B A . dr
dy dz s P
da dy 23
R R e 1 r_ =4 Bre-
o S g’ = g+E (4) Ampére-Maxwell Law
df_da_ 4o x dh
drx dy = r+§
P=-é» Q=-¢ E=-& Ohm's Law
The electric elasticity
P=k =kg R =khk
S Q=kg equation (E = D/g)
de dv dg d
ki =W i M o Continuity of charge
dft dx dy dz




Oliver Heaviside: 1850-1925
4 Profession: Electrician

Education: High School




Under Maxwell’s Statue : I *













@ If you have bought one of those T-shirts with
St Maxwell's equations on the front, you may have to
worry about its going out of style, but not about
its becoming false. We will go on teaching
Maxwellian electrodynamics as long as there are
scientists.

(Steven Weinberg)

izquotes.com




This is how we teach Maxwell’s equations these days

You start with the quantity 4, (called the gauge potential).
Then, F,,=0,4,-0,4, (called the field tensor).

Define: F*' =¢&"*°F o (called the dual field tensor).
oy uv v
0,F" =0 0,F" =]

Much better! But is it good enough?



| hate indices and coordinates!




Differential Geometry and Differential Forms

Differential Geometry
a) curvature?
b) distances?
c) areas?

ae
-oe
L.

.

Bernhard Riemann 1826-1866



Differential Forms

A= Aﬂdx” 1s called a one-form.

Under x — x', A doesn't change:

Y7,
A=A dx" = A, j;‘w dx'" = Al dx'"
A= l' A, dx“~dx" is called a two-form.

Antisymmetry under multiplication: dx”A dx"” = —dx" A dx*

Under x — x’, A also doesn't change:

A:iA dx“Adx” = lA’ dx"" A dx"”
21 21 A



Differential Forms

Define d (called the exterior derivative).

dA= %GPAW dx” A dx" Adx” makes a 3-form if 4 is a 2-form

ddi=0 = d°=0
Poincare Lemma: 1fd H =0 then H =dK locally.
Integration: jM dA= LM A Aisa(d-1) form




Calculus

Topology



Rewriting Maxwell’s equations using differential forms

1) You start with the one-form 4, then 4 =4 dx“. Define F=dA .
d°=0 = dF=d’4 =0 50% of Maxwell's equations hence derived!

2) Notice A - A+ da doesn't change F' .

3) Define Hodge * operation on a zero-form A, a one-form A, a two-form A4, etc:

*A=.-g gﬂlﬂ2ﬂ3ﬂ4Adx“1/\dx“2 Adx™ Adx™ (4-form)
*A=\-8 &, ., ﬂ4A“4 dx“ A dx™? A dx™ (3-form)
FA=\=g 4y, A AXTN X (2-form)
*A==g &4y, AT X (1-form)
A== €4, AHrast (0-form)



Rewriting Maxwell’s equations using differential forms

4) Create an action S invariant under 4 - A+ da and couple 4 to a current one-form; :

S = j ( LEA*E + AN ]) (coordinate free!!).

5) Then minimize S by variation: 4 — A+ 0 A.

dF =0 d=*xF=%j



An immediate payback is generalized electrodynamics

1) Now start with the p-form A.
Define F=dA .

The conserved current j 1s now a p-form.

2) Gauge invariant action :

S:J‘(%F/\*F-F(—l)pA/\*j )



Still not convinced?

e | d/&i Jf’{; Ji 5,.‘} 0l
7] Ul..hriog.);ﬁ[w J)J)’é.)




Vielbeins and Cartan’s Equations

B R =curvaturg®2-form = %R (x)dx” A dx”

focin: g, (x) =e(x)n,, ¢’ (x)
e”=e’ (x)dx"

--0'

jon 1-form

Cartan's Equations
de+wne=0 R=dot+torw A



What did this buy for you?

Example: Easy derivation of various identities involving the Riemann curvature tensor, R, v

Start with: de+wre=0 = d(de+wre)=0 = dde+dore—wrde=0

= dore+orore=0 = (a’a)+a)/\a))/\e=0 — R/\@ZO

Restore Lorentz indices: R”,, e’ ,dx"Adx"Adx'=0 = R%,, dx"Adx"ndx*=0

or e” R%, dx"Adx"A dx* =0




Now you can rewrite the usual Einstein-Hilbert action without using
coordinates or space-time indices:

S = jRaﬂ*(e“Aeﬂ)

Why? Because:
a) You cannot have more than one power of the curvature 2-form R.

b) The only other available form is e“.
c)2+(d-2)=d



Principal Fibre Bundles and Non-Abelian Gauge Theories

X

25 }

It’s the natural math to use because:
a) The gauge potential is the connection
b) Global properties of gauge fields can be explored.



Basic Non-Abelian Gauge Theory

e Define one-form (matrix valued): 4= 4, dx".
Note that An A=A, A, dx" ndx" =5[A,, A, 1dx" Ndx"
o Create F=dA+ AA A (remember Cartan!)

If A5>UAU+UdU" then F>UF U’
Equivalently: F,“t* >UF,“t* U’
1 : : : :
e Then L= _ET r 'f F A*F 1s a gauge-invariant Lagrangian.

But if A is to be understood as a connection, then in
what space is it a connection ?



fibre bundle

Sx

s ®
/ // flbre
base manifold




M* (base space)

VA




The Great Philosophical Puzzle

“The Unreasonable Effectiveness of
Mathematics in the Natural Sciences”

Eugene P. Wigner






