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3.1: Schrodinger's Equation

Consider a dynamical system consisting of a single non-relativistic particle of mass  moving along the -axis in some real

potential . In quantum mechanics, the instantaneous state of the system is represented by a complex wavefunction .

This wavefunction evolves in time according to Schrödinger’s equation:

The wavefunction is interpreted as follows:  is the probability density of a measurement of the particle’s displacement

yielding the value . Thus, the probability of a measurement of the displacement giving a result between  and  (where ) is

Note that this quantity is real and positive definite.

This page titled 3.1: Schrodinger's Equation is shared under a not declared license and was authored, remixed, and/or curated by Richard

Fitzpatrick.
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3.2: Normalization of the Wavefunction

Now, a probability is a real number lying between 0 and 1. An outcome of a measurement that has a probability 0 is an impossible

outcome, whereas an outcome that has a probability 1 is a certain outcome. According to Equation ([e3.2]), the probability of a

measurement of  yielding a result lying between  and  is

However, a measurement of  must yield a value lying between  and , because the particle has to be located somewhere. It

follows that , or

which is generally known as the normalization condition for the wavefunction.

For example, suppose that we wish to normalize the wavefunction of a Gaussian wave-packet, centered on , and of

characteristic width  (see Section [s2.9]): that is,

In order to determine the normalization constant , we simply substitute Equation ([e3.5]) into Equation ([e3.4]) to obtain

Changing the variable of integration to , we get

However ,

which implies that

Hence, a general normalized Gaussian wavefunction takes the form

where  is an arbitrary real phase-angle.

It is important to demonstrate that if a wavefunction is initially normalized then it stays normalized as it evolves in time according

to Schrödinger’s equation. If this is not the case then the probability interpretation of the wavefunction is untenable, because it does

not make sense for the probability that a measurement of  yields any possible outcome (which is, manifestly, unity) to change in

time. Hence, we require that

for wavefunctions satisfying Schrödinger’s equation. The previous equation gives

Now, multiplying Schrödinger’s equation by , we obtain
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The complex conjugate of this expression yields

[because , , and ].

Summing the previous two equations, we get

Equations ([e3.12]) and ([e3.15]) can be combined to produce

The previous equation is satisfied provided

However, this is a necessary condition for the integral on the left-hand side of Equation ([e3.4]) to converge. Hence, we conclude

that all wavefunctions that are square-integrable [i.e., are such that the integral in Equation ([e3.4]) converges] have the property

that if the normalization condition ([e3.4]) is satisfied at one instant in time then it is satisfied at all subsequent times.

It is also possible to demonstrate, via very similar analysis to that just described, that

where  is defined in Equation ([e3.2]), and

is known as the probability current. Note that  is real. Equation ([epc]) is a probability conservation equation. According to this

equation, the probability of a measurement of  lying in the interval  to  evolves in time due to the difference between the flux of

probability into the interval [i.e., ], and that out of the interval [i.e., ]. Here, we are interpreting  as the flux of

probability in the -direction at position  and time .

Note, finally, that not all wavefunctions can be normalized according to the scheme set out in Equation ([e3.4]). For instance, a

plane-wave wavefunction

is not square-integrable, and, thus, cannot be normalized. For such wavefunctions, the best we can say is that

In the following, all wavefunctions are assumed to be square-integrable and normalized, unless otherwise stated.
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3.3: Expectation Values (Averages) and Variances

We have seen that  is the probability density of a measurement of a particle’s displacement yielding the value  at time .

Suppose that we make a large number of independent measurements of the displacement on an equally large number of identical

quantum systems. In general, measurements made on different systems will yield different results. However, from the definition of

probability (see Chapter [s2]), the mean of all these results is simply

Here,  is called the expectation value of . (See Chapter [s2].) Similarly the expectation value of any function of  is

In general, the results of the various different measurements of  will be scattered around the expectation value, . The degree of

scatter is parameterized by the quantity

which is known as the variance of . (See Chapter [s2].) The square-root of this quantity, , is called the standard deviation of .

(See Chapter [s2].) We generally expect the results of measurements of  to lie within a few standard deviations of the expectation

value.

For instance, consider the normalized Gaussian wave-packet [see Equation ([eng])]

The expectation value of  associated with this wavefunction is

Let . It follows that

However, the second integral on the right-hand side is zero, by symmetry. Hence, making use of Equation ([e3.8]), we obtain

Evidently, the expectation value of  for a Gaussian wave-packet is equal to the most likely value of  (i.e., the value of  that

maximizes ).

The variance of  associated with the Gaussian wave-packet ([e3.24]) is

Let . It follows that

However,

giving
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This result is consistent with our earlier interpretation of  as a measure of the spatial extent of the wave-packet. (See Section

[s2.9].) It follows that we can rewrite the Gaussian wave-packet ([e3.24]) in the convenient form
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3.4: Ehrenfest's Theorem

A simple way to calculate the expectation value of momentum is to evaluate the time derivative of , and then multiply by the

mass : that is,

However, it is easily demonstrated that

[this is just the differential form of Equation ([epc])], where  is the probability current defined in Equation ([eprobc]). Thus,

where we have integrated by parts. It follows from Equation ([eprobc]) that

where we have again integrated by parts. Hence, the expectation value of the momentum can be written

It follows from the previous equation that

where we have integrated by parts. Substituting from Schrödinger’s equation ([e3.1]), and simplifying, we obtain

Integration by parts yields

Hence, according to Equations ([e4.34x]) and ([e3.41]),

Evidently, the expectation values of displacement and momentum obey time evolution equations that are analogous to those of

classical mechanics. This result is known as Ehrenfest’s theorem .

Suppose that the potential  is slowly varying. In this case, we can expand  as a Taylor series about . Keeping terms

up to second order, we obtain

Substitution of the previous expansion into Equation ([e3.43]) yields
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because , and , and . The final term on the right-hand side of the previous equation can

be neglected when the spatial extent of the particle wavefunction, , is much smaller than the variation length-scale of the

potential. In this case, Equations ([e3.42]) and ([e3.43]) reduce to

These equations are exactly equivalent to the equations of classical mechanics, with  playing the role of the particle

displacement. Of course, if the spatial extent of the wavefunction is negligible then a measurement of  is almost certain to yield a

result that lies very close to . Hence, we conclude that quantum mechanics corresponds to classical mechanics in the limit that

the spatial extent of the wavefunction (which is typically of order the de Boglie wavelength) is negligible. This is an important

result, because we know that classical mechanics gives the correct answer in this limit.
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3.5: Operators

An operator,  (say), is a mathematical entity that transforms one function into another: that is,

For instance,  is an operator, because  is a different function to , and is fully specified once  is given. Furthermore,

 is also an operator, because  is a different function to , and is fully specified once  is given. Now,

This can also be written

where the operators are assumed to act on everything to their right, and a final  is understood [where  is a general

function]. The previous expression illustrates an important point. Namely, in general, operators do not commute with one another.

Of course, some operators do commute. For instance,

Finally, an operator, , is termed linear if

where  is a general function, and  a general complex number. All of the operators employed in quantum mechanics are linear.

Now, from Equations ([e3.22]) and ([e3.38]),

These expressions suggest a number of things. First, classical dynamical variables, such as  and , are represented in quantum

mechanics by linear operators that act on the wavefunction. Second, displacement is represented by the algebraic operator , and

momentum by the differential operator : that is, \[\label{e3.54} p \equiv -{\rm i}\,\hbar\,\frac{\partial}{\partial x}.\]

Finally, the expectation value of some dynamical variable represented by the operator  is simply

Clearly, if an operator is to represent a dynamical variable that has physical significance then its expectation value must be real. In

other words, if the operator  represents a physical variable then we require that , or

where  is the complex conjugate of . An operator that satisfies the previous constraint is called an Hermitian operator. It is

easily demonstrated that  and  are both Hermitian. The Hermitian conjugate, , of a general operator, , is defined as follows:

The Hermitian conjugate of an Hermitian operator is the same as the operator itself: that is, . For a non-Hermitian operator, 

 (say), it is easily demonstrated that , and that the operator  is Hermitian. Finally, if  and  are two

operators, then .

Suppose that we wish to find the operator that corresponds to the classical dynamical variable . In classical mechanics, there is

no difference between  and . However, in quantum mechanics, we have already seen that . So, should we choose 
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 or ? Actually, neither of these combinations is Hermitian. However,  is Hermitian. Moreover, 

, which neatly resolves our problem of the order in which to place 

 and .

It is a reasonable guess that the operator corresponding to energy (which is called the Hamiltonian, and conventionally denoted )

takes the form

Note that  is Hermitian. Now, it follows from Equation ([e3.54]) that

However, according to Schrödinger’s equation, ([e3.1]), we have

so

Thus, the time-dependent Schrödinger equation can be written

Finally, if  is a classical dynamical variable that is a function of displacement, momentum, and energy then a reasonable

guess for the corresponding operator in quantum mechanics is , where , and 

.
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3.6: Momentum Representation

Fourier’s theorem (see Section [s2.9]), applied to one-dimensional wavefunctions, yields

where  represents wavenumber. However, . Hence, we can also write

where  is the momentum-space equivalent to the real-space wavefunction .

At this stage, it is convenient to introduce a useful function called the Dirac delta-function . This function, denoted , was first

devised by Paul Dirac , and has the following rather unusual properties:  is zero for , and is infinite at . However,

the singularity at  is such that

The delta-function is an example of what is known as a generalized function: that is, its value is not well defined at all , but its

integral is well defined. Consider the integral

Because  is only non-zero infinitesimally close to , we can safely replace  by  in the previous integral

(assuming  is well behaved at ), to give

where use has been made of Equation ([e3.64a]). A simple generalization of this result yields

which can also be thought of as an alternative definition of a delta-function.

Suppose that . It follows from Equations ([e3.65]) and ([e3.69]) that

Hence, Equation ([e3.64]) yields the important result

Similarly,

It turns out that we can just as easily formulate quantum mechanics using the momentum-space wavefunction, , as the real-

space wavefunction, . The former scheme is known as the momentum representation of quantum mechanics. In the

momentum representation, wavefunctions are the Fourier transforms of the equivalent real-space wavefunctions, and dynamical
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variables are represented by different operators. Furthermore, by analogy with Equation ([e3.55]), the expectation value of some

operator  takes the form

Consider momentum. We can write

where use has been made of Equation ([e3.64]). However, it follows from Equation ([e3.72]) that

Hence, using Equation ([e3.69]), we obtain

Evidently, momentum is represented by the operator  in the momentum representation. The previous expression also strongly

suggests [by comparison with Equation ([e3.22])] that  can be interpreted as the probability density of a measurement of

momentum yielding the value  at time . It follows that  must satisfy an analogous normalization condition to Equation

([e3.4]): that is,

Consider displacement. We can write

Integration by parts yields

Hence, making use of Equations ([e3.72]) and ([e3.69]), we obtain

Evidently, displacement is represented by the operator

in the momentum representation.

Finally, let us consider the normalization of the momentum-space wavefunction . We have

Thus, it follows from Equations ([e3.69]) and ([e3.72]) that
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Hence, if  is properly normalized [see Equation ([e3.4])] then , as defined in Equation ([e3.65]), is also properly

normalized [see Equation ([enormp])].

The existence of the momentum representation illustrates an important point. Namely, there are many different, but entirely

equivalent, ways of mathematically formulating quantum mechanics. For instance, it is also possible to represent wavefunctions as

row and column vectors, and dynamical variables as matrices that act upon these vectors.
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3.7: Heisenberg's Uncertainty Principle

Consider a real-space Hermitian operator, . A straightforward generalization of Equation ([e3.55a]) yields

where  and  are general functions.

Let , where  is an Hermitian operator, and  a general wavefunction. We have

Making use of Equation ([e3.84]), we obtain

where  is the variance of . [See Equation ([e3.24a]).] q4 Similarly, if , where  is a second Hermitian

operator, then

Now, there is a standard result in mathematics, known as the Schwartz inequality , which states that

where  and  are two general functions. Furthermore, if  is a complex number then

Hence, if  then Equations ([e3.86])–([e3.89]) yield

However,

where use has been made of Equation ([e3.84]). The previous equation reduces to

Furthermore, it is easily demonstrated that

Hence, Equation ([e3.90]) gives

where
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Equation ([e3.94]) is the general form of Heisenberg’s uncertainty principle in quantum mechanics. It states that if two dynamical

variables are represented by the two Hermitian operators  and , and these operators do not commute (i.e., ), then it

is impossible to simultaneously (exactly) measure the two variables. Instead, the product of the variances in the measurements is

always greater than some critical value, which depends on the extent to which the two operators do not commute.

For instance, displacement and momentum are represented (in real-space) by the operators  and , respectively.

Now, it is easily demonstrated that

Thus,

which can be recognized as the standard displacement-momentum uncertainty principle (see Section [sun]). It turns out that the

minimum uncertainty (i.e., ) is only achieved by Gaussian wave-packets (see Section [s2.9]): that is,

where  is the momentum-space equivalent of .

Energy and time are represented by the operators  and , respectively. These operators do not commute, indicating

that energy and time cannot be measured simultaneously. In fact,

so

This can be written, somewhat less exactly, as

 are the uncertainties in energy and time, respectively. The previous expression is generally known as the energy-time

uncertainty principle.

For instance, suppose that a particle passes some fixed point on the -axis. Because the particle is, in reality, an extended wave-

packet, it takes a certain amount of time, , for the particle to pass. Thus, there is an uncertainty, , in the arrival time of the

particle. Moreover, because , the only wavefunctions that have unique energies are those with unique frequencies: that is,

plane-waves. Because a wave-packet of finite extent is made up of a combination of plane-waves of different wavenumbers, and,

hence, different frequencies, there will be an uncertainty  in the particle’s energy that is proportional to the range of frequencies

of the plane-waves making up the wave-packet. The more compact the wave-packet (and, hence, the smaller ), the larger the

range of frequencies of the constituent plane-waves (and, hence, the large ), and vice versa.

To be more exact, if  is the wavefunction measured at the fixed point as a function of time then we can write

In other words, we can express  as a linear combination of plane-waves of definite energy . Here,  is the complex

amplitude of plane-waves of energy  in this combination.

By Fourier’s theorem, we also have

For instance, if  is a Gaussian then it is easily shown that  is also a Gaussian: that is,
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where . As before, Gaussian wave-packets satisfy the minimum uncertainty principle . Conversely, non-

Gaussian wave-packets are characterized by .
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3.8: Eigenstates and Eigenvalues

Consider a general real-space operator, . When this operator acts on a general wavefunction  the result is usually a

wavefunction with a completely different shape. However, there are certain special wavefunctions which are such that when  acts

on them the result is just a multiple of the original wavefunction. These special wavefunctions are called eigenstates, and the

multiples are called eigenvalues. Thus, if

where  is a complex number, then  is called an eigenstate of  corresponding to the eigenvalue .

Suppose that  is an Hermitian operator corresponding to some physical dynamical variable. Consider a particle whose

wavefunction is . The expectation of value  in this state is simply [see Equation ([e3.55])]

where use has been made of Equation ([e3.107]) and the normalization condition ([e3.4]). Moreover,

so the variance of  is [cf., Equation ([e3.24a])]

The fact that the variance is zero implies that every measurement of  is bound to yield the same result: namely, . Thus, the

eigenstate  is a state that is associated with a unique value of the dynamical variable corresponding to . This unique value is

simply the associated eigenvalue.

It is easily demonstrated that the eigenvalues of an Hermitian operator are all real. Recall [from Equation ([e3.84])] that an

Hermitian operator satisfies

Hence, if  then

which reduces to [see Equation ([e3.107])]

assuming that  is properly normalized.

Two wavefunctions,  and , are said to be orthogonal if

Consider two eigenstates of ,  and , which correspond to the two different eigenvalues  and , respectively. Thus,

Multiplying the complex conjugate of the first equation by , and the second equation by , and then integrating over all , we

obtain
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However, from Equation ([e3.111]), the left-hand sides of the previous two equations are equal. Hence, we can write

By assumption, , yielding

In other words, eigenstates of an Hermitian operator corresponding to different eigenvalues are automatically orthogonal.

Consider two eigenstates of ,  and , that correspond to the same eigenvalue, . Such eigenstates are termed degenerate. The

previous proof of the orthogonality of different eigenstates fails for degenerate eigenstates. Note, however, that any linear

combination of  and  is also an eigenstate of  corresponding to the eigenvalue . Thus, even if  and  are not

orthogonal, we can always choose two linear combinations of these eigenstates that are orthogonal. For instance, if  and  are

properly normalized, and

then it is easily demonstrated that

is a properly normalized eigenstate of , corresponding to the eigenvalue , that is orthogonal to . It is straightforward to

generalize the previous argument to three or more degenerate eigenstates. Hence, we conclude that the eigenstates of an Hermitian

operator are, or can be chosen to be, mutually orthogonal.

It is also possible to demonstrate that the eigenstates of an Hermitian operator form a complete set : that is, any general

wavefunction can be written as a linear combination of these eigenstates. However, the proof is quite difficult, and we shall not

attempt it here.

In summary, given an Hermitian operator , any general wavefunction, , can be written

where the  are complex weights, and the  are the properly normalized (and mutually orthogonal) eigenstates of : that is,

where  is the eigenvalue corresponding to the eigenstate , and

Here,  is called the Kronecker delta-function , and takes the value unity when its two indices are equal, and zero otherwise.

It follows from Equations ([e3.123]) and ([e3.125]) that

Thus, the expansion coefficients in Equation ([e3.123]) are easily determined, given the wavefunction  and the eigenstates .

Moreover, if  is a properly normalized wavefunction then Equations ([e3.123]) and ([e3.125]) yield
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3.9: Measurement

Suppose that  is an Hermitian operator corresponding to some dynamical variable. By analogy with the discussion in Section

[scoll], we expect that if a measurement of  yields the result  then the act of measurement will cause the wavefunction to

collapse to a state in which a measurement of  is bound to give the result . What sort of wavefunction, , is such that a

measurement of  is bound to yield a certain result, ? Well, expressing  as a linear combination of the eigenstates of , we have

where  is an eigenstate of  corresponding to the eigenvalue . If a measurement of  is bound to yield the result  then

and

Now, it is easily seen that

Thus, Equation ([e4.130]) gives

Furthermore, the normalization condition yields

For instance, suppose that there are only two eigenstates. The previous two equations then reduce to , and ,

where , and

The only solutions are  and . This result can easily be generalized to the case where there are more than two

eigenstates. It follows that a state associated with a definite value of  is one in which one of the  is unity, and all of the others

are zero. In other words, the only states associated with definite values of  are the eigenstates of . It immediately follows that

the result of a measurement of  must be one of the eigenvalues of . Moreover, if a general wavefunction is expanded as a linear

combination of the eigenstates of , like in Equation ([e4.128]), then it is clear from Equation ([e4.131]), and the general definition

of a mean, that the probability of a measurement of  yielding the eigenvalue  is simply , where  is the coefficient in front

of the th eigenstate in the expansion. Note, from Equation ([e4.134]), that these probabilities are properly normalized: that is, the

probability of a measurement of  resulting in any possible answer is unity. Finally, if a measurement of  results in the

eigenvalue  then immediately after the measurement the system will be left in the eigenstate corresponding to .

Consider two physical dynamical variables represented by the two Hermitian operators  and . Under what circumstances is it

possible to simultaneously measure these two variables (exactly)? Well, the possible results of measurements of  and  are the

eigenvalues of  and , respectively. Thus, to simultaneously measure  and  (exactly) there must exist states which are

simultaneous eigenstates of  and . In fact, in order for  and  to be simultaneously measurable under all circumstances, we

need all of the eigenstates of  to also be eigenstates of , and vice versa, so that all states associated with unique values of  are

also associated with unique values of , and vice versa.

Now, we have already seen, in Section 1.8, that if  and  do not commute (i.e., if ) then they cannot be

simultaneously measured. This suggests that the condition for simultaneous measurement is that  and  should commute.
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Suppose that this is the case, and that the  and  are the normalized eigenstates and eigenvalues of , respectively. It follows

that

or

Thus,  is an eigenstate of  corresponding to the eigenvalue  (though not necessarily a normalized one). In other words, 

, or

where  is a constant of proportionality. Hence,  is an eigenstate of , and, thus, a simultaneous eigenstate of  and . We

conclude that if  and  commute then they possess simultaneous eigenstates, and are thus simultaneously measurable (exactly).

Continuous Eigenvalues

In the previous two sections, it was tacitly assumed that we were dealing with operators possessing discrete eigenvalues and

square-integrable eigenstates. Unfortunately, some operators—most notably,  and —possess eigenvalues that lie in a continuous

range and non-square-integrable eigenstates (in fact, these two properties go hand in hand). Let us, therefore, investigate the

eigenstates and eigenvalues of the displacement and momentum operators.

Let  be the eigenstate of  corresponding to the eigenvalue . It follows that

for all . Consider the Dirac delta-function . We can write

because  is only non-zero infinitesimally close to . Evidently,  is proportional to . Let us make

the constant of proportionality unity, so that

It is easily demonstrated that

Hence,  satisfies the orthonormality condition

This condition is analogous to the orthonormality condition ([e3.125]) satisfied by square-integrable eigenstates. Now, by

definition,  satisfies

where  is a general function. We can thus write

where , or

In other words, we can expand a general wavefunction  as a linear combination of the eigenstates, , of the

displacement operator. Equations ([e4.144]) and ([e4.145]) are analogous to Equations ([e3.123]) and ([e3.126]), respectively, for
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square-integrable eigenstates. Finally, by analogy with the results in Section 1.9, the probability density of a measurement of 

yielding the value  is , which is equivalent to the standard result . Moreover, these probabilities are properly

normalized provided  is properly normalized [cf., Equation ([e3.127])]: that is,

Finally, if a measurement of  yields the value  then the system is left in the corresponding displacement eigenstate, ,

immediately after the measurement. That is, the wavefunction collapses to a “spike-function”, , as discussed in Section

[scoll].

Now, an eigenstate of the momentum operator  corresponding to the eigenvalue  satisfies

It is evident that

We require  to satisfy an analogous orthonormality condition to Equation ([e4.143]): that is,

Thus, it follows from Equation ([e3.72]) that the constant of proportionality in Equation ([e4.148]) should be : that is,

Furthermore, according to Equations ([e3.64]) and ([e3.65]),

where  [see Equation ([e3.65])], or

In other words, we can expand a general wavefunction  as a linear combination of the eigenstates, , of the

momentum operator. Equations ([e4.152]) and ([e4.153]) are again analogous to Equations ([e3.123]) and ([e3.126]), respectively,

for square-integrable eigenstates. Likewise, the probability density of a measurement of  yielding the result  is , which is

equivalent to the standard result . The probabilities are also properly normalized provided  is properly normalized

[cf., Equation ([e3.83])]: that is,

Finally, if a mesurement of  yields the value  then the system is left in the corresponding momentum eigenstate, ,

immediately after the measurement.
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3.10: Stationary States

An eigenstate of the energy operator  corresponding to the eigenvalue  satisfies

It is evident that this equation can be solved by writing

where  is a properly normalized stationary (i.e., non-time-varying) wavefunction. The wavefunction 

corresponds to a so-called stationary state, because the probability density  is non-time-varying. Note that a stationary state

is associated with a unique value for the energy. Substitution of the previous expression into Schrödinger’s equation ([e3.1]) yields

the equation satisfied by the stationary wavefunction:

This is known as the time-independent Schrödinger equation. More generally, this equation takes the form

where  is assumed not to be an explicit function of . Of course, the  satisfy the usual orthonormality condition:

Moreover, we can express a general wavefunction as a linear combination of energy eigenstates:

where

Here,  is the probability that a measurement of the energy will yield the eigenvalue . Furthermore, immediately after such a

measurement, the system is left in the corresponding energy eigenstate. The generalization of the previous results to the case where 

 has continuous eigenvalues is straightforward.

If a dynamical variable is represented by some Hermitian operator  that commutes with  (so that it has simultaneous eigenstates

with ), and contains no specific time dependence, then it is evident from Equations ([e4.157]) and ([e4.158]) that the expectation

value and variance of  are time independent. In this sense, the dynamical variable in question is a constant of the motion.
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3.11: Exercises

1. Monochromatic light with a wavelength of  passes through a fast shutter that opens for  sec. What is the subsequent

spread in wavelengths of the no longer monochromatic light?

2. Calculate , , and , as well as , , and , for the normalized wavefunction

Use these to find . Note that .

3. Classically, if a particle is not observed then the probability of finding it in a one-dimensional box of length , which extends

from  to , is a constant  per unit length. Show that the classical expectation value of  is , the expectation

value of  is , and the standard deviation of  is .

4. Demonstrate that if a particle in a one-dimensional stationary state is bound then the expectation value of its momentum must

be zero.

5. Suppose that  is complex. Obtain an expression for  and  from Schrödinger’s equation.

What does this tell us about a complex ?

6.  and  are normalized eigenfunctions corresponding to the same eigenvalue. If

where  is real, find normalized linear combinations of  and  that are orthogonal to (a) , (b) .

7. Demonstrate that  is an Hermitian operator. Find the Hermitian conjugate of .

8. An operator , corresponding to a physical quantity , has two normalized eigenfunctions  and , with eigenvalues 

 and . An operator , corresponding to another physical quantity , has normalized eigenfunctions  and , with

eigenvalues  and . The eigenfunctions are related via

 is measured and the value  is obtained. If  is then measured and then  again, show that the probability of obtaining  a

second time is .

9. Demonstrate that an operator that commutes with the Hamiltonian, and contains no explicit time dependence, has an

expectation value that is constant in time.

10. For a certain system, the operator corresponding to the physical quantity  does not commute with the Hamiltonian. It has

eigenvalues  and , corresponding to properly normalized eigenfunctions

where  and  are properly normalized eigenfunctions of the Hamiltonian with eigenvalues  and . If the system is in the

state  at time , show that the expectation value of  at time  is
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CHAPTER OVERVIEW

4: One-Dimensional Potentials

In this chapter, we shall investigate the interaction of a non-relativistic particle of mass  and energy  with various one-

dimensional potentials, . Because we are searching for stationary solutions with unique energies, we can write the

wavefunction in the form (see Section [sstat])

where  satisfies the time-independent Schrödinger equation:

In general, the solution, , to the previous equation must be finite, otherwise the probability density  would become infinite

(which is unphysical). Likewise, the solution must be continuous, otherwise the probability current ([eprobc]) would become

infinite (which is also unphysical).

4.1: Infinite Potential Well

4.2: Square Potential Barrier

4.3: WKB Approximation

4.4: Cold Emission

4.5: Alpha Decay

4.6: Square Potential Well

4.7: Simple Harmonic Oscillator

4.E: One-Dimensional Potentials (Exercises)

This page titled 4: One-Dimensional Potentials is shared under a not declared license and was authored, remixed, and/or curated by Richard

Fitzpatrick.
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4.1: Infinite Potential Well

Consider a particle of mass  and energy  moving in the following simple potential:

It follows from Equation ([e5.2]) that if  (and, hence, ) is to remain finite then  must go to zero in regions where the

potential is infinite. Hence,  in the regions  and . Evidently, the problem is equivalent to that of a particle trapped

in a one-dimensional box of length . The boundary conditions on  in the region  are

Furthermore, it follows from Equation ([e5.2]) that  satisfies

in this region, where

Here, we are assuming that . It is easily demonstrated that there are no solutions with  which are capable of satisfying

the boundary conditions ([e5.4]).

The solution to Equation ([e5.5]), subject to the boundary conditions ([e5.4]), is

where the  are arbitrary (real) constants, and

for . Now, it can be seen from Equations ([e5.6]) and ([e5.8]) that the energy  is only allowed to take certain

discrete values: that is,

In other words, the eigenvalues of the energy operator are discrete. This is a general feature of bounded solutions: that is, solutions

for which  as . According to the discussion in Section [sstat], we expect the stationary eigenfunctions  to

satisfy the orthonormality constraint

It is easily demonstrated that this is the case, provided . Hence,

for .

Finally, again from Section [sstat], the general time-dependent solution can be written as a linear superposition of stationary

solutions:

where
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