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CHAPTER OVERVIEW

2: Wave-Particle Duality

In classical mechanics, waves and particles are two completely distinct types of physical entity. Waves are continuous and spatially

extended, whereas particles are discrete and have little or no spatial extent. However, in quantum mechanics, waves sometimes act

as particles, and particles sometimes act as waves—this strange behavior is known as wave-particle duality. In this chapter, we

shall examine how wave-particle duality shapes the general features of quantum mechanics.
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2.1: Wavefunctions

A wave is defined as a disturbance in some physical system that is periodic in both space and time. In one dimension, a wave is

generally represented in terms of a wavefunction: for instance,

where  is a position coordinate,  represents time, and , , . For example, if we are considering a sound wave then 

might correspond to the pressure perturbation associated with the wave at position  and time . On the other hand, if we are

considering a light-wave then  might represent the wave’s transverse electric field. As is well known, the cosine function, 

, is periodic in its argument, , with period : in other words,  for all . The function also oscillates

between the minimum and maximum values  and , respectively, as  varies. It follows that the wavefunction (2.1.1) is

periodic in  with period . In other words,  for all  and . Moreover, the wavefunction is periodic

in  with period . In other words,  for all  and . Finally, the wavefunction oscillates between the

minimum and maximum values  and , respectively, as  and  vary. The spatial period of the wave, , is known as its

wavelength, and the temporal period, , is called its period. Furthermore, the quantity  is termed the wave amplitude, the

quantity  the wavenumber, and the quantity  the wave angular frequency. Note that the units of  are radians per second. The

conventional wave frequency, in cycles per second (otherwise known as hertz), is . Finally, the quantity ,

appearing in expression (2.1.1), is termed the phase angle, and determines the exact positions of the wave maxima and minima at a

given time. In fact, the maxima are located at , where  is an integer. This follows because the maxima of 

 occur at . Note that a given maximum satisfies , where . It follows that the

maximum, and, by implication, the whole wave, propagates in the positive -direction at the velocity . Analogous reasoning

reveals that

is the wavefunction of a wave of amplitude , wavenumber , angular frequency , and phase angle , that propagates in the

negative -direction at the velocity .

This page titled 2.1: Wavefunctions is shared under a not declared license and was authored, remixed, and/or curated by Richard Fitzpatrick.
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2.2: Plane-Waves

As we have just seen, a wave of amplitude , wavenumber , angular frequency , and phase angle , propagating in the positive 

-direction, is represented by the following wavefunction:

This type of wave is conventionally termed a one-dimensional plane-wave. It is one-dimensional because its associated

wavefunction only depends on the single Cartesian coordinate, . Furthermore, it is a plane-wave because the wave maxima, which

are located at

where  is an integer, consist of a series of parallel planes, normal to the -axis, that are equally spaced a distance  apart,

and propagate along the positive -axis at the velocity . These conclusions follow because Equation (2.2.2) can be

rewritten in the form

where . Moreover, as is well known, Equation (2.2.3) is the equation of a plane, normal to the -axis,

whose distance of closest approach to the origin is .

Figure 1: The solution of  is a plane. 

The previous equation can also be written in the coordinate-free form

where  is a unit vector directed along the positive -axis, and  represents the vector displacement of a

general point from the origin. Because there is nothing special about the -direction, it follows that if  is reinterpreted as a unit

vector pointing in an arbitrary direction then Equation (2.2.4) can be reinterpreted as the general equation of a plane. As before, the

plane is normal to , and its distance of closest approach to the origin is . See Figure [f10.1]. This observation allows us to write

the three-dimensional equivalent to the wavefunction (2.2.1) as

where the constant vector  is called the wavevector. The wave represented previously is conventionally

termed a three-dimensional plane-wave. It is three-dimensional because its wavefunction, , depends on all three Cartesian

coordinates. Moreover, it is a plane-wave because the wave maxima are located at

or
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where , and . Note that the wavenumber, , is the magnitude of the wavevector, : that is, . It follows,

by comparison with Equation (2.2.4), that the wave maxima consist of a series of parallel planes, normal to the wavevector, that are

equally spaced a distance  apart, and that propagate in the -direction at the velocity . See Figure [f10.2]. Hence, the direction of

the wavevector specifies the wave propagation direction, whereas its magnitude determines the wavenumber, , and, thus, the

wavelength, .

Figure 2: Wave maxima associated with a three-dimensional plane wave.
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2.3: Representation of Waves via Complex Functions

In mathematics, the symbol  is conventionally used to represent the square-root of minus one: in other words, one of the solutions

of . Now, a real number,  (say), can take any value in a continuum of different values lying between  and . On

the other hand, an imaginary number takes the general form , where  is a real number. It follows that the square of a real

number is a positive real number, whereas the square of an imaginary number is a negative real number. In addition, a general

complex number is written

where  and  are real numbers. In fact,  is termed the real part of , and  the imaginary part of . This is written

mathematically as  and . Finally, the complex conjugate of  is defined .

Just as we can visualize a real number as a point lying on an infinite straight-line, we can visualize a complex number as a point

lying in an infinite plane. The coordinates of the point in question are the real and imaginary parts of the number: that is, 

. This idea is illustrated in Figure [f13.2]. The distance, , of the representative point from the origin is

termed the modulus of the corresponding complex number, . This is written mathematically as . Incidentally,

it follows that . The angle, , that the straight-line joining the representative point to the

origin subtends with the real axis is termed the argument of the corresponding complex number, . This is written mathematically

as . It follows from standard trigonometry that , and . Hence, .

Figure 3: Representation of a complex number as a point in a plane.

Complex numbers are often used to represent wavefunctions. All such representations depend ultimately on a fundamental

mathematical identity, known as Euler’s theorem , that takes the form

where  is a real number. Incidentally, given that , where  is a general complex

number,  its modulus, and  its argument, it follows from Euler’s theorem that any complex number, , can be

written

where  and  are real numbers.

A one-dimensional wavefunction takes the general form

where  is the wave amplitude,  the wavenumber,  the angular frequency, and  the phase angle. Consider the complex

wavefunction
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where  is a complex constant. We can write

where  is the modulus, and  the argument, of . Hence, we deduce that

Thus, it follows from Euler’s theorem, and Equation (2.3.4), that

In other words, a general one-dimensional real wavefunction, (2.3.4), can be represented as the real part of a complex wavefunction

of the form (2.3.5). For ease of notation, the “take the real part” aspect of the previous expression is usually omitted, and our

general one-dimension wavefunction is simply written

The main advantage of the complex representation, (2.3.8), over the more straightforward real representation, (2.3.4), is that the

former enables us to combine the amplitude, , and the phase angle, , of the wavefunction into a single complex amplitude, .

Finally, the three-dimensional generalization of the previous expression is

where  is the wavevector.
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2.4: Classical Light-Waves

Consider a classical, monochromatic, linearly-polarized, plane light-wave, propagating through a vacuum in the -direction. It is

convenient to characterize a light-wave (which is, of course, a type of electromagnetic wave) by specifying its associated electric

field. Suppose that the wave is polarized such that this electric field oscillates in the -direction. (According to standard

electromagnetic theory, the magnetic field oscillates in the -direction, in phase with the electric field, with an amplitude which is

that of the electric field divided by the velocity of light in vacuum. ) Now, the electric field can be conveniently represented in

terms of a complex wavefunction:

Here, ,  and  are real parameters, and  is a complex wave amplitude. By convention, the physical electric field is the

real part of the previous expression. Suppose that

where  is real. It follows that the physical electric field takes the form

where  is the amplitude of the electric oscillation,  the wavenumber,  the angular frequency, and  the phase angle. In

addition,  is the wavelength, and  the frequency (in hertz).

According to standard electromagnetic theory , the frequency and wavelength of light-waves are related according to the well-

known expression

or, equivalently,

where  is the velocity of light in vacuum. Equations (2.4.3) and (2.4.5) yield

Note that  depends on  and  only via the combination . It follows that the wave maxima and minima satisfy

Thus, the wave maxima and minima propagate in the -direction at the fixed velocity

An expression, such as Equation (2.4.5), that determines the wave angular frequency as a function of the wavenumber, is generally

termed a dispersion relation. As we have already seen, and as is apparent from Equation (2.4.6), the maxima and minima of a

plane-wave propagate at the characteristic velocity

which is known as the phase-velocity. Hence, the dispersion relation (2.4.5) is effectively saying that the phase-velocity of a plane

light-wave, propagating through a vacuum, always takes the fixed value , irrespective of its wavelength or frequency.

From standard electromagnetic theory , the energy density (i.e., the energy per unit volume) of a plane light-wave is

where  is the electrical permittivity of free space. Hence, it follows from Equations (2.4.1) and (2.4.3) that
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Furthermore, a light-wave possesses linear momentum, as well as energy. This momentum is directed along the wave’s direction of

propagation, and is of density
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2.5: Photoelectric Effect

The so-called photoelectric effect, by which a polished metal surface emits electrons when illuminated by visible and ultra-violet

light, was discovered by Heinrich Hertz in 1887 . The following facts regarding this effect can be established via careful

observation. First, a given surface only emits electrons when the frequency of the light with which it is illuminated exceeds a

certain threshold value, which is a property of the metal. Second, the current of photoelectrons, when it exists, is proportional to the

intensity of the light falling on the surface. Third, the energy of the photoelectrons is independent of the light intensity, but varies

linearly with the light frequency. These facts are inexplicable within the framework of classical physics.

In 1905, Albert Einstein proposed a radical new theory of light in order to account for the photoelectric effect . According to this

theory, light of fixed frequency  consists of a collection of indivisible discrete packages, called quanta,  whose energy is

Here,  is a new constant of nature, known as Planck’s constant. Incidentally,  is called Planck’s constant,

rather than Einstein’s constant, because Max Planck first introduced the concept of the quantization of light, in 1900, while trying

to account for the electromagnetic spectrum of a black body (i.e., a perfect emitter and absorber of electromagnetic radiation) .

Suppose that the electrons at the surface of a metal lie in a potential well of depth . In other words, the electrons have to acquire

an energy in order to be emitted from the surface. Here, is generally called the work function of the surface, and is a property

of the metal. Suppose that an electron absorbs a single quantum of light. Its energy therefore increases by . If  is greater than 

 then the electron is emitted from the surface with residual kinetic energy

Otherwise, the electron remains trapped in the potential well, and is not emitted. Here, we are assuming that the probability of an

electron simultaneously absorbing two or more light quanta is negligibly small compared to the probability of it absorbing a single

light quantum (as is, indeed, the case for sufficiently low-intensity illumination). Incidentally, we can calculate Planck’s constant,

and the work function of the metal, by simply plotting the kinetic energy of the emitted photoelectrons as a function of the wave

frequency, as shown in Figure [f1]. This plot is a straight-line whose slope is , and whose intercept with the -axis is .

Finally, the number of emitted electrons increases with the intensity of the light because the more intense the light, the larger the

flux of light quanta onto the surface. Thus, Einstein’s quantum theory is capable of accounting for all three of the previously

mentioned observational facts regarding the photoelectric effect.

Figure 4: Variation of the kinetic energy of photoelectrons with the wave-frequency .
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2.6: Quantum Theory of Light

According to Einstein’s quantum theory of light, a monochromatic light-wave of angular frequency , propagating through a

vacuum, can be thought of as a stream of particles, called photons, of energy

where . Because classical light-waves propagate at the fixed velocity , it stands to reason that

photons must also move at this velocity. According to Einstein’s special theory of relativity, only massless particles can move at the

speed of light in vacuum . Hence, photons must be massless. Special relativity also gives the following relationship between the

energy  and the momentum  of a massless particle ,

Note that the previous relation is consistent with Equation (2.4.12), because if light is made up of a stream of photons, for which 

, then the momentum density of light must be the energy density divided by . It follows, from the previous two

equations, that photons carry momentum

along their direction of motion, because  for a light-wave. [See Equation (2.4.5).]
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2.7: Classical Interferences of Light Waves

Let us now consider the classical interference of light-waves. Figure [f2] shows a standard double-slit interference experiment in

which monochromatic plane light-waves are normally incident on two narrow parallel slits that are situated a distance  apart. The

light from the two slits is projected onto a screen a distance  behind them, where .

Figure 5: Classical double-slit interference of light.

Consider some point on the screen that is located a distance  from the centre-line, as shown in the figure. Light from the first slit

travels a distance  to get to this point, whereas light from the second slit travels a slightly different distance . It is easily

demonstrated that

provided . It follows from Equation (2.4.1), and the well-known fact that light-waves are superposible, that the

wavefunction at the point in question can be written

where  and  are the wavefunctions at the first and second slits, respectively. However,

because the two slits are assumed to be illuminated by in-phase light-waves of equal amplitude. (Note that we are ignoring the

difference in amplitude of the waves from the two slits at the screen, due to the slight difference between  and , compared to

the difference in their phases. This is reasonable provided . ) The intensity (that is, the energy flux) of the light at some

point on the projection screen is approximately equal to the energy density of the light at this point times the velocity of light

(provided that ). Hence, it follows from Equation (2.4.11) that the light intensity on the screen a distance  from the center-

line is

Using Equations (2.7.1)–(2.7.4), we obtain

Figure [f3] shows the characteristic interference pattern corresponding to the previous expression. This pattern consists of equally-

spaced light and dark bands of characteristic width
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2.8: Quantum Interference of Light

Let us now consider double-slit light interference from a quantum-mechanical point of view. According to quantum theory, light-

waves consist of a stream of massless photons moving at the speed of light. Hence, we expect the two slits in Figure [f2] to be

spraying photons in all directions at the same rate. Suppose, however, that we reduce the intensity of the light source illuminating

the slits until the source is so weak that only a single photon is present between the slits and the projection screen at any given time.

Let us also replace the projection screen by a photographic film that records the position where it is struck by each photon. If we

wait a sufficiently long time that a great many photons have passed through the slits and struck the photographic film, and then

develop the film, do we see an interference pattern which looks like that shown in Figure [f3]? The answer to this question, as

determined by experiment , is that we see exactly the same interference pattern.

According to the previous discussion, the interference pattern is built up one photon at a time. In other words, the pattern is not due

to the interaction of different photons. Moreover, the point at which a given photon strikes the film is not influenced by the points

at which previous photons struck the film, given that there is only one photon in the apparatus at any given time. Hence, the only

way in which the classical interference pattern can be reconstructed, after a great many photons have passed through the apparatus,

is if each photon has a greater probability of striking the film at points where the classical interference pattern is bright, and a lesser

probability of striking the film at points where the interference pattern is dark.

Suppose, then, that we allow  photons to pass through our apparatus, and then count the number of photons that strike the

recording film between  and , where  is a relatively small division. Let us call this number . The number of

photons that strike a region of the film in a given time interval is equivalent to the intensity of the light illuminating that region of

the film multiplied by the area of the region, because each photon carries a fixed amount of energy. Hence, in order to reconcile the

classical and quantum viewpoints, we need

where  is given in Equation (2.7.5). Here,  is the probability that a given photon strikes the film between  and .

Note that . In other words, the probability of a photon striking a region of the film of width  is directly proportional to

this width. Actually, this is only true as long as  is relatively small. It is convenient to define a probability density, , which

is such that the probability of a photon striking a region of the film of infinitesimal width  is . Now, Equation

(2.8.1) yields , which gives . However, according to Equation (2.7.4), . Thus, we

obtain

In other words, the probability density of a photon striking a given point on the film is proportional to the modulus squared of the

wavefunction at that point. Another way of saying this is that the probability of a measurement of the photon’s distance from the

centerline, at the location of the film, yielding a result between  and  is proportional to .

Note that, in the quantum-mechanical picture, we can only predict the probability that a given photon strikes a given point on the

film. If photons behaved classically then we could, in principle, solve their equations of motion and predict exactly where each

photon was going to strike the film, given its initial position and velocity. This loss of determinancy in quantum mechanics is a

direct consequence of wave-particle duality. In other words, we can only reconcile the wave-like and particle-like properties of

light in a statistical sense. It is impossible to reconcile them on the individual particle level.

In principle, each photon that passes through our apparatus is equally likely to pass through one of the two slits. Can we determine

through which slit a given photon passed? Suppose that our original interference experiment involves sending  photons

through our apparatus. We know that we get an interference pattern in this experiment. Suppose that we perform a modified

interference experiment in which we close off one slit, send  photons through the apparatus, and then open the slit and close

off the other slit, and send  photons through the apparatus. In this second experiment, which is virtually identical to the first on

the individual photon level, we know exactly which slit each photon passed through. However, the wave theory of light (which we

expect to agree with the quantum theory in the limit ) tells us that our modified interference experiment will not result in the

formation of an interference pattern. After all, according to conventional wave theory, it is impossible to obtain a two-slit

interference pattern from a single slit. Hence, we conclude that any attempt to measure through which slit each photon passes in our

two-slit interference experiment results in the destruction of the interference pattern. It follows that, in the quantum-mechanical

 

! ! "! "! #!!"

!!" #  !$ $!!""!%%

!

&'(

 )*

#!!"

 

!+,-,."

$!!" !!"%

!

! ! "!

$"!%

!

"!

"! % !!"

&! !!" / % !!"&!%

!

!!" $ $!!"&!%

!

% !!" $ $!!" $!!" $ 0'!!% ("0

+

% !!" $ 0'!!% (" ,0

+

!+,-,+"

! ! &! 0'!!% (" &!0

+

 1.

 2+

 2+

 1.



2.8.2 https://phys.libretexts.org/@go/page/16022

version of the two-slit interference experiment, we must think of each photon as essentially passing through both slits

simultaneously.
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2.9: Particles

Classical Particles

In this book, we are going to concentrate, almost exclusively, on the behavior of non-relativistic particles of non-zero mass (e.g.,

electrons). In the absence of external forces, such particles, of mass , energy , and momentum , move classically in a straight-

line with velocity

and satisfy

Quantum Particles

Just as light-waves sometimes exhibit particle-like properties, it turns out that massive particles sometimes exhibit wave-like

properties. For instance, it is possible to obtain a double-slit interference pattern from a stream of mono-energetic electrons passing

through two closely-spaced narrow slits . The effective wavelength of the electrons can be determined by measuring the width of

the light and dark bands in the interference pattern. [See Equation (2.7.6).] It is found that

The same relation is found for other types of particles. The previous wavelength is called the de Broglie wavelength, after Louis de

Broglie, who first suggested that particles should have wave-like properties in 1923 . Note that the de Broglie wavelength is

generally very small. For instance, that of an electron is

where the electron energy is conveniently measured in units of electron-volts (eV). (An electron accelerated from rest through a

potential difference of 1000 V acquires an energy of 1000 eV, and so on.) The de Broglie wavelength of a proton is

Given the smallness of the de Broglie wavelengths of common particles, it is actually quite difficult to perform particle interference

experiments. In general, in order to perform an effective interference experiment, the spacing of the slits must not be too much

greater than the wavelength of the wave. Hence, particle interference experiments require either very low-energy particles (because 

), or very closely-spaced slits. Usually the “slits” consist of crystals, which act a bit like diffraction gratings with a

characteristic spacing of order the inter-atomic spacing (which is generally about  m).

Equation (2.9.3) can be rearranged to give

which is exactly the same as the relation between momentum and wavenumber that we obtained earlier for photons. [See Equation

([e2.19b]).] For the case of a particle moving the three dimensions, the previous relation generalizes to give

where  is the particle’s vector momentum, and  its wavevector. It follows that the momentum of a quantum particle, and, hence,

its velocity, is always parallel to its wavevector.

Because the relation ([e2.19b]) between momentum and wavenumber applies to both photons and massive particles, it seems

plausible that the closely-related relation (2.6.1) between energy and wave angular frequency should also apply to both photons and

particles. If this is the case, and we can write

for particle waves, then Equations (2.9.2) and (2.9.6) yield the following dispersion relation for such waves:
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We saw earlier that a plane-wave propagates at the so-called phase-velocity,

However, according to the previous dispersion relation, a particle plane-wave propagates at

Note, from Equation (2.9.1), that this is only half of the classical particle velocity. Does this imply that the dispersion relation

(2.9.9) is incorrect? Let us investigate further.
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2.10: Wave-Packets

The previous discussion suggests that the wavefunction of a massive particle of momentum  and energy , moving in the positive

-direction, can be written

where  and . Here,  and  are linked via the dispersion relation ([e2.38]). Expression ([e2.41])

represents a plane-wave whose maxima and minima propagate in the positive -direction with the phase-velocity . As we

have seen, this phase-velocity is only half of the classical velocity of a massive particle.

From before, the most reasonable physical interpretation of the wavefunction is that  is proportional to the probability

density of finding the particle at position  at time . However, the modulus squared of the wavefunction ([e2.41]) is , which

depends on neither  nor . In other words, this wavefunction represents a particle that is equally likely to be found anywhere on

the -axis at all times. Hence, the fact that the maxima and minima of the wavefunction propagate at a phase-velocity that does not

correspond to the classical particle velocity does not have any real physical consequences.

How can we write the wavefunction of a particle that is localized in : that is, a particle that is more likely to be found at some

positions on the -axis than at others? It turns out that we can achieve this goal by forming a linear combination of plane-waves of

different wavenumbers: in other words,

Here,  represents the complex amplitude of plane-waves of wavenumber  in this combination. In writing the previous

expression, we are relying on the assumption that particle waves are superposable: that is, that it is always possible to add two valid

wave solutions to form a third valid wave solution. The ultimate justification for this assumption is that particle waves satisfy a

differential wave equation that is linear in . As we shall see, in Section 1.15, this is indeed the case. Incidentally, a plane-wave

that varies as  and has a negative  (but positive ) propagates in the negative -direction at the phase-velocity 

. Hence, the superposition ([e2.42]) includes both forward and backward propagating waves.

There is a useful mathematical theorem, known as Fourier’s theorem , which states that if

then

Here,  is known as the Fourier transform of the function . We can use Fourier’s theorem to find the -space function 

 that generates any given -space wavefunction  at a given time.

For instance, suppose that at  the wavefunction of our particle takes the form

Thus, the initial probability density of the particle is written

This particular probability distribution is called a Gaussian distribution, and is plotted in Figure [f4]. It can be seen that a

measurement of the particle’s position is most likely to yield the value , and very unlikely to yield a value which differs from 

by more than . Thus, Equation ([e2.45]) is the wavefunction of a particle that is initially localized around  in some

region whose width is of order . This type of wavefunction is known as a wave-packet.
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Figure 7: A Gaussian probability distribution in -space.

According to Equation ([e2.42]),

Hence, we can employ Fourier’s theorem to invert this expression to give

Making use of Equation ([e2.45]), we obtain

Changing the variable of integration to , this reduces to

where . The previous equation can be rearranged to give

where . The integral now just reduces to a number, as can easily be seen by making the change of variable .

Hence, we obtain

where

If  is proportional to the probability density of a measurement of the particle’s position yielding the value  then it stands to

reason that is proportional to the probability density of a measurement of the particle’s wavenumber yielding the value .

(Recall that , so a measurement of the particle’s wavenumber, , is equivalent to a measurement of the particle’s

momentum, ). According to Equation ([e2.51]),
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Note that this probability distribution is a Gaussian in -space. [See Equation ([e2.46]) and Figure [f4].] Hence, a measurement of 

 is most likely to yield the value , and very unlikely to yield a value which differs from  by more than . Incidentally, a

Gaussian is the only simple mathematical function in -space that has the same form as its Fourier transform in -space.

We have just seen that a Gaussian probability distribution of characteristic width  in -space [see Equation ([e2.46])] transforms

to a Gaussian probability distribution of characteristic width  in -space [see Equation ([e2.53])], where

This illustrates an important property of wave-packets. Namely, if we wish to construct a packet that is very localized in -space

(i.e., if  is small) then we need to combine plane-waves with a very wide range of different -values (i.e.,  will be large).

Conversely, if we only combine plane-waves whose wavenumbers differ by a small amount (i.e., if  is small) then the resulting

wave-packet will be very extended in -space (i.e.,  will be large).
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2.11: Evolution of Wave-Packets

We have seen, in Equation ([e2.45]), how to write the wavefunction of a particle that is initially localized in -space. Let us

examine how this wavefunction evolves in time. According to Equation ([e2.42]), we have

where

The function  is obtained by Fourier transforming the wavefunction at . [See Equations ([e2.42a]) and ([e2.51]).]

According to Equation ([e2.53]),  is strongly peaked around . Thus, it is a reasonable approximation to Taylor expand

 about . Keeping terms up to second order in , we obtain

where

with

Substituting from Equation ([e2.51]), rearranging, and then changing the variable of integration to , we get

where

Incidentally, , where  is the initial width of the wave-packet. The previous expression can be rearranged to give

where  and . Again changing the variable of integration to , we get

The integral now just reduces to a number. Hence, we obtain

where
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Note that the previous wavefunction is identical to our original wavefunction ([e2.45]) at . This justifies the approximation

that we made earlier by Taylor expanding the phase factor  about .

According to Equation ([exxx]), the probability density of our particle as a function of time is written

Hence, the probability distribution is a Gaussian, of characteristic width , that peaks at . The most likely position

of our particle coincides with the peak of the distribution function. Thus, the particle’s most likely position is given by

It can be seen that the particle effectively moves at the uniform velocity

which is known as the group-velocity. In other words, a plane-wave travels at the phase-velocity, , whereas a wave-packet

travels at the group-velocity, . It follows from the dispersion relation ([e2.38]) for particle waves that

However, it can be seen from Equation ([e2.31]) that this is identical to the classical particle velocity. Hence, the dispersion relation

([e2.38]) turns out to be consistent with classical physics, after all, as soon as we realize that individual particles must be identified

with wave-packets rather than plane-waves. In fact, a plane-wave is usually interpreted as a continuous stream of particles

propagating in the same direction as the wave.

According to Equation ([e2.70]), the width of our wave-packet grows as time progresses. Indeed, it follows from Equations

([e2.38]) and ([e2.64]) that the characteristic time for a wave-packet of original width  to double in spatial extent is

For instance, if an electron is originally localized in a region of atomic scale (i.e., ) then the doubling time is only

about . Evidently, particle wave-packets (for freely-moving particles) spread very rapidly.

Note, from the previous analysis, that the rate of spreading of a wave-packet is ultimately governed by the second derivative of 

 with respect to . [See Equations ([e2.64]) and ([e2.70]).] This explains why a functional relationship between  and  is

generally known as a dispersion relation—it governs how fast wave-packets disperse as time progresses. However, for the special

case where  is a linear function of , the second derivative of  with respect to  is zero, and, hence, there is no dispersion of

wave-packets: that is, wave-packets propagate without changing shape. The dispersion relation ([e2.7]) for light-waves is linear in 

. It follows that light pulses propagate through a vacuum without spreading. Another property of linear dispersion relations is that

the phase-velocity, , and the group-velocity, , are identical. Thus, plane light-waves and light pulses both

propagate through a vacuum at the characteristic speed . Of course, the dispersion relation ([e2.38]) for particle

waves is not linear in . Hence, particle plane-waves and particle wave-packets propagate at different velocities, and particle wave-

packets also gradually disperse as time progresses.

Heisenberg’s Uncertainty Principle

According to the analysis contained in the previous two sections, a particle wave-packet that is initially localized in -space with

characteristic width  is also localized in -space with characteristic width . However, as time progresses, the

width of the wave-packet in -space increases, while that of the wave-packet in -space stays the same. [After all, our previous

analysis obtained  from Equation ([e2.56]), but assumed that  was given by Equation ([e2.51]) at all times.] Hence, in

general, we can say that
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Furthermore, we can think of  and  as characterizing our uncertainty regarding the values of the particle’s position and

wavenumber, respectively.

A measurement of a particle’s wavenumber, , is equivalent to a measurement of its momentum, , because . Hence, an

uncertainty in  of order  translates to an uncertainty in  of order . It follows from the previous inequality that

This is the famous Heisenberg uncertainty principle, first proposed by Werner Heisenberg in 1927 . According to this principle, it

is impossible to simultaneously measure the position and momentum of a particle (exactly). Indeed, a good knowledge of the

particle’s position implies a poor knowledge of its momentum, and vice versa. Note that the uncertainty principle is a direct

consequence of representing particles as waves.

It can be seen from Equations ([e2.38]), ([e2.64]), and ([e2.70]) that, at large , a particle wavefunction of original width  (at 

) spreads out such that its spatial extent becomes

It is easily demonstrated that this spreading is a consequence of the uncertainty principle. Because the initial uncertainty in the

particle’s position is , it follows that the uncertainty in its momentum is of order . This translates to an uncertainty in

velocity of . Thus, if we imagine that parts of the wavefunction propagate at , and others at 

, where  is the mean propagation velocity, then the wavefunction will spread as time progresses. Indeed, at large , we

expect the width of the wavefunction to be

which is identical to Equation ([espread]). Evidently, the spreading of a particle wavefunction must be interpreted as an increase in

our uncertainty regarding the particle’s position, rather than an increase in the spatial extent of the particle itself.

Figure 8: Heisenberg's microscope.

Figure [fh] illustrates a famous thought experiment known as Heisenberg’s microscope. Suppose that we try to image an electron

using a simple optical system in which the objective lens is of diameter  and focal-length . (In practice, this would only be

possible using extremely short-wavelength light.) It is a well-known result in optics that such a system has a minimum angular

resolving power of , where  is the wavelength of the light illuminating the electron . If the electron is placed at the focus of

the lens, which is where the minimum resolving power is achieved, then this translates to a uncertainty in the electron’s transverse

position of
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However,

where  is the half-angle subtended by the lens at the electron. Assuming that  is small, we can write

so

It follows that we can reduce the uncertainty in the electron’s position by minimizing the ratio : that is, by employing short-

wavelength radiation, and a wide-angle lens.

Let us now examine Heisenberg’s microscope from a quantum-mechanical point of view. According to quantum mechanics, the

electron is imaged when it scatters an incoming photon towards the objective lens. Let the wavevector of the incoming photon have

the  components . See Figure [fh]. If the scattered photon subtends an angle  with the center-line of the optical system,

as shown in the figure, then its wavevector is written . Here, we are ignoring any shift in wavelength of the photon

on scattering—in other words, the magnitude of the -vector is assumed to be the same before and after scattering. Thus, the

change in the -component of the photon’s wavevector is . This translates to a change in the photon’s -

component of momentum of . By momentum conservation, the electron’s -momentum will change by an

equal and opposite amount. However,  can range all the way from  to , and the scattered photon will still be collected by

the imaging system. It follows that the uncertainty in the electron’s momentum is

Note that in order to reduce the uncertainty in the momentum we need to maximize the ratio . This is exactly the opposite of

what we need to do to reduce the uncertainty in the position. Multiplying the previous two equations, we obtain

which is essentially the uncertainty principle.

According to Heisenberg’s microscope, the uncertainty principle follows from two facts. First, it is impossible to measure any

property of a microscopic dynamical system without disturbing the system somewhat. Second, particle and light energy and

momentum are quantized. Hence, there is a limit to how small we can make the aforementioned disturbance. Thus, there is an

irreducible uncertainty in certain measurements that is a consequence of the act of measurement itself.
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2.12: Schrodinger's Equation and Wavefunction Collapse

We have seen that the wavefunction of a free particle of mass  satisfies

where  is determined by , and

It follows from Equation ([e2.78]) that

and

whereas

Thus,

where use has been made of the dispersion relation ([e2.79]). Multiplying through by , we obtain

This expression is known as Schrödinger’s equation, because it was first introduced by Erwin Schrödinger in 1926 . Schrödinger’s

equation is a linear, second-order, partial differential equation that governs the time evolution of a particle wavefunction, and is

generally easier to solve than the integral equation ([e2.78]).

Of course, Equation ([e2.84]) is only applicable to freely-moving particles. Fortunately, it is fairly easy to guess the generalization

of this equation for particles moving in some potential . It is plausible, from Equation ([e2.80]), that we can identify  with

the differential operator . Hence, the differential operator on the right-hand side of Equation ([e2.84]) is equivalent to 

. But, . Thus, the operator is also equivalent to , which is just the energy of a freely-moving

particle. However, in the presence of a potential , the particle’s energy is written . Thus, it seems reasonable to

make the substitution

This leads to the general (one-dimensional) form of Schrödinger’s equation:

Wavefunction Collapse

Consider an extended wavefunction, . According to our usual interpretation,  is proportional to the probability

density of a measurement of the particle’s position yielding the value  at time . If the wavefunction is extended then there is a

wide range of likely values that this measurement could give. Suppose that we make such a measurement, and obtain the value .

We now know that the particle is located at . If we make another measurement immediately after the first one then common
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sense tells us that we must obtain the same value, , because the particle cannot have shifted position appreciably in an

infinitesimal time interval. Thus, immediately after the first measurement, a measurement of the particle’s position is certain to give

the value , and has no chance of giving any other value. This implies that the wavefunction must have collapsed to some sort of

“spike” function located at . This is illustrated in Figure [coll]. Of course, as soon as the wavefunction has collapsed, it

starts to expand again, as discussed in Section 1.13. Thus, the second measurement must be made reasonably quickly after the first,

in order to guarantee that the same result will be obtained.

Figure 9: Collapse of the wavefunction upon measurement of .

The previous discussion illustrates an important point in quantum mechanics. Namely, that the wavefunction of a particle changes

discontinuously (in time) whenever a measurement is made. We conclude that there are two types of time evolution of the

wavefunction in quantum mechanics. First, there is a smooth evolution that is governed by Schrödinger’s equation. This evolution

takes place between measurements. Second, there is a discontinuous evolution that takes place each time a measurement is made.
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2.13: Exercises

1. A He-Ne laser emits radiation of wavelength  nm. How many photons are emitted per second by a laser with a power

of 1 mW? What force does such laser exert on a body which completely absorbs its radiation?

2. The ionization energy of a hydrogen atom in its ground state is  eV (1 eV is the energy acquired by an electron

accelerated through a potential difference of 1 V). Calculate the frequency, wavelength, and wavenumber of the electromagnetic

radiation that will just ionize the atom.

3. The maximum energy of photoelectrons from aluminium is 2.3 eV for radiation of wavelength 2000,Angstorm), and 0.90 eV

for radiation of wavelength 2580 Angstrom. Use this data to calculate Planck’s constant, as well as the work function of

aluminium.

4. Show that the de Broglie wavelength of an electron accelerated from rest across a potential difference  is given by

where  is measured in volts.

5. If the atoms in a regular crystal are separated by  demonstrate that an accelerating voltage of about  would

be required to produce an electron diffraction pattern from the crystal.

6. The relationship between wavelength and frequency for electromagnetic waves in a waveguide is

where  is the velocity of light in vacuum. What are the group- and phase-velocities of such waves as functions of  and ?

7. Nuclei, typically of size  m, frequently emit electrons with energies of 1–10 MeV. Use the uncertainty principle to show

that electrons of energy 1 MeV could not be contained in the nucleus before the decay.

8. A particle of mass  has a wavefunction

where  and  are positive real constants. For what potential function  does  satisfy the Schrödinger equation?

1. Plural of quantum: Latin neuter of quantus: how much?↩
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CHAPTER OVERVIEW

3: Fundamentals of Quantum Mechanics

The previous chapter serves as a useful introduction to many of the basic concepts of quantum mechanics. In this chapter, we shall

examine these concepts in a more systematic fashion. For the sake of simplicity, we shall concentrate on one-dimensional systems.

3.1: Schrodinger's Equation

3.2: Normalization of the Wavefunction

3.3: Expectation Values (Averages) and Variances

3.4: Ehrenfest's Theorem

3.5: Operators

3.6: Momentum Representation

3.7: Heisenberg's Uncertainty Principle

3.8: Eigenstates and Eigenvalues

3.9: Measurement

3.10: Stationary States

3.11: Exercises
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3.1: Schrodinger's Equation

Consider a dynamical system consisting of a single non-relativistic particle of mass  moving along the -axis in some real

potential . In quantum mechanics, the instantaneous state of the system is represented by a complex wavefunction .

This wavefunction evolves in time according to Schrödinger’s equation:

The wavefunction is interpreted as follows:  is the probability density of a measurement of the particle’s displacement

yielding the value . Thus, the probability of a measurement of the displacement giving a result between  and  (where ) is

Note that this quantity is real and positive definite.

This page titled 3.1: Schrodinger's Equation is shared under a not declared license and was authored, remixed, and/or curated by Richard

Fitzpatrick.
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3.2: Normalization of the Wavefunction

Now, a probability is a real number lying between 0 and 1. An outcome of a measurement that has a probability 0 is an impossible

outcome, whereas an outcome that has a probability 1 is a certain outcome. According to Equation ([e3.2]), the probability of a

measurement of  yielding a result lying between  and  is

However, a measurement of  must yield a value lying between  and , because the particle has to be located somewhere. It

follows that , or

which is generally known as the normalization condition for the wavefunction.

For example, suppose that we wish to normalize the wavefunction of a Gaussian wave-packet, centered on , and of

characteristic width  (see Section [s2.9]): that is,

In order to determine the normalization constant , we simply substitute Equation ([e3.5]) into Equation ([e3.4]) to obtain

Changing the variable of integration to , we get

However ,

which implies that

Hence, a general normalized Gaussian wavefunction takes the form

where  is an arbitrary real phase-angle.

It is important to demonstrate that if a wavefunction is initially normalized then it stays normalized as it evolves in time according

to Schrödinger’s equation. If this is not the case then the probability interpretation of the wavefunction is untenable, because it does

not make sense for the probability that a measurement of  yields any possible outcome (which is, manifestly, unity) to change in

time. Hence, we require that

for wavefunctions satisfying Schrödinger’s equation. The previous equation gives

Now, multiplying Schrödinger’s equation by , we obtain
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The complex conjugate of this expression yields

[because , , and ].

Summing the previous two equations, we get

Equations ([e3.12]) and ([e3.15]) can be combined to produce

The previous equation is satisfied provided

However, this is a necessary condition for the integral on the left-hand side of Equation ([e3.4]) to converge. Hence, we conclude

that all wavefunctions that are square-integrable [i.e., are such that the integral in Equation ([e3.4]) converges] have the property

that if the normalization condition ([e3.4]) is satisfied at one instant in time then it is satisfied at all subsequent times.

It is also possible to demonstrate, via very similar analysis to that just described, that

where  is defined in Equation ([e3.2]), and

is known as the probability current. Note that  is real. Equation ([epc]) is a probability conservation equation. According to this

equation, the probability of a measurement of  lying in the interval  to  evolves in time due to the difference between the flux of

probability into the interval [i.e., ], and that out of the interval [i.e., ]. Here, we are interpreting  as the flux of

probability in the -direction at position  and time .

Note, finally, that not all wavefunctions can be normalized according to the scheme set out in Equation ([e3.4]). For instance, a

plane-wave wavefunction

is not square-integrable, and, thus, cannot be normalized. For such wavefunctions, the best we can say is that

In the following, all wavefunctions are assumed to be square-integrable and normalized, unless otherwise stated.
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3.3: Expectation Values (Averages) and Variances

We have seen that  is the probability density of a measurement of a particle’s displacement yielding the value  at time .

Suppose that we make a large number of independent measurements of the displacement on an equally large number of identical

quantum systems. In general, measurements made on different systems will yield different results. However, from the definition of

probability (see Chapter [s2]), the mean of all these results is simply

Here,  is called the expectation value of . (See Chapter [s2].) Similarly the expectation value of any function of  is

In general, the results of the various different measurements of  will be scattered around the expectation value, . The degree of

scatter is parameterized by the quantity

which is known as the variance of . (See Chapter [s2].) The square-root of this quantity, , is called the standard deviation of .

(See Chapter [s2].) We generally expect the results of measurements of  to lie within a few standard deviations of the expectation

value.

For instance, consider the normalized Gaussian wave-packet [see Equation ([eng])]

The expectation value of  associated with this wavefunction is

Let . It follows that

However, the second integral on the right-hand side is zero, by symmetry. Hence, making use of Equation ([e3.8]), we obtain

Evidently, the expectation value of  for a Gaussian wave-packet is equal to the most likely value of  (i.e., the value of  that

maximizes ).

The variance of  associated with the Gaussian wave-packet ([e3.24]) is

Let . It follows that

However,

giving
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This result is consistent with our earlier interpretation of  as a measure of the spatial extent of the wave-packet. (See Section

[s2.9].) It follows that we can rewrite the Gaussian wave-packet ([e3.24]) in the convenient form
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3.4: Ehrenfest's Theorem

A simple way to calculate the expectation value of momentum is to evaluate the time derivative of , and then multiply by the

mass : that is,

However, it is easily demonstrated that

[this is just the differential form of Equation ([epc])], where  is the probability current defined in Equation ([eprobc]). Thus,

where we have integrated by parts. It follows from Equation ([eprobc]) that

where we have again integrated by parts. Hence, the expectation value of the momentum can be written

It follows from the previous equation that

where we have integrated by parts. Substituting from Schrödinger’s equation ([e3.1]), and simplifying, we obtain

Integration by parts yields

Hence, according to Equations ([e4.34x]) and ([e3.41]),

Evidently, the expectation values of displacement and momentum obey time evolution equations that are analogous to those of

classical mechanics. This result is known as Ehrenfest’s theorem .

Suppose that the potential  is slowly varying. In this case, we can expand  as a Taylor series about . Keeping terms

up to second order, we obtain

Substitution of the previous expansion into Equation ([e3.43]) yields

  !

!

 "! !  !  !# $  !  $ "

$  !

$%

$

$%

 

#

$#

!

%

 

#

$#

&!#!

%

&%

'(")"*+

,  -

&!#!

%

&%

&&

& 

'(")"%+

&

 "! $!  $  ! &$ . 

#

$#

&&

& 

 

#

$#

'(")"(+

 "! $  $ #! $  $/ 0 $ .

/ 0

%

 

#

$#

#

1

&#

& 

&#

1

& 

 

#

$#

#

1

&#

& 

'(")")+

 "! !  $/ 0 $ "

$  !

$%

 

#

$#

#

1

&#

& 

'(")"2+

 $/ 0  , ! $  " ,  / 0 !#$ .

$ "!

$%

 

#

$#

&#

1

&%

&#

& 

#

1

#&

%

&% & 

 

#

$#

 / 0 !

&#

&%

1

&#

& 

&#

1

& 

&#

&%

  $  !,' ' + ! $  ' ' + $ "

$ "!

$%

 

#

$#

0

%

%!

&

& 

&#

1

& 

&#

& 

&!#!

%

& 

 

#

$#

&!#!

%

& 

'(")"3+

 $ !# $  $$ % "

$ "!

$%

 

#

$#

$'

$ 

!

%

$'

$ 

'(")"4+

!

$  !

$%

$ "!

$%

  "!.

 $$ % "

$'

$ 

' ' + $' 5$   !

 , ' $   !+, ' $   ! "

$' ' +

$ 

$' '  !+

$  !

$ '  !+'

%

$  !

%

*

%

$ '  !+'

(

$  !

(

+

%

'(")"6+



3.4.2 https://phys.libretexts.org/@go/page/15739

because , and , and . The final term on the right-hand side of the previous equation can

be neglected when the spatial extent of the particle wavefunction, , is much smaller than the variation length-scale of the

potential. In this case, Equations ([e3.42]) and ([e3.43]) reduce to

These equations are exactly equivalent to the equations of classical mechanics, with  playing the role of the particle

displacement. Of course, if the spatial extent of the wavefunction is negligible then a measurement of  is almost certain to yield a

result that lies very close to . Hence, we conclude that quantum mechanics corresponds to classical mechanics in the limit that

the spatial extent of the wavefunction (which is typically of order the de Boglie wavelength) is negligible. This is an important

result, because we know that classical mechanics gives the correct answer in this limit.
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3.5: Operators

An operator,  (say), is a mathematical entity that transforms one function into another: that is,

For instance,  is an operator, because  is a different function to , and is fully specified once  is given. Furthermore,

 is also an operator, because  is a different function to , and is fully specified once  is given. Now,

This can also be written

where the operators are assumed to act on everything to their right, and a final  is understood [where  is a general

function]. The previous expression illustrates an important point. Namely, in general, operators do not commute with one another.

Of course, some operators do commute. For instance,

Finally, an operator, , is termed linear if

where  is a general function, and  a general complex number. All of the operators employed in quantum mechanics are linear.

Now, from Equations ([e3.22]) and ([e3.38]),

These expressions suggest a number of things. First, classical dynamical variables, such as  and , are represented in quantum

mechanics by linear operators that act on the wavefunction. Second, displacement is represented by the algebraic operator , and

momentum by the differential operator : that is, \[\label{e3.54} p \equiv -{\rm i}\,\hbar\,\frac{\partial}{\partial x}.\]

Finally, the expectation value of some dynamical variable represented by the operator  is simply

Clearly, if an operator is to represent a dynamical variable that has physical significance then its expectation value must be real. In

other words, if the operator  represents a physical variable then we require that , or

where  is the complex conjugate of . An operator that satisfies the previous constraint is called an Hermitian operator. It is

easily demonstrated that  and  are both Hermitian. The Hermitian conjugate, , of a general operator, , is defined as follows:

The Hermitian conjugate of an Hermitian operator is the same as the operator itself: that is, . For a non-Hermitian operator, 

 (say), it is easily demonstrated that , and that the operator  is Hermitian. Finally, if  and  are two

operators, then .

Suppose that we wish to find the operator that corresponds to the classical dynamical variable . In classical mechanics, there is

no difference between  and . However, in quantum mechanics, we have already seen that . So, should we choose 
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 or ? Actually, neither of these combinations is Hermitian. However,  is Hermitian. Moreover, 

, which neatly resolves our problem of the order in which to place 

 and .

It is a reasonable guess that the operator corresponding to energy (which is called the Hamiltonian, and conventionally denoted )

takes the form

Note that  is Hermitian. Now, it follows from Equation ([e3.54]) that

However, according to Schrödinger’s equation, ([e3.1]), we have

so

Thus, the time-dependent Schrödinger equation can be written

Finally, if  is a classical dynamical variable that is a function of displacement, momentum, and energy then a reasonable

guess for the corresponding operator in quantum mechanics is , where , and 

.
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3.6: Momentum Representation

Fourier’s theorem (see Section [s2.9]), applied to one-dimensional wavefunctions, yields

where  represents wavenumber. However, . Hence, we can also write

where  is the momentum-space equivalent to the real-space wavefunction .

At this stage, it is convenient to introduce a useful function called the Dirac delta-function . This function, denoted , was first

devised by Paul Dirac , and has the following rather unusual properties:  is zero for , and is infinite at . However,

the singularity at  is such that

The delta-function is an example of what is known as a generalized function: that is, its value is not well defined at all , but its

integral is well defined. Consider the integral

Because  is only non-zero infinitesimally close to , we can safely replace  by  in the previous integral

(assuming  is well behaved at ), to give

where use has been made of Equation ([e3.64a]). A simple generalization of this result yields

which can also be thought of as an alternative definition of a delta-function.

Suppose that . It follows from Equations ([e3.65]) and ([e3.69]) that

Hence, Equation ([e3.64]) yields the important result

Similarly,

It turns out that we can just as easily formulate quantum mechanics using the momentum-space wavefunction, , as the real-

space wavefunction, . The former scheme is known as the momentum representation of quantum mechanics. In the

momentum representation, wavefunctions are the Fourier transforms of the equivalent real-space wavefunctions, and dynamical

  !! ""

 #! "" 

#

$  #! "" $#!

%

&%

''

(

 

)

')

 

#

*

+, # !

$   !! "" $!!

%

&%

''

(

 

)

')

*

', # !

# & $ - #

  !! ""

' &! ""

$ ' &! "" $&!

%

&% -

' '''

(

 

)

')

*

+, & !.-

$   !! "" $!!

%

&% -

' '''

(

 

)

')

*

', & !.-

' &! "" $  #! "". 

#

-

''

(   !! ""

( !"

( !" ! / 0 ! $ 0

! $ 0

( !"$! $ %1 

)

')

 2131%"

!

) !" ( !"$!1 

)

')

 2131&"

( !" ! $ 0 ) !" ) 0"

) !" ! $ 0

) !" ( !"$! $ ) 0" ( !"$! $ ) 0"! 

)

')

 

)

')

 21312"

) !" ( !' "$! $ ) "! 

)

')

!

0

!

0

 21314"

  !" $ ( !' "!

0

' &" $

*

'*& .-!

0

&%-

'''

(

 21315"

( !' " $ $&1!

0

%

&% -

 

)

')

*

+, &  !' ".-!

0

 21313"

( &' " $ $!1&

0

%

&% -

 

)

')

*

+,  &' " !.-&

0

 21316"

' &! ""

  !! ""



3.6.2 https://phys.libretexts.org/@go/page/15741

variables are represented by different operators. Furthermore, by analogy with Equation ([e3.55]), the expectation value of some

operator  takes the form

Consider momentum. We can write

where use has been made of Equation ([e3.64]). However, it follows from Equation ([e3.72]) that

Hence, using Equation ([e3.69]), we obtain

Evidently, momentum is represented by the operator  in the momentum representation. The previous expression also strongly

suggests [by comparison with Equation ([e3.22])] that  can be interpreted as the probability density of a measurement of

momentum yielding the value  at time . It follows that  must satisfy an analogous normalization condition to Equation

([e3.4]): that is,

Consider displacement. We can write

Integration by parts yields

Hence, making use of Equations ([e3.72]) and ([e3.69]), we obtain

Evidently, displacement is represented by the operator

in the momentum representation.

Finally, let us consider the normalization of the momentum-space wavefunction . We have

Thus, it follows from Equations ([e3.69]) and ([e3.72]) that
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Hence, if  is properly normalized [see Equation ([e3.4])] then , as defined in Equation ([e3.65]), is also properly

normalized [see Equation ([enormp])].

The existence of the momentum representation illustrates an important point. Namely, there are many different, but entirely

equivalent, ways of mathematically formulating quantum mechanics. For instance, it is also possible to represent wavefunctions as

row and column vectors, and dynamical variables as matrices that act upon these vectors.
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3.7: Heisenberg's Uncertainty Principle

Consider a real-space Hermitian operator, . A straightforward generalization of Equation ([e3.55a]) yields

where  and  are general functions.

Let , where  is an Hermitian operator, and  a general wavefunction. We have

Making use of Equation ([e3.84]), we obtain

where  is the variance of . [See Equation ([e3.24a]).] q4 Similarly, if , where  is a second Hermitian

operator, then

Now, there is a standard result in mathematics, known as the Schwartz inequality , which states that

where  and  are two general functions. Furthermore, if  is a complex number then

Hence, if  then Equations ([e3.86])–([e3.89]) yield

However,

where use has been made of Equation ([e3.84]). The previous equation reduces to

Furthermore, it is easily demonstrated that

Hence, Equation ([e3.90]) gives

where
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Equation ([e3.94]) is the general form of Heisenberg’s uncertainty principle in quantum mechanics. It states that if two dynamical

variables are represented by the two Hermitian operators  and , and these operators do not commute (i.e., ), then it

is impossible to simultaneously (exactly) measure the two variables. Instead, the product of the variances in the measurements is

always greater than some critical value, which depends on the extent to which the two operators do not commute.

For instance, displacement and momentum are represented (in real-space) by the operators  and , respectively.

Now, it is easily demonstrated that

Thus,

which can be recognized as the standard displacement-momentum uncertainty principle (see Section [sun]). It turns out that the

minimum uncertainty (i.e., ) is only achieved by Gaussian wave-packets (see Section [s2.9]): that is,

where  is the momentum-space equivalent of .

Energy and time are represented by the operators  and , respectively. These operators do not commute, indicating

that energy and time cannot be measured simultaneously. In fact,

so

This can be written, somewhat less exactly, as

 are the uncertainties in energy and time, respectively. The previous expression is generally known as the energy-time

uncertainty principle.

For instance, suppose that a particle passes some fixed point on the -axis. Because the particle is, in reality, an extended wave-

packet, it takes a certain amount of time, , for the particle to pass. Thus, there is an uncertainty, , in the arrival time of the

particle. Moreover, because , the only wavefunctions that have unique energies are those with unique frequencies: that is,

plane-waves. Because a wave-packet of finite extent is made up of a combination of plane-waves of different wavenumbers, and,

hence, different frequencies, there will be an uncertainty  in the particle’s energy that is proportional to the range of frequencies

of the plane-waves making up the wave-packet. The more compact the wave-packet (and, hence, the smaller ), the larger the

range of frequencies of the constituent plane-waves (and, hence, the large ), and vice versa.

To be more exact, if  is the wavefunction measured at the fixed point as a function of time then we can write

In other words, we can express  as a linear combination of plane-waves of definite energy . Here,  is the complex

amplitude of plane-waves of energy  in this combination.

By Fourier’s theorem, we also have

For instance, if  is a Gaussian then it is easily shown that  is also a Gaussian: that is,
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where . As before, Gaussian wave-packets satisfy the minimum uncertainty principle . Conversely, non-

Gaussian wave-packets are characterized by .
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3.8: Eigenstates and Eigenvalues

Consider a general real-space operator, . When this operator acts on a general wavefunction  the result is usually a

wavefunction with a completely different shape. However, there are certain special wavefunctions which are such that when  acts

on them the result is just a multiple of the original wavefunction. These special wavefunctions are called eigenstates, and the

multiples are called eigenvalues. Thus, if

where  is a complex number, then  is called an eigenstate of  corresponding to the eigenvalue .

Suppose that  is an Hermitian operator corresponding to some physical dynamical variable. Consider a particle whose

wavefunction is . The expectation of value  in this state is simply [see Equation ([e3.55])]

where use has been made of Equation ([e3.107]) and the normalization condition ([e3.4]). Moreover,

so the variance of  is [cf., Equation ([e3.24a])]

The fact that the variance is zero implies that every measurement of  is bound to yield the same result: namely, . Thus, the

eigenstate  is a state that is associated with a unique value of the dynamical variable corresponding to . This unique value is

simply the associated eigenvalue.

It is easily demonstrated that the eigenvalues of an Hermitian operator are all real. Recall [from Equation ([e3.84])] that an

Hermitian operator satisfies

Hence, if  then

which reduces to [see Equation ([e3.107])]

assuming that  is properly normalized.

Two wavefunctions,  and , are said to be orthogonal if

Consider two eigenstates of ,  and , which correspond to the two different eigenvalues  and , respectively. Thus,

Multiplying the complex conjugate of the first equation by , and the second equation by , and then integrating over all , we

obtain
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However, from Equation ([e3.111]), the left-hand sides of the previous two equations are equal. Hence, we can write

By assumption, , yielding

In other words, eigenstates of an Hermitian operator corresponding to different eigenvalues are automatically orthogonal.

Consider two eigenstates of ,  and , that correspond to the same eigenvalue, . Such eigenstates are termed degenerate. The

previous proof of the orthogonality of different eigenstates fails for degenerate eigenstates. Note, however, that any linear

combination of  and  is also an eigenstate of  corresponding to the eigenvalue . Thus, even if  and  are not

orthogonal, we can always choose two linear combinations of these eigenstates that are orthogonal. For instance, if  and  are

properly normalized, and

then it is easily demonstrated that

is a properly normalized eigenstate of , corresponding to the eigenvalue , that is orthogonal to . It is straightforward to

generalize the previous argument to three or more degenerate eigenstates. Hence, we conclude that the eigenstates of an Hermitian

operator are, or can be chosen to be, mutually orthogonal.

It is also possible to demonstrate that the eigenstates of an Hermitian operator form a complete set : that is, any general

wavefunction can be written as a linear combination of these eigenstates. However, the proof is quite difficult, and we shall not

attempt it here.

In summary, given an Hermitian operator , any general wavefunction, , can be written

where the  are complex weights, and the  are the properly normalized (and mutually orthogonal) eigenstates of : that is,

where  is the eigenvalue corresponding to the eigenstate , and

Here,  is called the Kronecker delta-function , and takes the value unity when its two indices are equal, and zero otherwise.

It follows from Equations ([e3.123]) and ([e3.125]) that

Thus, the expansion coefficients in Equation ([e3.123]) are easily determined, given the wavefunction  and the eigenstates .

Moreover, if  is a properly normalized wavefunction then Equations ([e3.123]) and ([e3.125]) yield
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3.9: Measurement

Suppose that  is an Hermitian operator corresponding to some dynamical variable. By analogy with the discussion in Section

[scoll], we expect that if a measurement of  yields the result  then the act of measurement will cause the wavefunction to

collapse to a state in which a measurement of  is bound to give the result . What sort of wavefunction, , is such that a

measurement of  is bound to yield a certain result, ? Well, expressing  as a linear combination of the eigenstates of , we have

where  is an eigenstate of  corresponding to the eigenvalue . If a measurement of  is bound to yield the result  then

and

Now, it is easily seen that

Thus, Equation ([e4.130]) gives

Furthermore, the normalization condition yields

For instance, suppose that there are only two eigenstates. The previous two equations then reduce to , and ,

where , and

The only solutions are  and . This result can easily be generalized to the case where there are more than two

eigenstates. It follows that a state associated with a definite value of  is one in which one of the  is unity, and all of the others

are zero. In other words, the only states associated with definite values of  are the eigenstates of . It immediately follows that

the result of a measurement of  must be one of the eigenvalues of . Moreover, if a general wavefunction is expanded as a linear

combination of the eigenstates of , like in Equation ([e4.128]), then it is clear from Equation ([e4.131]), and the general definition

of a mean, that the probability of a measurement of  yielding the eigenvalue  is simply , where  is the coefficient in front

of the th eigenstate in the expansion. Note, from Equation ([e4.134]), that these probabilities are properly normalized: that is, the

probability of a measurement of  resulting in any possible answer is unity. Finally, if a measurement of  results in the

eigenvalue  then immediately after the measurement the system will be left in the eigenstate corresponding to .

Consider two physical dynamical variables represented by the two Hermitian operators  and . Under what circumstances is it

possible to simultaneously measure these two variables (exactly)? Well, the possible results of measurements of  and  are the

eigenvalues of  and , respectively. Thus, to simultaneously measure  and  (exactly) there must exist states which are

simultaneous eigenstates of  and . In fact, in order for  and  to be simultaneously measurable under all circumstances, we

need all of the eigenstates of  to also be eigenstates of , and vice versa, so that all states associated with unique values of  are

also associated with unique values of , and vice versa.

Now, we have already seen, in Section 1.8, that if  and  do not commute (i.e., if ) then they cannot be

simultaneously measured. This suggests that the condition for simultaneous measurement is that  and  should commute.
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Suppose that this is the case, and that the  and  are the normalized eigenstates and eigenvalues of , respectively. It follows

that

or

Thus,  is an eigenstate of  corresponding to the eigenvalue  (though not necessarily a normalized one). In other words, 

, or

where  is a constant of proportionality. Hence,  is an eigenstate of , and, thus, a simultaneous eigenstate of  and . We

conclude that if  and  commute then they possess simultaneous eigenstates, and are thus simultaneously measurable (exactly).

Continuous Eigenvalues

In the previous two sections, it was tacitly assumed that we were dealing with operators possessing discrete eigenvalues and

square-integrable eigenstates. Unfortunately, some operators—most notably,  and —possess eigenvalues that lie in a continuous

range and non-square-integrable eigenstates (in fact, these two properties go hand in hand). Let us, therefore, investigate the

eigenstates and eigenvalues of the displacement and momentum operators.

Let  be the eigenstate of  corresponding to the eigenvalue . It follows that

for all . Consider the Dirac delta-function . We can write

because  is only non-zero infinitesimally close to . Evidently,  is proportional to . Let us make

the constant of proportionality unity, so that

It is easily demonstrated that

Hence,  satisfies the orthonormality condition

This condition is analogous to the orthonormality condition ([e3.125]) satisfied by square-integrable eigenstates. Now, by

definition,  satisfies

where  is a general function. We can thus write

where , or

In other words, we can expand a general wavefunction  as a linear combination of the eigenstates, , of the

displacement operator. Equations ([e4.144]) and ([e4.145]) are analogous to Equations ([e3.123]) and ([e3.126]), respectively, for
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square-integrable eigenstates. Finally, by analogy with the results in Section 1.9, the probability density of a measurement of 

yielding the value  is , which is equivalent to the standard result . Moreover, these probabilities are properly

normalized provided  is properly normalized [cf., Equation ([e3.127])]: that is,

Finally, if a measurement of  yields the value  then the system is left in the corresponding displacement eigenstate, ,

immediately after the measurement. That is, the wavefunction collapses to a “spike-function”, , as discussed in Section

[scoll].

Now, an eigenstate of the momentum operator  corresponding to the eigenvalue  satisfies

It is evident that

We require  to satisfy an analogous orthonormality condition to Equation ([e4.143]): that is,

Thus, it follows from Equation ([e3.72]) that the constant of proportionality in Equation ([e4.148]) should be : that is,

Furthermore, according to Equations ([e3.64]) and ([e3.65]),

where  [see Equation ([e3.65])], or

In other words, we can expand a general wavefunction  as a linear combination of the eigenstates, , of the

momentum operator. Equations ([e4.152]) and ([e4.153]) are again analogous to Equations ([e3.123]) and ([e3.126]), respectively,

for square-integrable eigenstates. Likewise, the probability density of a measurement of  yielding the result  is , which is

equivalent to the standard result . The probabilities are also properly normalized provided  is properly normalized

[cf., Equation ([e3.83])]: that is,

Finally, if a mesurement of  yields the value  then the system is left in the corresponding momentum eigenstate, ,

immediately after the measurement.
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3.10: Stationary States

An eigenstate of the energy operator  corresponding to the eigenvalue  satisfies

It is evident that this equation can be solved by writing

where  is a properly normalized stationary (i.e., non-time-varying) wavefunction. The wavefunction 

corresponds to a so-called stationary state, because the probability density  is non-time-varying. Note that a stationary state

is associated with a unique value for the energy. Substitution of the previous expression into Schrödinger’s equation ([e3.1]) yields

the equation satisfied by the stationary wavefunction:

This is known as the time-independent Schrödinger equation. More generally, this equation takes the form

where  is assumed not to be an explicit function of . Of course, the  satisfy the usual orthonormality condition:

Moreover, we can express a general wavefunction as a linear combination of energy eigenstates:

where

Here,  is the probability that a measurement of the energy will yield the eigenvalue . Furthermore, immediately after such a

measurement, the system is left in the corresponding energy eigenstate. The generalization of the previous results to the case where 

 has continuous eigenvalues is straightforward.

If a dynamical variable is represented by some Hermitian operator  that commutes with  (so that it has simultaneous eigenstates

with ), and contains no specific time dependence, then it is evident from Equations ([e4.157]) and ([e4.158]) that the expectation

value and variance of  are time independent. In this sense, the dynamical variable in question is a constant of the motion.
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3.11: Exercises

1. Monochromatic light with a wavelength of  passes through a fast shutter that opens for  sec. What is the subsequent

spread in wavelengths of the no longer monochromatic light?

2. Calculate , , and , as well as , , and , for the normalized wavefunction

Use these to find . Note that .

3. Classically, if a particle is not observed then the probability of finding it in a one-dimensional box of length , which extends

from  to , is a constant  per unit length. Show that the classical expectation value of  is , the expectation

value of  is , and the standard deviation of  is .

4. Demonstrate that if a particle in a one-dimensional stationary state is bound then the expectation value of its momentum must

be zero.

5. Suppose that  is complex. Obtain an expression for  and  from Schrödinger’s equation.

What does this tell us about a complex ?

6.  and  are normalized eigenfunctions corresponding to the same eigenvalue. If

where  is real, find normalized linear combinations of  and  that are orthogonal to (a) , (b) .

7. Demonstrate that  is an Hermitian operator. Find the Hermitian conjugate of .

8. An operator , corresponding to a physical quantity , has two normalized eigenfunctions  and , with eigenvalues 

 and . An operator , corresponding to another physical quantity , has normalized eigenfunctions  and , with

eigenvalues  and . The eigenfunctions are related via

 is measured and the value  is obtained. If  is then measured and then  again, show that the probability of obtaining  a

second time is .

9. Demonstrate that an operator that commutes with the Hamiltonian, and contains no explicit time dependence, has an

expectation value that is constant in time.

10. For a certain system, the operator corresponding to the physical quantity  does not commute with the Hamiltonian. It has

eigenvalues  and , corresponding to properly normalized eigenfunctions

where  and  are properly normalized eigenfunctions of the Hamiltonian with eigenvalues  and . If the system is in the

state  at time , show that the expectation value of  at time  is

Contributors and Attributions

Richard Fitzpatrick (Professor of Physics, The University of Texas at Austin)

This page titled 3.11: Exercises is shared under a not declared license and was authored, remixed, and/or curated by Richard Fitzpatrick.

 !!!Å "!

#$

  !  ! 

%

!

 

 "!  !"

%

!

"

#  ! " #

$ !

%

"

& &&&

 

'

( 

$

!

$

 %#''#'!

#

 

#

$

% ) ( ! " ")! 

*

&*

 

$

!

$

&

 " +  "& ')&  &)$

 

$

)%&

$

 &) '$

&&

,

'   ! -(   . )!)-) %)%)  (   . )!% 

'   !

  !*

'

  !*

$

% " +. 

*

&*

*

/

'

*

$

 %#''#$!

+ *

'

*

$

*

'

(*

'

*

$

$ " &0 1 -)- !"  (0 $

, -   !*

'

  !*

$

!

'

!

$

. /   !0

'

  !0

$

1

'

1

$

*

'

*

$

"  $ (% !) .0

'

0

$

'%

&&

,

"  % &$ !) #0

'

0

$

'%

&&

,

- !

'

/ - !

'

23)'42

,

!

'

!

$

0

'

0

$

"  ( !! .2

'

2

$

$

5

,

"  & !! .2

'

2

$

$

5

,

2

'

2

$

3

'

3

$

* " 0

'

) " + , )

 ,! "! "(! " 678! "#

(!

'

!

$

$

&!

'

!

$

$

9 & : )3

'

3

$

1

 %#''#%!


