Questions for Module#34

- 5. If the atoms in a regular crystal are separated by 3×10^{-10} m demonstrate that an accelerating voltage of about 1.5 kV would be required to produce an electron diffraction pattern from the crystal.
- 6. The relationship between wavelength and frequency for electromagnetic waves in a waveguide is

$$\lambda = \frac{c}{\sqrt{\nu^2 - \nu_0^2}},\tag{2.13.2}$$

where c is the velocity of light in vacuum. What are the group- and phase-velocities of such waves as functions of ν_0 and λ ?

- 7. Nuclei, typically of size 10^{-14} m, frequently emit electrons with energies of 1–10 MeV. Use the uncertainty principle to show that electrons of energy 1 MeV could not be contained in the nucleus before the decay.
- 8. A particle of mass m has a wavefunction

$$\psi(x,t) = A \exp\left[-a\left(\frac{m x^2}{\hbar} + \mathrm{i} t\right)\right],$$
 (2.13.3)

where A and a are positive real constants. For what potential function V(x) does ψ satisfy the Schrödinger equation?

- 1. Monochromatic light with a wavelength of 6000Å passes through a fast shutter that opens for 10^{-9} sec. What is the subsequent spread in wavelengths of the no longer monochromatic light?
- 2. Calculate $\langle x \rangle$, $\langle x^2 \rangle$, and σ_x , as well as $\langle p \rangle$, $\langle p^2 \rangle$, and σ_p , for the normalized wavefunction

$$\psi(x) = \sqrt{\frac{2 a^3}{\pi}} \frac{1}{x^2 + a^2}.$$
(3.11.1)

Use these to find $\sigma_x\,\sigma_p$. Note that $\int_{-\infty}^{\infty}dx/(x^{\,2}+a^{\,2})=\pi/a$.

- 3. Classically, if a particle is not observed then the probability of finding it in a one-dimensional box of length L, which extends from x=0 to x=L, is a constant 1/L per unit length. Show that the classical expectation value of x is L/2, the expectation value of x is L/2/3, and the standard deviation of x is L/2/12.
- 4. Demonstrate that if a particle in a one-dimensional stationary state is bound then the expectation value of its momentum must be zero.
- 5. Suppose that V(x) is complex. Obtain an expression for $\partial P(x,t)/\partial t$ and $d/dt \int P(x,t) dx$ from Schrödinger's equation. What does this tell us about a complex V(x)?
- 6. $\psi_1(x)$ and $\psi_2(x)$ are normalized eigenfunctions corresponding to the same eigenvalue. If

$$\int_{-\infty}^{\infty} \psi_1^* \, \psi_2 \, dx = c, \tag{3.11.2}$$

where c is real, find normalized linear combinations of ψ_1 and ψ_2 that are orthogonal to (a) ψ_1 , (b) $\psi_1+\psi_2$.