- 7. Demonstrate that $p=-\mathrm{i}\,\hbar\,\partial/\partial x$ is an Hermitian operator. Find the Hermitian conjugate of $a=x+\mathrm{i}\,p$.
- 8. An operator A, corresponding to a physical quantity α , has two normalized eigenfunctions $\psi_1(x)$ and $\psi_2(x)$, with eigenvalues a_1 and a_2 . An operator B, corresponding to another physical quantity β , has normalized eigenfunctions $\phi_1(x)$ and $\phi_2(x)$, with eigenvalues b_1 and b_2 . The eigenfunctions are related via

$$\psi_1 = \left(2\,\phi_1 + 3\,\phi_2\right)/\sqrt{13}, \ \psi_2 = \left(3\,\phi_1 - 2\,\phi_2\right)/\sqrt{13}.$$

 α is measured and the value a_1 is obtained. If β is then measured and then α again, show that the probability of obtaining a_1 a second time is 97/169

- Demonstrate that an operator that commutes with the Hamiltonian, and contains no explicit time dependence, has an expectation value that is constant in time.
- 10. For a certain system, the operator corresponding to the physical quantity A does not commute with the Hamiltonian. It has eigenvalues a_1 and a_2 , corresponding to properly normalized eigenfunctions

$$\phi_1 = \left(u_1 + u_2
ight) ig/\sqrt{2}, \ \phi_2 = \left(u_1 - u_2
ight) ig/\sqrt{2},$$

where u_1 and u_2 are properly normalized eigenfunctions of the Hamiltonian with eigenvalues E_1 and E_2 . If the system is in the state $\psi = \phi_1$ at time t = 0, show that the expectation value of A at time t is

$$\langle A \rangle = \left(rac{a_1 + a_2}{2}
ight) + \left(rac{a_1 - a_2}{2}
ight) \cos \left(rac{\left[E_1 - E_2
ight] t}{\hbar}
ight).$$
 (3.11.3)