7.E: Orbital Angular Momentum (Exercises)

- 1. A system is in the state $\psi = Y_{l,m}(\theta,\phi)$. Calculate $\langle L_x \rangle$ and $\langle L_x^2 \rangle$.
- 2. Find the eigenvalues and eigenfunctions (in terms of the angles θ and ϕ) of L_x .
- 3. Consider a beam of particles with l=1. A measurement of L_x yields the result \hbar . What values will be obtained by a subsequent measurement of L_z , and with what probabilities? Repeat the calculation for the cases in which the measurement of L_x yields the results 0 and $-\hbar$.
- 4. The Hamiltonian for an axially symmetric rotator is given by

$$H = rac{L_x^2 + L_y^2}{2I_1} + rac{L_z^2}{2I_2}.$$
 (7.E.1)

What are the eigenvalues of H?

8.E: Central Potentials (Exercises)

1. A particle of mass m is placed in a finite spherical well:

$$V(r) = \begin{cases} -V_0 & \text{for } r \le a \\ 0 & \text{for } r > a \end{cases}$$
 (8.E.1)

with $V_0>0$ and a>0. Find the ground-state by solving the radial equation with l=0. Show that there is no ground-state if $V_0 a^2 < \pi^2 \hbar^2/(8 m)$.

- 2. Consider a particle of mass m in the three-dimensional harmonic oscillator potential $V(r) = (1/2) m \omega^2 r^2$. Solve the problem by separation of variables in spherical coordinates, and, hence, determine the energy eigenvalues of the system.
- 3. The normalized wavefunction for the ground-state of a hydrogen-like atom (neutral hydrogen, He^+ , Li^{++} , et cetera.) with nuclear charge Ze has the form

$$\psi = A \exp(-\beta r), \tag{8.E.2}$$

where A and β are constants, and r is the distance between the nucleus and the electron. Show the following:

- 1. $A^2 = \beta^3/\pi$.
- 2. $\beta = Z/a_0$, where $a_0 = (\hbar^2/m_e) (4\pi \epsilon_0/e^2)$.
- 3. The energy is $E = -Z^2 E_0$ where $E_0 = (m_e/2 \hbar^2) (e^2/4\pi \epsilon_0)^2$.
- 4. The expectation values of the potential and kinetic energies are 2E and -E, respectively.
- 5. The expectation value of r is $(3/2)(a_0/Z)$.
- 6. The most probable value of r is a_0/Z .
- 4. An atom of tritium is in its ground-state. Suddenly the nucleus decays into a helium nucleus, via the emission of a fast electron that leaves the atom without perturbing the extranuclear electron, Find the probability that the resulting He^+ ion will be left in an n=1, l=0 state. Find the probability that it will be left in a n=2, l=0 state. What is the probability that the ion will be left in an l>0 state?
- 5. Calculate the wavelengths of the photons emitted from the n = 2, l = 1 to n = 1, l = 0 transition in hydrogen, deuterium, and positronium.
- 6. To conserve linear momentum, an atom emitting a photon must recoil, which means that not all of the energy made available in the downward jump goes to the photon. Find a hydrogen atom's recoil energy when it emits a photon in an n = 2 to n = 1 transition. What fraction of the transition energy is the recoil energy?