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9.4: More on 4-vectors and 4-tensors

This is a good moment to introduce a formalism that will allow us, in particular, to solve the same proton collision problem in one

more (and arguably, the most elegant) way. Much more importantly, this formalism will be virtually necessary for the description of

the Lorentz transform of the electromagnetic field, and its interaction with relativistic particles – otherwise the formulas would be

too cumbersome.

Let us call the 4-vectors we have used before,

contravariant, and denote them with top indices, and introduce also covariant vectors,

marked by lower indices. Now if we form a scalar product of these two vectors using the standard (3D-like) rule, just as a sum of

the products of the corresponding components, we immediately get

Here and below the sign of the sum of four components of the product has been dropped.  The scalar product (86) is just the norm

of the 4-vector in our former definition, and as we already know, is Lorentz-invariant. Moreover, the scalar product of two different

vectors (also a Lorentz invariant), may be rewritten in any of two similar forms:

again, the only caveat is to take one vector in the covariant, and the other one in the contravariant form.

Now let us return to our sample problem (Fig. 10). Since all components (  and ) of the total 4-momentum of our system are

conserved at the collision, its norm is conserved as well:

Since now the vector product is the usual math construct, we know that the parentheses on the left-hand side of this equation may

be multiplied as usual. We may also swap the operands and move constant factors through products as convenient. As a result, we

get

Thanks to the Lorentz invariance of each of the terms, we may calculate it in the reference frame we like. For the first two terms on

the left-hand side, as well as for the right hand side term, it is beneficial to use the frames in which that particular proton is at rest;

as a result, according to Eq. (77b), each of the two left-hand-side terms equals , while the right-hand side equals .

On the contrary, the last term on the left-hand side is more easily evaluated in the lab frame, because in it, the three spatial

components of the 4-momentum  vanish, and the scalar product is just the product of the scalars  for protons  and . For

the latter proton, being at rest, this ratio is just  so that we get a simple equation,

immediately giving the final result , already obtained earlier in two more complex ways.

Let me hope that this example was a convincing demonstration of the convenience of representing 4-vectors in the contravariant

(84) and covariant (85) forms,  with Lorentz invariant norms (86). To be useful for more complex tasks, this formalism should be

developed a little bit further. In particular, it is crucial to know how the 4-vectors change under the Lorentz transform. For

contravariant vectors, we already know the answer (54); let us rewrite it in our new notation:

where  is the matrix (51), generally called the mixed Lorentz tensor:
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Note that though the position of the indices  and  in the Lorentz tensor notation is not crucial, because this tensor is symmetric,

it is convenient to place them using the general index balance rule: the difference of the numbers of the upper and lower indices

should be the same in both parts of any 4-vector/tensor equality. (Please check yourself that all the formulas above do satisfy this

rule.)

In order to rewrite Eq. (91) in a more general form that would not depend on the particular orientation of the coordinate axes (Fig.

1), let us use the contravariant and covariant forms of the 4-vector of the time-space interval (57),

then its norm (58) may be represented as

Applying Eq. (91) to the first, contravariant form of the 4-vector (93), we get

But with our new shorthand notation, we can also write the usual rule of differentiation of each component , considering it as a

function (in our case, linear) of four arguments , as follows:

Comparing Eqs. (95) and (96), we can rewrite the general Lorentz transform rule (92) in a new form,

which does not depend on the coordinate axes’ orientation.

It is straightforward to verify that the reciprocal transform may be represented as

However, the reciprocal transform has to differ from the direct one only by the sign of the relative velocity of the frames, so that for

the coordinate choice shown in Fig. 1, its matrix is

Since according to Eqs. (84)-(85), covariant 4-vectors differ from the contravariant ones by the sign of their spatial components,

their direct transform is given by the matrix (98). Hence their direct and reciprocal transforms may be represented, respectively, as

evidently satisfying the index balance rule. (Note that primed quantities are now multiplied, rather than divided as in the

contravariant case.) As a sanity check, let us apply this formalism to the scalar product . As Eq. (96) shows, the implicit-

sum notation allows us to multiply and divide any equality by the same partial differential of a coordinate, so that we can write:

i.e. the scalar product  (as well as ) is Lorentz-invariant, as it should be.
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Now, let us consider the 4-vectors of derivatives. Here we should be very careful. Consider, for example, the following 4-vector

operator

As was discussed above, the operator is not changed by its multiplication and division by another differential, e.g.,  (with the

corresponding implied summation over all four values of ), so that

But, according to the first of Eqs. (99), this is exactly how the covariant vectors are Lorentz-transformed! Hence, we have to

consider the derivative over a contravariant space-time interval as a covariant 4-vector, and vice versa.  (This result might be also

expected from the index balance rule.) In particular, this means that the scalar product

should be Lorentz-invariant for any legitimate 4-vector. A convenient shorthand for the covariant derivative, which complies with

the index balance rule, is

so that the invariant scalar product may be written just as . A similar definition of the contravariant derivative,

allows us to write the Lorentz-invariant scalar product (103) in any of the following two forms:

Finally, let us see how does the general Lorentz transform change 4-tensors. A second-rank  matrix is a legitimate 4-tensor if

the 4-vectors it relates obey the Lorentz transform. For example, if two legitimate 4-vectors are related as

we should require that

where  and  are related by Eqs. (97), while  and , by Eqs. (99). This requirement immediately 

yields

with the implied summation over two indices,  and . The rules for the covariant and mixed tensors are similar.

Reference

 This compact notation may take some time to be accustomed to, but is very convenient (compact) and can hardly lead to any

confusion, due to the following rule: the summation is implied when (and only when) an index is repeated twice, once on the top

and another at the bottom. In this course, this shorthand notation will be used only for 4-vectors, but not for the usual (spatial)

vectors.

 Note also that, by definition, for any two 4-vectors, .

 These forms are 4-vector extensions of the notions of contravariance and covariance, introduced in the 1850s by J. Sylvester

(who also introduced the term “matrix”) for the description of the change of the usual geometric (3-component) vectors at the
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transfer between different reference frames – e.g., resulting from the frame rotation. In this case, the contravariance or covariance

of a vector is uniquely determined by its nature: if the Cartesian coordinates of a vector (such as the non-relativistic velocity 

) are transformed similarly to the radius-vector , it is called contravariant, while the vectors (such as ) that require

the reciprocal transform, are called covariant. In the Minkowski space, both forms may be used for any 4-vector.

 Just as the 4-vectors, 4-tensors with two top indices are called contravariant, and those with two bottom indices, covariant. The

tensors with one top and one bottom index are called mixed.

 Another way to write this relation is , where double summation over indices  and  is

implied, and  is the so-called metric tensor,

which may be used, in particular, to transfer a covariant vector into the corresponding contravariant one and back: , 

. The metric tensor plays a key role in general relativity, in which it is affected by gravity – “curved” by particles’

masses.

 Note that in the index balance rule, the top index in the denominator of a fraction is counted as a bottom index in the numerator,

and vice versa.

 As was mentioned above, this is also a property of the reference-frame transform of the “usual” 3D vectors.

 It is straightforward to check that transfer between the contravariant and covariant forms of the same tensor may be readily

achieved using the metric tensor : .

This page titled 9.4: More on 4-vectors and 4-tensors is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by

Konstantin K. Likharev via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available

upon request.
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9.5: The Maxwell Equations in the 4-form

This 4-vector formalism background is already sufficient to analyze the Lorentz transform of the electromagnetic field. Just to

warm up, let us consider the continuity equation (4.5),

which expresses the electric charge conservation, and, as we already know, is compatible with the Maxwell equations. If we now

define the contravariant and covariant 4-vectors of electric current as

then Eq. (110) may be represented in the form

showing that the continuity equation is form-invariant  with respect to the Lorentz transform.

Of course, such a form’s invariance of a relation does not mean that all component values of the 4-vectors participating in it are the

same in both frames. For example, let us have some static charge density  in frame 0; then Eq. (97b), applied to the contravariant

form of the 4-vector (111), reads

Using the particular form (98) of the reciprocal Lorentz matrix for the coordinate choice shown in Fig. 1, we see that this relation

yields

Since the charge velocity, as observed from frame , is , the non-relativistic results would be , . The

additional  factor in the relativistic results is caused by the length contraction: , so that to keep the total charge 

 inside the elementary volume  intact,  (and hence ) should increase proportionally.

Next, at the end of Chapter 6 we have seen that Maxwell equations for the electromagnetic potentials  and  may be

represented in similar forms (6.118), under the Lorenz (again, not “Lorentz”, please!) gauge condition (6.117). For free space, this

condition takes the form

This expression gives us a hint of how to form the 4-vector of the potentials:

indeed, this vector satisfies Eq. (115) in its 4-form:

Since this scalar product is Lorentz-invariant, and the derivatives (104)-(105) are legitimate 4-vectors, this implies that the 4-vector

(116) is also legitimate, i.e. obeys the Lorentz transform formulas (97), (99). Even more convincing evidence of this fact may be

obtained from the Maxwell equations (6.118) for the potentials. In free space, they may be rewritten as

Using the definition (116), these equations may be merged to one:

where  is the d’ Alembert operator,  which may be represented as either of two scalar products,

 !" #  $ %&

' 

'!

()*++%,

 -./01234536507012481519440:2 ; < "&  =& ; < "& > =&#

$

#

$

()*+++,

 ?3:28:982@50A9B283:C5-.634D $ $ %&'

$

#

$

'

$

#

$

()*++E,

45

  

 $ &  F82G $ < "& %& %& %=*#

H$

'%

H$

'%

&

#

&

#

&

()*++I,

 $ ' & $ >'& " $ >'( & $ $ %* 

H

#

H

%

#

H

)

#

H

*

()*++-,

 %J  (>!,  $   

H

 $ >!  

H

 '  + $ +%K'%

H

 +, $  - $  +%+)+*+

I

 - $ +%+)+*+

I

   #

%

 .  "

 " # " ! $ %*

+

"

E

'.

'!

()*++L,

46

 ; & "! & ; & >"! M -./012345365N320:28B7O/

$

.

"

/

$

.

"

()*++P,

 $ * $ % Q340:R5SB9S0C5-.634D'

$

/

$

'

$

/

$

()*++T,

 " > # $ ; ( ",& " > #" $  *

'

E

'("!,

E

"

E

.

"

 "

0

%

"

E

1

%

'

E

'("!,

E

"

E

1

%

()*++U,

47

  $ & VBWF07750A9B283:56345-.N320:28B7/

$

1

%

#

$

()*++),

  

48



9.5.2 https://phys.libretexts.org/@go/page/57039

and hence is Lorentz-invariant. Because of that, and the fact that the Lorentz transform changes both 4-vectors  and  in a

similar way, Eq. (119) does not depend on the reference frame choice. Thus we have arrived at a key point of this chapter: we see

that the Maxwell equations are indeed form-invariant with respect to the Lorentz transform. As a by-product, the 4-vector form

(119) of these equations (for potentials) is extremely simple – and beautiful!

However, as we have seen in Chapter 7, for many applications the Maxwell equations for the field vectors are more convenient; so

let us represent them in the 4-form as well. For that, we may express all Cartesian components of the usual (3D) field vector

vectors (6.7),

via those of the potential 4-vector . For example,

Completing similar calculations for other field components (or just generating them by appropriate index shifts), we find that the

following antisymmetric, contravariant field-strength tensor,

may be expressed via the field components as follows:

Field-strength tensors

so that the covariant form of the tensor is

If Eq. (124) looks a bit too bulky, please note that as a reward, the pair of inhomogeneous Maxwell equations, i.e. two equations of

the system (6.99), which in free space  may be rewritten as

may now be expressed in a very simple (and manifestly form-invariant) way,

which is comparable with Eq. (119) in its simplicity – and beauty. Somewhat counter-intuitively, the pair of homogeneous Maxwell

equations of the system (6.99),

look, in the 4-vector notation, a bit more complicated:
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Note, however, that Eqs. (128) may be also represented in a much simpler 4-form,

using the so-called dual tensor

which may be obtained from , given by Eq. (125a), by the following replacements:

Besides the proof of the form-invariance of the Maxwell equations with respect to the Lorentz transform, the 4-vector formalism

allows us to achieve our initial goal: find out how do the electric and magnetic field components change at the transfer between

(inertial!) reference frames. For that, let us apply to the tensor  the reciprocal Lorentz transform described by the second of

Eqs. (109). Generally, it gives, for each field component, a sum of 16 terms, but since (for our choice of coordinates, shown in Fig.

1) there are many zeros in the Lorentz transform matrix, and the diagonal components of  equal zero as well, the calculations

are rather doable. Let us calculate, for example, . The only non-zero terms on the right-hand side are

Repeating the calculation for the other five components of the fields, we get very important relations

whose more compact “semi-vector” form is

where the indices  and  stand, respectively, for the field components parallel and perpendicular to the relative velocity  of

the two reference frames. In the non-relativistic limit, the Lorentz factor  tends to 1, and Eqs. (135) acquire an even simpler form

Thus we see that the electric and magnetic fields are transformed to each other even in the first order of the  ratio. For

example, if we fly across the field lines of a uniform, static, purely electric field  (e.g., the one in a plane capacitor) we will see

not only the electric field’s renormalization (in the second order of the  ratio), but also a non-zero dc magnetic field 

perpendicular to both the vector  and the vector , i.e. to the direction of our motion. This is of course what might be expected

from the relativity principle: from the point of view of the moving observer (which is as legitimate as that of a stationary observer),

the surface charges of the capacitor’s plates, which create the field , move back creating the dc currents (114), which induce the

magnetic field . Similarly, motion across a magnetic field creates, from the point of view of the moving observer, an electric

field.

This fact is very important philosophically. One may say there is no such thing in Mother Nature as an electric field (or a magnetic

field) all by itself. Not only can the electric field induce the magnetic field (and vice versa) in dynamics, but even in an apparently

static configuration, what exactly we measure depends on our speed relative to the field sources – hence the very appropriate term

for the whole field we are studying: the electromagnetism.
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Another simple but very important application of Eqs. (134)-(135) is the calculation of the fields created by a charged particle

moving in free space by inertia, i.e. along a straight line with constant velocity , at the impact parameter  (the closest distance) b

from the observer. Selecting the reference frame 0’ to move with the particle in its origin, and the frame 0 to reside in the “lab” in

that the fields  and  are measured, we can use the above formulas with . In this case the fields  and  may be

calculated from, respectively, electro- and magnetostatics:

because in frame 0’, the particle does not move. Selecting the coordinate axes so that at the measurement point 

 (Fig. 11a), for this point we may write , so that , and the

Cartesian components of the fields (137) are:

Fig. 9.11. The field pulses induced by a uniformly moving charge.

Now using the last of Eqs. (19b) with , giving , and the relations reciprocal to Eqs. (134) for the field transform (it is

evident that they are similar to the direct transform, with  replaced with ), in the lab frame we get

These results,  plotted in Fig. 11b in the units of , reveal two major effects. First, the charge passage by the observer

generates not only an electric field pulse but also a magnetic field pulse. This is natural, because, as was repeatedly discussed in

Chapter 5, any charge motion is essentially an electric current.  Second, Eqs. (139)-(140) show that the pulse duration scale is

i.e. shrinks to virtually zero as the charge’s velocity  approaches the speed of light. This is of course a direct corollary of the

relativistic length contraction: in the frame 0’ moving with the charge, the longitudinal spread of its electric field at distance 

from the motion line is of the order of . When observed from the lab frame 0, this interval, in accordance with Eq. (20),

shrinks to , and hence so does the pulse duration scale .

Reference

 In some texts, the equations preserving their form at a transform are called "covariant", creating a possibliliy for confusion with

the covariant vectors and tensors. On the other hand, calling such equations "invariant" would not distinguish them properly from

invariant quantities, such as the scalar products of 4-vectors.

 In the Gaussian units, the scalar potential should not be divided by c in this relation.
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9.5.5 https://phys.libretexts.org/@go/page/57039

 In the Gaussian units, the coefficient  in Eq. (119) should be replaced, as usual, with .

 Named after Jean-Baptiste le Rond d’Alembert (1717-1783), who has made several pioneering contributions to the general

theory of waves – see, e.g., CM Chapter 6. (Some older textbooks use notation  for this operator.)

 In Gaussian units, this formula, as well as Eq. (131) for , do not have the factors c in all the denominators.

 To be fair, note that just as Eq. (127), Eq. (129) this is also a set of four scalar equations – in the latter case with the indices , 

, and  taking any three different values of the set .

 This term is very popular in the theory of particle scattering – see, e.g., CM Sec. 3.7.

 In the next chapter, we will re-derive them in a different way.

 It is straightforward to use Eq. (140) and the linear superposition principle to calculate, for example, the magnetic field of a

string of charges moving along the same line and separated by equal distances  (so that the average current, as measured in

frame 0, is ), and to show that the time-average of the magnetic field is 

given by the familiar Eq. (5.20) of magnetostatics, with  instead of .

This page titled 9.5: The Maxwell Equations in the 4-form is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated

by Konstantin K. Likharev via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is

available upon request.
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