

Course Outline

Instantons in Yang Mills gauge theories

Definition: An instanton is a configuration of a Yang-Mills field that solves the equation of motion and has finite action.

Review of differential forms

 $A = A_{\mu}dx^{\mu}$ is called a one-form.

Under $x \rightarrow x'$, A doesn't change:

$$A = A_{\mu}dx^{\mu} = A_{\mu}\frac{dx^{\mu}}{dx'^{\nu}}dx'^{\nu} = A'_{\mu}dx'^{\mu}$$

$$A = \frac{1}{2!} A_{\mu\nu} dx^{\mu} \wedge dx^{\nu} \text{ is called a two-form.}$$

Antisymmetry under multiplication: $dx^{\mu} \wedge dx^{\nu} = -dx^{\nu} \wedge dx^{\mu}$

Under $x \rightarrow x'$, A also doesn't change:

$$A = \frac{1}{2!} A_{\mu\nu} dx^{\mu} \wedge dx^{\nu} = \frac{1}{2!} A'_{\mu\nu} dx'^{\mu} \wedge dx'^{\nu}$$

Review of differential forms

Define *d* (called the exterior derivative).

 $dA = \frac{1}{2!} \partial_{\rho} A_{\mu\nu} dx^{\mu} \wedge dx^{\nu} \wedge dx^{\rho} \text{ makes a 3-form if } A \text{ is a 2-form}$ $ddA = 0 \implies d^{2} = 0$

Poincare Lemma: if dH = 0 then H = dK locally.

Integration:
$$\int_{M} dA = \int_{\partial M} A$$
 A is a $(d-1)$ form

Constructing the 2-form for F

GOAL: Construct a two-form F that mirrors the $F_{\mu\nu}$ we already know from electromagnetism. We have in hand a one-form $A \equiv A_{\mu}dx^{\mu}$. How to make F? Recall: U = U(x) with $U^{\dagger}(x)U(x) = 1$ and $D_{\mu}\phi(x) = \partial_{\mu}\phi(x) - iA_{\mu}(x)\phi(x)$ Note: U is a zero-form so $dU = \partial_{\mu}Udx^{\mu}$ is a one-form. Note: $d(U^{\dagger}U) = d(1) = 0 \rightarrow (dU^{\dagger})U + U^{\dagger}dU = 0$

- Under $\phi(x) \to U\phi(x)$ we want $D_{\mu}\phi \to UD_{\mu}\phi$ and $(D^{\mu}\phi)^{\dagger} \to (D^{\mu}\phi^{\dagger})U^{\dagger}$ so that, $(D_{\mu}\phi)^{\dagger}D^{\mu}\phi \to D_{\mu}\phi^{\dagger}U^{\dagger}UD^{\mu}\phi = D_{\mu}\phi^{\dagger}D^{\mu}\phi$
- For this to happen A_{μ} must transform as $A_{\mu} \to U A_{\mu} U^{\dagger} + i U \partial_{\mu} U^{\dagger}$. In the language of differential forms, $A_{\mu} dx^{\mu} \to U A_{\mu} U^{\dagger} dx^{\mu} + i U \partial_{\mu} U^{\dagger} dx^{\mu}$.

So,
$$A \to UAU^{\dagger} + UdU^{\dagger}$$
.

Convenient notation: hide the *i* by putting $-iA_{\mu} \equiv A_{\mu}$. This gives a nice, clean formula for the covariant derivative: $D_{\mu} = \partial_{\mu} + A_{\mu}$ or D = d + A.

Constructing the two-form F

Making F from $A \equiv A_{\mu} dx^{\mu}$. Next step?

First guess: make all the two-forms you can construct from A and add together.

- a) Look at $A^2 \equiv AA$: Under $A \to UAU^{\dagger} + UdU^{\dagger}$ $A^2 \to (UAU^{\dagger} + UdU^{\dagger})(UAU^{\dagger} + UdU^{\dagger})$ $= UA^2U^{\dagger} + UAdU^{\dagger} + UdU^{\dagger} UAU^{\dagger} + UdU^{\dagger} UdU^{\dagger}$ Use $(dU^{\dagger})U + U^{\dagger}dU = 0$ $= UA^2U^{\dagger} + UAdU^{\dagger} - dUAU^{\dagger} - dUdU^{\dagger}$
- b) Now look at dA and see how it transforms: Under A → UAU[†] + UdU[†], dA → d(UAU[†] + UdU[†]) = dUAU[†] + UdA U[†] + dU dU[†] + 0
 Define: F ≡ dA + AA = dA + A ∧ A and see how it transforms: F → UdAU[†] + UAAU[†] = U(dA + AA)U[†] = UFU[†] √

Some properties of F

$$F \equiv dA + AA$$

- Remember that A is a one-form whereas $A^a_{\mu}(x)$ is a field that has $\mu = 1, \dots 4$ and $a = 1, \dots n^2 - 1$. The U's are $n \times n$ matrices of the group SU(n).
- We can get back space-time indices whenever we want: $F = dA_{\mu}dx^{\mu} + A_{\mu}A_{\nu}dx^{\mu}dx^{\nu} = \partial_{\nu}A_{\mu}dx^{\nu}dx^{\mu} + A_{\mu}A_{\nu}dx^{\mu}dx^{\nu} \equiv \frac{1}{2}F_{\mu\nu}dx^{\mu}dx^{\nu}$ $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} + [A_{\mu}, A_{\nu}]$
- Restoring group indices: suppose we write $A_{\mu} = A^{a}_{\mu}t^{a}$ where t^{a} are the SU(n) generators obeying $[t^{a}, t^{b}] = f^{abc}t^{c}$. Then, $F^{a}_{\mu\nu} = \partial_{\mu}A^{a}_{\nu} \partial_{\nu}A^{a}_{\mu} + f^{abc}A^{b}_{\mu}A^{c}_{\nu}$.
- If we choose: A = gdg[†] where g[†]g = gg[†] = 1 then F = 0. Note: this choice of A is called a "pure gauge".
 Proof: F = d(gdg[†]) + (gdg[†])(gdg[†]) = dgdg[†] gg[†]dgdg[†] = 0
- In 4-d we can make an invariant from $\tilde{F}^{\mu\nu} \equiv \epsilon^{\mu\nu\rho\sigma} F_{\rho\sigma}$ and $F_{\mu\nu}$ and write it as tr F^2 . Obviously d tr $F^2 = 0$.

Instantons in non-Abelian gauge theories

Recall from lecture 2 we sent $t \to -i\tau$ and so KE and PE terms in the action S carry the same sign.

$$S[A] = \int d\tau \int d^3x \frac{1}{2g^2} \text{tr } F^2 = \int d^4x \frac{1}{2g^2} \text{tr} F^2$$

• Since $d^4x = r^3 dr d\Omega$ we know that for $r \to \infty$ to keep S finite we must have $F \sim \frac{1}{r^2} \to 0$ or $A \to g dg^{\dagger}$.

• tr
$$F^2$$
 can be rewritten as tr $F^2 = d \operatorname{tr}(AdA + \frac{2}{3}A^3)$ mportant because
Proof: RHS = tr $d(AdA)$ + tr $\frac{2}{3}dA^3$
= tr $dAdA$ + tr $\frac{2}{3}(dAA^2 - AdA^2)$
= tr $dAdA$ + tr $\frac{2}{3}(dAA^2 - AdAA^2)$
= tr $dAdA$ + tr $\frac{2}{3}(dAA^2 - AdAA^2)$
LHS = tr $(dA + A^2)(dA + A^2)$ = tr $(dAdA + A^2dA + dAA^2 + A^4)$
But tr A^4 =tr A^3A =-tr AA^3 =-tr A^4 : tr A^4 =0 = tr $(dAdA + 2dAA^2)$ = tr F^2

Important bacausa

Instantons in non-Abelian gauge theories $\int_{R^4} \text{tr } F^2 = \int_{R^4} d \operatorname{tr}(AdA + \frac{2}{3}A^3) = \operatorname{tr} \int_{S^3} (AdA + \frac{2}{3}A^3) = \operatorname{tr} \int_{S^3} [A(F - A^2) + \frac{2}{3}A^3]$ Now use F = 0 on S^3 as $r \to \infty$: $= -\frac{1}{3}\operatorname{tr} \int_{S^3} A^3$ Hence $\int_{R^4} \operatorname{tr} F^2 = -\frac{1}{3}\operatorname{tr} \int_{S^3} (gdg^{\dagger})^3$ for any matrix g in SU(n). • SU(2) example: $g = \tau \hat{1} + i\vec{x} \cdot \vec{\sigma} = \begin{pmatrix} \tau + ix_3 & x_1 + ix_2 \\ -x_1 + ix_2 & \tau - ix_3 \end{pmatrix}$ has det g = 1. For this $x_1^2 + x_2^2 + x_3^2 + \tau^2 = 1$. (The group manifold of SU(2) is S_3 .) Also, note: $g^{\dagger}g = 1$.

- What if we take g^n instead of n? This is also valid because det $g^n = 1$. Different n's correspond to different vacuum states of the same energy.
- What if we smoothly deform S_3 into an ellipsoid or something else? Answer: $\int \text{tr } F^2$ does not change. It is a topological invariant.

Issues for future discussion

- The EOM $D_{\mu}F_{\mu\nu} = 0$ is a highly non-linear and complicated pde. How to solve it?
- The imaginary time instanton connects the n vacuum to the n + 1 vacuum. How?
- Yang-Mills theory has an infinite number of vacuaa. The true vacuum comes from taking an infinite superposition:

$$|\theta\rangle = \sum_{\nu = -\infty}^{\infty} e^{i\nu\theta} |\nu\rangle$$

What are the implications for solving QCD?

References

- False vacuum decay: an introductory review, Federica Devoto, Simone Devoto, Luca Di Luzio, Giovanni Ridolfi, J. Phys. G: Nucl. Part. Phys. 49 (2022).
- The Theory and Applications of Instanton Calculations, Manu Paranjape (2022).
- Advanced Topics in Quantum Field Theory, M. Shifman, Cambridge University Press (2012).
- Field Theory A Path Integral Approach, Ashok Das, World Scientific (2006)
- Quantum Field Theory in a Nutshell, Anthony Zee, 2nd edition, Princeton (2010).
- Instantons and Large N, Marcos Marino, Cambridge University Press, 2015.