
Chapter 4

Radioactive Decays

4.1 Introduction

Decays are a category of reaction where a particle, or a nucleus, transforms into two

or more particles or nuclei. We have already introduced the α-, β- and γ -emitting

decays. In the α decay (Fig. 4.1), the parent nucleus emits an α particle, which is

a nucleus of 4
2He, and the resulting daughter nucleus has an atomic number which

is two units lower and a mass number which is four units lower. In the β decay

(Fig. 4.2), an electron or a positron is emitted, and the resulting daughter nucleus

has an atomic number lower by one unit, while the mass number remains unchanged

(Table 4.1).

The γ radiation is emitted by nuclei which are in an excited state and no change

in their composition occurs. Typically, nuclei are in an excited state after α or β

decays, so the γ radiation is associated with the other two.

In all decays, the 4-momentum is conserved. We recall that we indicate with A

the total number of nucleons and with Z the number of protons, so the pair (A,Z)

uniquely identifies a nuclide. For α decays, we have (Fig. 4.3)

(A,Z)→ (A− 4, Z − 2)+ α. (4.1)

In the rest frame of the parent nucleus, the α particle and the daughter nucleus

recoil back to back, with the same momentum. The energy states of nuclei have

discrete values, and these two conditions explain why, for a given nuclide and a

given daughter, the α particles emitted have all the same energy.

With the same conditions, the continuous spectrum of the β± decay seems to

defy the conservation of 4-momentum:

β±decay (A,Z)→ (A,Z ∓ 1)+ β± (missing a term) (4.2)
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Fig. 4.1 Schematic

representation of the emission

of an alpha particle, which is

a nucleus of helium, or a

bound state of two protons

and two neutrons

Fig. 4.2 Representation of a

beta decay. Note the emission

of a (anti)-neutrino: it is a

3-body decay

Table 4.1 Table of the

nuclear transmutation due to

α and β decays

Decay Parent Daughter

α (A,Z) (A− 4, Z − 2)

β− (A,Z) (A,Z + 1)

β+ (A,Z) (A,Z − 1)

γ (A,Z) (A,Z)

Also in this case, we would expect the electron or positron to recoil against

the nucleus and have only one value of momentum, or just a restricted range of

momenta, to account for a natural “width”, of quantum origin. This puzzle led

Wolfgang Pauli to make the hypothesis that another neutral particle is emitted and

is not detected experimentally. He called the particle neutron, but the discovery of

what we now call a neutron led Enrico Fermi to call this particle neutrino, for “the

little neutral” particle. It is indicated with νe; the subscript e will be clearer later.
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Fig. 4.3 This diagram in the

x − t plane illustrates the α

decay of a nucleus:

(A,Z)→ (A− 4, Z− 2)+α (A,Z)
(4,2)

(A-4,Z-2)

Only 30 years later, the neutrino was detected experimentally. The correct decay

reaction is

β±decay (A,Z)→ (A,Z ∓ 1)+ β± + νe (4.3)

In order for a decay to occur, the final state must be energetically allowed. The

energy must be conserved, so the sum of total energy of the final state, including the

kinetic energy, must be equal to the total energy of the initial particle or nucleus, but

this will be the topic in the last chapter of this book.

4.2 The Laws of Radioactive Decay

Independently of the mechanism and type of decay, we’ll introduce now some

general considerations that apply to all types of decays and derive the law of the

time evolution of radioactive decays.

The physics of decays is the same in every reference frame. There is one frame

which makes calculations easy, and it is the frame where the initial particle is at rest.

We can have two pictures: one is the one-particle picture of the decay; we pick up

one particle and after a time, which is random, we observe it to decay. We also have

the opportunity to repeat the experiment N times, with N particle of identical type

and nature; we see that the decay times are distributed according to a mathematical

function.

In the single particle picture, the basic assumption we can make is that the

probability of the decay to occur within the small time interval �t is constant in

time; it does not depend on time at all. Of course, the larger is the small time interval

in which we observe, the larger is the probability dP to decay. It is natural to assume

that, for small, but finite, intervals �t , the probability to decay is just proportional

to the time.

dP = λdt = 1

τ0
dt . (4.4)
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The constant λ must have physical dimensions [T −1], and it is called decay rate,

while 1/λ = τ0 is the mean lifetime or simply lifetime. Suppose we have N0

radioactive nuclei at rest at time t0 . Then, Eq. (4.4) applies to each of them. We

can recall the frequentist definition of probability, as the relative frequency of an

event, i.e. the ratio between the number of times a certain event occurred and the

number of times that it was possible that the event occurred, in the limit of a large

number of tries. We observe for a small time �t a very large number N0 of initial

nuclei; this is our number of tries, because each of them could decay. Out of those,

we observe a small number Nd decay:

dP = Nd

N0
= �t

τ0
(4.5)

for the number of decays Nd . We now want to know the variation of the number N

of initial nuclei or particles: �N = −Nd . Substituting in Eq. (4.5), we have

�N

�t
= −N

τ0
(4.6)

(note the minus sign) which is valid at any time. At the limit of infinitesimal time

interval�t → dt , we obtain

dN

dt
= −N

τ0
, (4.7)

which we can consider as a differential equation for the number of nuclei, or

particles, which are still undecayed at the time t , i.e. the functionN(t). The solution

is

N(t) = N0e
−t/τ0 (4.8)

This formula fits extremely well the experimental measurements. An example is

shown in Fig. 4.4

We can verify that

d

dt
N(t) = − 1

τ0
N0e

−t/τ0 = −N(t)
τ0

Suppose we have a radiation detector next to our radiation source (Fig. 4.5). In

general, it will detect and count only a fraction ǫ of the radiation emitted due to

an intrinsic detection efficiency and to geometrical acceptance. The counting rate R

will be proportional to the activity A of the source:

R = ǫA = ǫ(−dN/dt) = ǫλN(t)
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Fig. 4.4 Experimental decay curve of the nuclide 229Rn, a beta emitter discovered in 2009. From

D. Neidherr et al., Phys. Rev. Lett. 102 (2009)

Fig. 4.5 A particle detector is used to measure the activity of a radioactive source. In this case,

only about 50% of the emitted radiation can reach the detector. In addition, especially in case of γ

radiation, some radiation may escape detection, contributing to inefficiency, which must be taken

into account to calculate the real activity of the source

So, the activity of the source at time t is

A(t) = λN(t) = 1

τ
N(t) = 1

τǫ
R(t) (4.9)

The activity of a radioactive source (or material) is measured in Becquerel (Bq),

which corresponds to one decay per second. Its physical dimensions are [T −1]. A

radioactive source of 1 Bq, if measured with a perfect detector, will give a count

rate of 1 Hz. Of course, the normal multiple and sub-multiples of this unit are also

used. Another unit for the activity, which is not an SI unit, is the Curie (Ci), a

practical unit which is defined from the activity of one gram of 226Ra : 37 MBq=
1 mCi. From Eq. (4.8), it is evident that the activity of a radioactive source decreases
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Fig. 4.6 Cosmic rays are

high-energy particles coming

from the space. They start

interacting with the outer

layers of the atmosphere,

generating cosmic-ray

showers

exponentially with time. The average lifetime of a nuclide or particle is the time

occurring to reduce to a fraction 1/e = 0.368 of the initial sample. Often, it is given

the half-life, which is the time occurring to a sample to half its initial radioactivity.

The two values are related by log(2).

So far, we have considered that the nuclei are always at rest with respect to the

laboratory. This is not always the case for elementary particles, or exotic nuclei.

An elementary particle which we call muon (µ±) has a mean lifetime of 2.197 µs

when it is at rest in the lab. It is produced copiously by cosmic rays at the top of

the atmosphere, say at 30 to 15 km from the Earth surface (Fig. 4.6). At the speed

of light, it would take 100 µs to reach the Earth’s surface, and this time is much

larger than the muon lifetime. However, as time is dilated by relativistic effects,

the muon lifetime, as measured in the laboratory reference frame, is increased by a

factor γ (v). So, we are constantly bombarded by muons from cosmic rays.

4.3 More on Radioactive Decays

The radioactive decay is a particular kind of nuclear reaction, where a species “A”

decays into two or more decay products (B,C,D). Some typical examples are the

alpha decay:

241Am →237 Np + α(5.49 MeV) (4.10)

a beta decay:

90Sr →90 Y + β− + νe (4.11)

and a gamma decay:

99mTc∗ →99 Tc + γ (140 keV) (4.12)
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The gamma decay is rather a transition between two isomers of the same nuclide,

with emission of energy. We have also mentioned an elementary particle, the muon

µ±, it decays

µ− → e− + νµ + νe (4.13)

with a mean lifetime of 2.197 µs.

There is one reference frame, where the initial particle, which is also called the

“parent”, is at rest. In this frame, the decay mean lifetime is minimum and is a

characteristic of the decay.

For some nuclides, or elementary particles, two or more decay channels may be

open: for example, a nucleus can undergo both α and β decay. We say that there is

a branching, and we can write the probability for a nucleus to undergo α decay in

the time dt as:

dPα = λαdt (4.14)

and we can write something similar for the β decay:

dPβ = λβdt (4.15)

then the total probability to decay in either mode is

Ptot = (λα + λβ)dt (4.16)

and therefore

dN

dt
= −(λα + λβ )N (4.17)

The average lifetime of the given nuclide has only one value:

τ = 1

λα + λβ
(4.18)

The α Branching Ratio (BR) is the ratio of the number of alpha decays to the

total number of decays in a given time:

BR(α) = λα

λα + λβ
(4.19)

An example in nuclear physics is

213Bi →213 Po + β− + νe 1.423 MeV(97.8%) (4.20)

213Bi →209 Tl + α 5.87 MeV(2.20%) (4.21)
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Table 4.2 The main decay

modes of the particle Z0,

with the corresponding

branching fractions

Decay Mode Fraction (%)

Ŵ1 e+ e− (3.363 ± 0.004)

Ŵ2 µ+ µ− (3.366 ± 0.007)

Ŵ3 τ+ τ− (3.367 ± 0.008)

Ŵ4 ℓ+ ℓ− (3.3658 ± 0.0023)

Ŵ5 Invisible (20.00 ± 0.06)

Ŵ6 Hadrons (69.91 ± 0.06)

Ŵ9 c c (12.03 ± 0.21)

Ŵ10 b b (15.12 ± 0.05)

As an example: the decay Z0 → e+e−

occurs with a branching fraction of

3.36%. The branching fractions above

add up to more than 100% because they

are not exclusive: ℓ indicates any of

the e, µ, τ particles, and c c and b b are

also included in the decay to “hadrons”.

All these particles will be more familiar

in Chap. 6. Data from the Particle Data

Group

An example in particle physics is the decay of the particleZ0, as shown in Table 4.2.

In a simple decay A → B + C, the products B and C are stable. However, a

decay product B can itself be a radioactive nuclide, or an unstable particle. In this

case, we have a chain of decays: B can decay into products, which are themselves

unstable, and so on. An example is the decay of radon, a naturally occurring gas

which can be found in basements of some buildings.

222Rn → α +218Po → α +214Pb → . . . (4.22)

which in turn is produced by decay of thorium, which is produced by Uranium

decays:

230Th → α +226Ra → α +222Rn (4.23)

For α decays, there are only 4 possible chains of nuclides (Table 4.3): those

whose mass number A is exactly divisible by 4 (A = 4n) and those whose number

of nucleons is A = 4n + 1 or A = 4n + 24, or A = 4n + 3, where n is a positive

integer. The corresponding series are called: thorium series (A = 4n), neptunium

series, uranium series (Fig. 4.7) and actinium series (A = 4n+ 3). The Neptunium

series (A = 4n+ 1) contains no nuclide with extremely large lifetime. The majority

of the radioactive elements of the neptunium series are already extinct since their

formation in a supernova, about five billion years ago.
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Table 4.3 Table of the four

possible series of α decay

chains

Series A Final

Thorium A = 4n 208Pb

Neptunium A = 4n+ 1 205Tl

Uranium A = 4n+ 2 206Pb

Actinium A = 4n+ 3 207Pb

The decay chains stop when they

reach a stable nuclide, an isotope of

lead or thallium

Z
92

91

90

89

88

87

86

85

84

83

82

81

124 126 128 130 132 134 136 138 140 142 144 146 N

Stable nuclide

210

206

214

218

222

226

230

234 238

Pb

Po Po Po

At

Rn

Ra

Th Th

U U

Pa

Bi Bi

Pb Pb

138d

4m

TI TI

5d

22m

1m

1s

2m

27m

2m

1d

4d

2ky

10ky

25ky

1m

24d

109y

α

β

Decay chain of 238U (Uranium-238)

Fig. 4.7 The decay chain of 238U is represented in theN−Z plane. This representation of nuclides

is called Segrè chart, from Emilio Segrè (1905–1989), who was awarded the Nobel prize in 1959

for the discovery of the anti-proton. N indicates the number of neutrons, N + Z = A. The α and

β− transitions are represented in an intuitive way. Figure from E. Segrè, “Nuclei and particles”,

W. Benjamin, Inc., 1965

Suppose to have the following reactions, whereRj indicates radioactive nuclides

and Nj (t) its corresponding number of nuclei present, or concentration at time t:

R1 →R2 + A (4.24)

R2 → R3 + B (4.25)

R3 → R4 + C (4.26)

The grand-parent radioactive nuclide R1 follows a simple decay law N1 =
N1(0)e

−λ1t , while the radioactive nuclide R2 decays, but is also produced by the

decay of R1, so we can write

dN2

dt
= +λ1N1 − λ2N2 (4.27)
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and for nuclide R3

dN3

dt
= +λ2N2 − λ3N3 (4.28)

We have a chain of differential equations, which can be solved recursively. The

general solution is reported below as a reference. It can be written in terms of sum

of exponential decays, each term depends on the decay rate of all nuclides “above”

in its genealogy tree.

N1(t) = a11e
−λ1t (4.29)

N2(t) = a21e
−λ1t + a22e

−λ2t (4.30)

N3(t) = a31e
−λ1t + a32e

−λ2t + a33e
−λ3t (4.31)

. . . (4.32)

Nk(t) = ak1e−λ1t + ak2e−λ2t + · · · + akke−λk t (4.33)

The coefficients akj with k �= j can be determined recursively:

ak,j = ak−1,j
λk−1

λk − λj
(4.34)

and the “diagonal” coefficients must be determined by the initial conditionsNk(0):

Nk(0) = ak1 + ak2 + · · · + akk (4.35)

A notable case is when only the radionuclide R1 is initially present: Nk(0) = 0 for

k > 1:

N1(t) = N1(0)e
−λ1t (4.36)

N2(t) = N1(0)
λ1

λ2 − λ1
(e−λ1t − e−λ2t ) (4.37)

N3(t) = N1(0)λ1λ2

(

e−λ1t

(λ2 − λ1)(λ2 − λ1)
+ e−λ2t

(λ3 − λ2)(λ1 − λ2)

+ e−λ3t

(λ1 − λ3)(λ2 − λ3)

)

(4.38)

If, at a certain point of the decay chain, one nuclide, say Rs , has a lifetime

much larger than the others (Figs. 4.8 and 4.9), we can have a notable case of

equilibrium, which is called transient equilibrium, and it occurs when all “younger

generations” decay with substantially the same decay constant as the nuclide with

long lifetime Rs above them in the chain. The term “secular equilibrium” indicates

that, in addition, we observe the decay on a timescale where we can approximate
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Fig. 4.8 An example of transient equilibrium, as it shows in the activity of a sample, which is

initially composed of 100% Ba. The decay chain is: 140Ba →140 La →140 Ce. The activity due

to the parent is shown with a dashed line, and the activity of the daughter is represented by a solid

line. The daughter nuclide 140La has a lifetime 8 times smaller than the parent 140Ba, and after a

maximum the two curves follow each other. The activity of the daughter nuclide is larger than the

activity of the parent

e−λs t = 1. In this case for any Rt with t > s, we have

Nt

Ns
= λs

λt
(4.39)

Uranium ores, for instance, are in secular equilibrium.

Another important case is when a nuclide is continuously formed, not by decay

but with a nuclear reaction. Examples of such cases are the formation 14C in the

atmosphere and the activation of material in a particle accelerator. The differential

equation is

dN

dt
= Q− λN(t) . (4.40)

When the initial state is N(0) = 0, we have this solution:

N(t) = Q

λ
(1 − e−λt) . (4.41)

The nuclide 14C is continuously produced in the atmosphere by cosmic rays, with

a reaction reported in Eq. (7.36). We can consider the concentration of 14C in the
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Fig. 4.9 The same decay as

in Fig. 4.8
140Ba →140 La →140 Ce is

used to illustrate the transient

equilibrium, as in Eqs. (4.36)

and (4.37). The fraction

number of nuclides

N(t)/N0(Ba) existing at time

t for Ba (dashed line) and La

(solid line) is plotted as a

function of time. After a

transient, the two curves are

almost parallel
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]
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atmospheric CO2 to be constant in time: Eq. (4.41) for t → ∞ gives N(t) = Q/λ.

Corrections to the above equilibrium are due to human activities, like the 2055

nuclear explosions, which have increased the 14C concentration; a peak of about

twice the original value was reached in the mid of 1960s. Also, nuclear plants

produce a negligible amount of 14C, according to the reaction in Eq. (7.35). The use

of fossil fuels, which are naturally depleted of 14C by decay, dilutes its concentration

in the atmosphere. The nuclear-test peak of [14C] concentration in air has an

exponential decay, with a mean lifetime of about 23 years, which is much shorter

than the decay time. This is due to its gradual absorption, mainly by vegetation. The

present concentration level is about the same as before the nuclear tests.

4.4 Age Determination with Radioactive Nuclides

When living organisms die, they stop exchanging CO2 with the atmosphere. If we

assume that 14C concentration was constant in the past, knowing the decay time of
14C and measuring the concentration of 14C in the sample, we can measure the time

since the sample has stopped exchanging carbon with the atmosphere (Fig. 4.10).

We can solve the simple decay formula for the time interval �t:

�t = −τ ln
N(t)

N0
= τ ln

N0

Nsample
, (4.42)
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Fig. 4.10 Decay curve of 14C, which is used for dating organic material. We measure the

fraction of the radionuclide concentration with respect to the stable isotope [14C]/[12C] in the

sample. We then divide this value by the same fraction, measured in present living material,

or by the reference value. This value is reported on the y-axis, as a function of time before

present. This method was invented and published in 1946 by Willard F. Libby (1908–1980),

from the USA, who taught at the University of Chicago and was awarded the Nobel prize in

chemistry in 1960

where N0 in this case is the concentration of 14C in a sample exchanging CO2 and

N(t) is the concentration of 14C in our “historical” sample. 14C decays β− with

a mean lifetime of 8267 years and an end-point energy of 156 keV. Precise dating

with radiocarbon is sensitive to the natural variations of 14C concentration in the

atmosphere. Because of the peak due to nuclear tests, the standard concentration of
14C is assumed as the value measured in 1950 and corresponds to a concentration of

1.30 × 10−12 with respect to all atoms of carbon. Radiocarbon dating is calibrated

with increasing precision using information from tree rings and from analysing the

air samples trapped in the ice layers in Greenland and Antarctica. Recent studies

suggest that a considerable modulation in 14C concentration occurred in a time

interval of 30,000–45,000 years ago.

Other nuclides are used for longer time constants. In particular, the ratio between

the concentrations of parent and daughter nuclides gives information on the time

when a particular rock became solid. The principle is that since the solidification

occurred, the daughter atoms stayed in place in the sample. The potassium–argon

method uses 40K, which has a half-life of 1.28 × 109 years; this is about 1.3 billion

years, to be compared to the age of the Earth, which is 4.54 billion years. Therefore,

this nuclide is useful for geological dating. It decays by electron capture to 40Ar,

which is chemically inert and escapes from the fluid magma, but remains trapped in

solid rock.
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Fig. 4.11 Sketch of a mass spectrometer: (S) Sample, which is vaporised in vacuum, (I) ionisation,

(A) accelerator, (B) magnetic field perpendicular to the drawing and (D) detector

4.5 Technical Aspects: The Mass Spectrometer

It would be intuitive to measure the concentration of a radionuclide for age deter-

mination by measuring the activity of the sample. However, a simple calculation

reveals that in most cases it is impractical or impossible to detect this radiation. A

very powerful tool comes to our help: the mass spectrometer (Fig. 4.11). The sample

is first pulverised, or purified with chemical methods. When heated in vacuum, its

vaporised atoms are first ionised, then accelerated. The ion beam traverses an area

with a magnetic field, and ions are deflected differently according to their different

mass over charge ratio m/q . A detector at the end of the vacuum pipe is spatially

segmented, to count the signals from single ions in different positions corresponding

to differentm/q values. This method allows us to measure the relative abundance of

isotopes of the same chemical element present in the sample. It is also clear that this

technique of dating with radioactive nuclides is destructive for the sample. It is clear

that both the precision and the maximum age determination depend on the weight

of the sample and on its chemical composition. Modern radiocarbon techniques can

reach dating up to 70,000 years ago, while other nuclides are used for dating older

samples.

4.6 Radioactive Iodine for Thyroid Cancer

This is a case study, to attract the reader’s interest to a practical case. The numerical

values used are representative of a real case, although in practice there are many

other factors to be considered.

Thyroid cancer is cured with radioactive iodine-131, which accumulates in the

thyroid much more than in other organs. The nuclide 131I decays β−, with an

end-point electron energy of 606 keV. These β− particles ionize the fluid, and the

resulting ions damage the surrounding cancer cells. The daughter nuclide is formed
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in an excited state and emits a γ ray of energy Eγ = 364 keV. The atomic weight

of iodine is A = 131 and its half-life is 8.02 days.

1. What particles and nuclides are produced in this decay? (use the periodic table)

2. How many grams of iodine are needed to prepare a drink with initial activity

1.85 GBq? What would you use to precisely measure this quantity?

3. What would block this β radiation?

4. What type of radiation can be detected outside the patient’s body?

5. Neglecting any disposal of iodine, how long the patient must be in isolation to

see its thyroid radioactivity decreased to an acceptable level of 500 Bq?

6. 90% of the iodine is eliminated by the body in 3 days. Compare this time with

the decay time above, and suggest the appropriate measures to the hospital.

Discussion

1. What particles and nuclides are produced in the β− decay of 131I?

The β− decay produces an electron with a continuum spectrum (as opposed

to a single spectral line of monoenergetic particles). To conserve energy, another

neutral particle, which escapes detection, must be emitted. This is the electron

anti-neutrino νe. A neutron in the nucleus becomes a proton, thus the nuclide

keeps the same mass number A and adds one to its atomic number, moving by

one place to the right in the periodic table. To the right of iodine, we find Xenon,

so the reaction is

131I →131 Xe + e− + νe

2. How many grams of 131I are needed to prepare a drink with initial activity 1.8

GBq?

t1/2(
131I) = 8.82 days = 8.02 × 24 × 3600 = 6.93 × 105s.

τ = t1/2/ ln 2 ≈ 1.44 × t1/2 = 9.95 × 105 s

activity A = λN(t) = N(t)

τ
= N0e

− t
τ

τ

We are interested to the number of nuclei for a given initial activity, i.e. at t = 0.

N0 = τA = 9.98 × 105 × 1.8 × 109 = 1.8 × 1014

We know that 6.022 × 1023 atoms (Avogadro’s number) have a mass of A (mass

number) grams. Therefore, in terms of mass: 1.8 × 1014 atoms of Iodine have a

mass w:

w = 1.8 × 1014

6.022 × 1023
× 131 g = 39.1 × 10−9 g = 39.1 ng
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Modern analytical balances typically need samples of 1 mg or more, and have a

sensitivity of about 100 ng. To measure this small quantity of 40 ng, we cannot

use a balance; the mass is measured indirectly by measuring the activity, with

using a radiation detector and a rate metre.

3. What would block this β radiation?

The β radiation of iodine-131 has an end-point of 606 keV and is blocked by

a few millimetres of living tissue, which is mostly water. Incidentally, this is

the very reason why this kind of radiation destroys cancer cells: beta radiation

delivers energy to the cancer cells or to their surrounding fluid and the resulting

ions damage the cells. The thyroid is under a few millimetres of neck skin.

As a result, the beta radiation is blocked primarily by the cancer cells and by

the surrounding tissue. The range of 606 keV beta particles in air is of the order

of 30–50 cm.

4. What type of radiation can be detected outside the patient’s body?

To a first approximation, only the γ radiation emitted by the daughter nucleus

can be detected from outside the patient body. What follows is a more detailed

explanation. The xenon nucleus, which is formed by the beta decay of the Iodine,

finds itself surrounded by the electron cloud of the iodine, which has one electron

less. An electron fills the lowest energy level of Xe, which is lower than the

corresponding lowest level of Iodine. The atom emits X-rays with energies up to

the κβ energy of Xe, which is 33.6 keV. The γ radiation from the electromagnetic

decay of the excited Xe nucleus has an energy of 364 keV. The passage of X-rays

through the matter will be introduced in the next chapter. An important parameter

for calculating the attenuation at low energies is the highest X-ray energy which

can be emitted by the atom. This value is normally referred to as the kα and κβ
spectral lines (Fig. 4.12). The energy values of both theX and the γ ray are above

any kα line of light elements which make living tissue. As a comparison, the kα
line of Calcium in the bones is at 3.7 keV. Therefore, the gamma ray attenuation

in the body is very small. Most of the γ and X radiation escapes the patient

body and can be detected outside. For each β− particle emitted by the Iodine-

131, there is a γ ray of a specific energy emitted by the Xe nucleus and an X-ray

emitted by the Xe atom. By measuring the γ activity outside the patient body, we

also measure the β activity of the administered dose. The X-ray activity for one

particular energy transition can be calculated with atomic transition probabilities

and selection rules and its calculation is outside the scope of this book.

5. How long the patient must be in isolation to see its activity to decay to 500 Bq,

neglecting any disposal by fluid exchanges?

A(t) = (1/τ)N(t) = (1/τ)N0e
− t
τ = A0e

− t
τ

A(t)

A0
= e− t

τ

t = τ ln
A0

A(t)
= 9.95 × 105 × ln

1.8 × 109

500
= 15.2 × 106 s = 174 days



4.7 Problems 67

Fig. 4.12 The most intense

sources of X-rays are atomic

transitions to the lowest

electron energy level. The

energy levels are named as

K,L,M or 1, 2, 3, according

to the main energy level and

“s, p, d” are states of angular

momentum 0, 1, 2,

respectively. Transitions from

states, or orbitals 2p to 1s,

originate what are called kα
spectral lines, which are

typically in the X-ray range.

Transitions from 3p to 1s

originate the kβ lines, which

have higher energy than the

kα lines, but often have a

lower intensity

3s
3p

2p

2s

1s

3d

0                       1                    2
 Angular momentum [h/2 ]

E
n
e
rg

y

M

L

K

L
e
v
e
l 
la

b
e
ls

For Xe

 line at 29.5 keV

 line at 33.6 keV

6. 90% of the iodine is eliminated by the body in 3 days. Compare this time with the

decay time above and suggest the appropriate measures to the hospital. In reality,

patients have to stay in isolation only a few days, because iodine is eliminated

by the body much faster. However, patient’s fluids have to be considered as

radioactive waste for a few months.

4.7 Problems

4.1 One of the products of the decay chain of 241Am is 213Bi (Bismuth), which

undergoes both α and β decay (see text). We have to measure the activity of a

sample of pure 213Bi. Our particle detector is wrapped in a thin aluminium

foil and is only sensitive to beta particles, with an efficiency of 80%; our

experimental set-up has a geometrical acceptance of 50%. At a given time, we

measure a counting rate of 100 Hz. What is the total activity of the source? We

measure the activity for 20 s, at regular intervals of 10 min, we plot the data, and

we fit with an exponential curve, obtaining a mean decay time of 45.6 min. Is

any correction needed to this measurement due to the fact that we only observe

one decay mode? What value of the lifetime would we have measured if the

detector were sensitive to α particles only?

4.2 Radioactive humans: an average human body of 70 kg contains 18% of carbon.

With the data present in the text, calculate the “human activity” due to 14C.



68 4 Radioactive Decays

4.3 The material from a corner of a papyrus is analysed with mass spectrometer

techniques. The ratio [14C]/[12C] = 0.79 × 10−12. What is the age of the

papyrus?

4.4 Some alcohol from a wine bottle is extracted and analysed with a mass

spectrometer, showing a ratio [14C]/[12C] = 1.95×10−12. Explain the anomaly

and give an approximate age of the bottle, using the data which is given in the

text.

4.5 A parent nucleus decays with probability λ1 per unit time. Its daughter decays

with probability λ2 per unit time. Starting from a pure sample of the parent,

show that the time at which the number of daughter nuclei is a maximum:

tmax = 1

λ2 − λ1
ln

(λ2

λ1

)

.

4.8 Solutions

Solution to 4.1 The total activity includes all decays, in this case both α and β,

and is counted over the whole solid angle. Therefore, we have to correct by

the detector efficiency and by the solid angle acceptance and by the branching

fraction:

A = rate

acceptance × efficiency × BR
= 100

0.978 × 0.8 × 0.5
= 255.6 Bq

In general, efficiency and acceptance have an experimental systematic error,

which is added to the statistical error of the counting rate. No correction is

needed to the measurement: the lifetime is a characteristic of the nuclide. When

measuring the lifetime with a detector which is sensitive only to α particles, we

would observe exactly the same value.

Solution to 4.2 The amount of carbon in a 67-kg human body is 12.05 kg, which

is about 103 moles. We know that the concentration of [14C] = 1.30 × 10−12, so

the number of atoms of radiocarbon is

N14 = 103 ×NA ×
[

14C
]

= 103 × 6.02 × 1023 × 1.30 × 10−12 = 7.82 × 1014

Now, the average lifetime is

τ = 8627 years × 31.536 × 106 s/year = 2.721 × 1011 s

The activity is

A = 1/τN14 = 7.82 × 1014

2.721 × 1011
= 2.87 × 103 Bq = 2.87 kBq
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In addition to a constant bombardment by cosmic rays, the human body is subject

to radiation from inside. Also, radioactive K is a source of radiation.

Solution to 4.3 From Eq. (4.42):

�t = −τ ln
N(t)

N0
= −8627 years ln

0.79 × 10−12

1.30 × 10−12
= 4300 years before present

The papyrus can be dated to 2300 BC.

Solution to 4.4 The radiocarbon concentration of the sample has a value

[14C]/[12C] = 1.95 × 10−12, which is higher than the standard concentration,

1.30 × 10−12. This means that the sample can be dated in a period during the so-

called bomb-peak of 14C. Neglecting the radioactive decay, which has a lifetime

of 8627 years, we can use the exponential decay of the excess of radiocarbon,

which has a lifetime τ = 23 years, to find the year when the radiocarbon

concentration was the same as the one found in the sample. We can use the same

formulas, but for the excess of [14C], which reached its maximum value of twice

the normal value in 1965.

N(t) −N0 = (Nmax −N0)e
−�t/τ ⇒ �t = −τ ln((N(t) −N0)/N0) =

= 23 × ln((1.95 − 1.30)/1.30) = 16 years after the peak ≈ 1981

Solution to 4.5 The problem is simply solved by finding the maximum of the

function in Eq. (4.36):

N2(t) = N1(0)
λ1

λ2 − λ1

(

e−λ1t − e−λ2t
)

dN2

dt
= 0 = λ1

λ2 − λ1

(

−λ1e
−λ1t + λ2e

−λ2t
)

for λ1 �= 0

λ1e
−λ1t = λ2e

−λ2t and taking logs on both sides:

−λ1t = ln
λ2

λ1
(−λ2t)

(λ1 − λ2) tmax = ln

(

λ2

λ1

)
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Chapter 5

Passage of Radiation Through Matter

5.1 Introduction

In this chapter a more practical aspect of radiation is described: its interaction with

matter. It has importance both for shielding and for detecting radiation. We’ll limit

the scope to X and γ rays for the electromagnetic radiation, to charged particles

like α, β± and cosmic rays and, very schematically to neutrinos, leaving neutron

interactions to the nuclear physics chapter.

Radiation interacts with matter by means of scattering processes: the initial

radiation can be absorbed, deviated or can be transmitted (Fig. 5.1). In the first case

all the initial energy is released in the medium, in the second case only a fraction of

it. Initially we’ll consider the common aspects of scattering, then the peculiarities

of each type of radiation will be described. In the initial sections we focus on what

happens to the radiation, while the effects on the material will be covered in the last

two sections of this chapter: radiation detectors and biological effects.

5.2 The Effective Cross Section

We consider the case where we have a flux of incident radiation, which is measured

in terms of number Ni of incident photons or charged particles per unit surface per

second:

J = Ni

S t
, (5.1)

where S is the surface and t the time duration of the process. We assume that

within that surface S the density is constant, or in other words J is constant in

the considered time interval. We define the intensity I as the number of incident
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Fig. 5.1 Schematics of passage of radiation through a thin layer of material. Part of the radiation

is transmitted, part is scattered or absorbed

particles per unit of time:

I = Ni

t
; (5.2)

In case the incoming radiation beam is not uniformly distributed, the intensity is the

integral of the flux over the surface:

I =
∫

S

J (x, y)dx dy (5.3)

The material is characterised by its density and by its chemical composition. It

is reasonable to expect that a layer of liquid nitrogen absorbs more radiation

than a layer of air, which is mostly nitrogen, of the same thickness, just because

there are more scattering centres per unit of volume. Each scattering centre

can be more or less efficient in scattering, depending on its apparent “size”.

This is parametrised by another quantity, which depends both on the impinging

radiation and on the material: it is the effective cross section, it is indicated

with σ and is a characteristic property of all scattering processes. It depends

on the nature and kinetic energy of the incoming particle, on the process that

takes place and, of course, on the material composition. The concept of cross

section can be extended to other situations, like colliding particle beams. From a

qualitative point of view it is reasonable to expect that a radiation with a small

wavelength or high energy (Eq. (3.3)) is less attenuated than a radiation with

larger wavelength, for a given material. For a given wavelength it is reasonable to

expect that atoms with larger numbers of electrons each have a larger probability

to interact with radiation compared with a material with lower Z. The term

cross section derives from experiments on fixed targets, like the scattering of α

particles on a gold foil, as first done by E. Rutherford, H. Geiger and E. Marsden
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Fig. 5.2 Scattering of particles from a target. The scattering probability is larger for a larger

density of the target and depends on the quantum probability of interacting with a single scattering

centre. This quantity is the cross section σ , the apparent size of a scattering centre, which depends

on the type and energy of the incident radiation. Figure adapted from Povh et al. (2015)

Ernest Rutherford (1871–1937) from New Zealand was awarded the Nobel

prize in chemistry in 1908 for having demonstrated that radioactive decays

induce a transmutation of elements, but he is most famous for the experiment

that demonstrated that majority of atomic mass is concentrated in the nucleus.

in 1909, which demonstrated the existence of a relatively massive nucleus inside

Au atoms. The radiation may interact with atoms, single electrons or nuclei in the

target, which appear to have an effective size, which changes as a function of the

energy and the type of the incoming particle. The probability of hitting a target is

proportional to the target area perpendicular to the direction of the projectiles, as

sketched in Fig. 5.2. When there are many targets, the probability also depends on

their density, in terms of targets per unit of surface. In general, we know the density

ρ of a material in terms of kg/m3 or g/cm3; we obtain the atomic density N by

dividing ρ by the mass of a single atom. Equivalently, if M indicates the atomic

mass of the material, which we assume is made by a pure element, like gold or lead,

and NA represents Avogadro’s number,

N = ρ NA

M
(5.4)

The number of scattering centres “seen” by an incoming particle depends on this

density and on the thickness δx of the absorber. In the following we assume that the

thickness is small so that we have no shadowing effect, and that the material is not a
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crystal, so that there is no special direction of propagation. The number of scattered

or absorbed particles, Ns , is proportional to the number of incident particles Ni ,

to the cross section σp(E) for that particular process and for that particular energy

range, to the density of scattering centres and to the thickness of the target:

Ns = Ni
ρ NA

M
δx σp(E) and Rs = Ii

ρ NA

M
δx σp(E) , (5.5)

where the scattering rate Rs is the number of scattering interactions per unit of time

and Ii is the incident intensity.

Conversely, we can read from the formulas above that the effective cross section

of a scattering process is the number of interactions per unit time per target particle

per unit of incident flux. So, the effective cross section is the expression of the

quantum-mechanical probability that a scattering occurs. As the scattering process

is the same for any boost along the direction of the incoming particles, its description

is relativistically invariant.

Given a type of radiation and a material, more than one process may be possible.

In this case, the total cross section is the sum of the cross sections of the single

processes. As an example, looking at Fig. 5.6, for photons of 1.5 MeV all three

processes are possible: Compton scattering, photoelectric effect and pair creation.

The total cross section, which we use to calculate the attenuation coefficient of the

radiation, is the sum of these three cross sections:

σtot = ZσC + σpe + σee (5.6)

If the target material is a chemical compound or a mixture, the individual

scattering rates of each element are added.

The total cross section has physical dimensions of [L2]; in nuclear and particle

physics the unit is the barn:

1 barn = 10−28 m2 = 100 fm2 (5.7)

and its sub-multiples millibarn (mb), nanobarn (nb), picobarn (pb) and femtobarn

(fb).

For a given scattering process it may be relevant to calculate also the probability

that the scattering occurs to a particular final state, e.g. the probability (or rate) to

scatter a photon to a given solid angle interval around a direction, or in a given

energy or momentum interval. The formulas are the same as in Eq. (5.5) but we use

the differential cross section, which are indicated as (Fig. 5.3):

dσ

d%
; dσ

dp
; dσ

dE
(5.8)

for solid angle, momentum and energy, respectively. These distribution functions

give the scattering probability to a given interval of final states. Double differential
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Fig. 5.3 d% is the solid

angle. The total cross section

for a process is proportional

to the interaction probability.

The differential cross section

dσ/d% gives the probability

that a given outgoing particle

is scattered at a certain solid

angle. Another example is

dσ/dE for the probability of

an outgoing particle to have

an energy between E and

E + dE target particle

incident particle

x

y

z

d

cross sections are two-dimensional distributions of scattering probability:

d2σ

d% dp
(5.9)

Integrating over the whole solid angle and over the momentum, we recover the cross

section.

5.3 Scattering of Electromagnetic Radiation

Electromagnetic waves with short wavelength, like X- and γ -rays, interact with

matter in four principal processes:

• Rayleigh scattering occurs when light interacts with an atom and is scattered at a

different angle, without ionising or exciting it.

• The photoelectric effect occurs when light interacts with an atom and expels an

electron (Fig. 5.4).

• Compton scattering occurs when a photon interacts with a single electron of an

atom (Fig. 5.5).

• The photon can “split” into an electron and positron pair if it has enough energy

and interacts with the electric field of a nucleus. This process is called electron–

positron pair creation.

For a given photon energy, each of the processes above has a different probability

of occurring. The probability of each process depends on the photon energy in a

different way. The total cross section is the sum of the cross section, or Q-M. prob-

ability, of each process, as shown in Fig. 5.6. In the Rayleigh scattering process the

electromagnetic radiation interacts with the atom or molecule as a whole and is just

deviated, not absorbed. For a given atom or molecule, the cross section varies with

the wavelength as 1/λ4, it is larger for short wavelength, like those corresponding

to the blue colour; this qualitatively explains the blue colour of the sky.
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Fig. 5.4 Photoelectric effect. Note that the photon is absorbed by the atom, which expels an

electron

Fig. 5.5 Compton scattering. The photon interacts with the electron, transferring momentum. The

electron is emitted and also a photon is emitted at an angle with respect to the impinging photon

Fig. 5.6 Cross section of lead atoms Pb, as “seen” by photons in a large energy range. The

calculated cross sections of single processes are also shown. The absorption and scattering of

photons in the matter is the sum of several fundamental processes. Reprinted with permission from

M. Tanabashi et al. (Review of Particle Physics), Phys. Rev. D, vol. 98-1, p. 454 (2018). Copyright

(2018) by the American Physical Society. The unit used in the cross section is the barn, (b), defined

as 1 b = 100 fm2 = 10−28 m2
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5.4 Attenuation of Electromagnetic Radiation

If the energy of the light is larger than the minimum ionisation energy of the target

atoms the photoelectric effect may occur. In this case the atom absorbs a photon and

expels an electron. With higher photon energies electrons from inner shells can be

excited. Qualitatively, inner electron shells are also closer to the nucleus, making a

smaller target for the photon; also the wavelength of the photon is smaller, so both

effects contribute to a decrease of the cross section when increasing the photon

energy.

The practical limits in terms of photon energy for the photoelectric effect to occur

for a given element are given by the lowest ionisation energy and by the energy

corresponding to the kβ X-ray emission line of the atom, which is close to the

maximum energy transition in an atom, as shown in Fig. 4.12. For photon energies

above the K-edge the photoelectric effect still occurs, but at a lower rate.

The photoelectric process completely removes photons from the initial beam.

Starting from Eq. (5.5), the scattering rate Rs is the amount of intensity removed

from the beam:

Rs = Iincident − Itransmitted = −δI = ρσ NA
M
Ii δx . (5.10)

Using

µ = ρNA
M
σ = Nσ we have: δI = −µ Ii δx;

δI

δx
= −I0 µ (5.11)

Replacing small quantities with infinitesimal quantities, we have a differential

equation

dI (x)

dx
= −µ I (x) , whose solution is: I (x) = Ii e−µx (5.12)

This function is shown in Fig. 5.7. The parameter µ has physical dimensions [L−1]
and is called the attenuation coefficient. It depends on the density of the absorber

and on the cross section, which is a function of the energy of the radiation. In

general a given material may have different densities, so the density is factored

out in most tables and calculations which report µ/ρ in cm2/g. This means that we

need to multiply this value by the density of the material to obtain the value to use

in Eq. (5.12).

The cross section for the photoelectric effect, in a given material, varies with the

photon energy as

σp.e. ∝ 1

E3
γ

(5.13)
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Fig. 5.7 The absorption of

X-rays is an exponential

function of the thickness of

the absorber. The fraction of

intensity of a 40 keV X-ray

beam that is transmitted is

plotted as a function of the

thickness of the concrete

wall. For a given material the

absorption coefficient

depends on the energy of the

X-rays
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Fig. 5.8 (a) Left: attenuation coefficient of calcium as a function of the photon energy. The

contributions from three processes (Rayleigh, Compton scattering and photoelectric) are shown

separately, and as a sum.

(b) Right: cross section per atom for the photoelectric process for 40 keV X-ray photons, as a

function of the atomic number of the absorber. The best fit to these data gives a power law with

exponent 4.2 at this energy. Data from National Institute of Standards and Technology Standard

Reference Data Program
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but the curve presents several discontinuities at values corresponding to the energy

levels of the atoms, as shown in Fig. 5.6. For a given photon energy, the photoelectric

cross section increases with the fourth power of the atomic number Z, as shown in

Fig. 5.8b:

σp.e. ∝ Zn ; with 4 ≤ n ≤ 4.6 , at fixed Eγ (5.14)

Below a threshold energy, which depends on the material, photons are unable to

ionise and can only be diffused by the material. Above a material-dependent energy

value, photons interact predominantly with electrons rather than with the atom as a

whole.

5.5 Compton Scattering

Compton1 scattering occurs when photons interact with single electrons in the cloud

of an atom. The cross section is a function of the photon energy and increases

linearly with the electron density, which is proportional to Z. From the practical

point of view it becomes the dominant scattering mechanism for photons in an

energy range around 0.1–1 MeV, the limits depending on the material Z.

The kinematics are simple: a massless particle hits a massive particle, an electron,

which is considered to be at rest. With the help of special relativity we can calculate

the energy of the scattered photon as a function of the scattering angle and of the

initial photon energy.

For a particle withm �= 0 and 4-momentum p = ( γmc2

c
, px , py , pz) we calculate

the invariant mass
√

pp in the reference frame where the particle is at rest and �p = 0

and γ = 1. As it is a 4-vector, this quantity, the invariant mass, remains invariant,

and is
√

pp = mc, or in a general form

pp = E2

c2
− p2 = m2c2 or (5.15)

E2 − p2c2 = m2c4 (5.16)

It is invariant because if we consider the entire system, before and after a decay or

any reaction, it does not change.

The scattering process we are going to describe is:

γ + e− → γ + e− (5.17)

We neglect the binding energy of the electron to the atom, because this is typically

of the order of few eV, and solve the kinematic in the reference frame where

1After Arthur H. Compton (1892–1962) from USA. He was awarded the Nobel prize in 1927 “for

the discovery of the effect named after him”.
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Fig. 5.9 Compton scattering

x

y

incoming photon

outgoing photon

electron

the electron is initially at rest. It is clear that the scattering process occurs in a

geometrical plane containing the momenta of all particles involved. We assume

this is the x − y plane, and we neglect the z coordinate. In general, the incoming

and outgoing photons will not have the same energy. Let E0 be the energy of the

incoming photon and E1 the energy of the outgoing photon, as shown in Fig. 5.9.

We apply momentum and energy conservation independently, and use the relativistic

formulae:

px : E0/c = (E1/c) cos θ + p cosφ; (5.18)

py : (E1/c) sin θ − p sin φ = 0; (5.19)

E : E0 +mc2 = E1 + Ee (5.20)

where p = | �p| is the electron momentum, m is the electron mass and the angles φ

and θ are measured between outgoing particles and the direction of the incoming

photon. Ee is the electron energy.

From momentum conservation we have:

E1 sin θ = pc sin φ; (5.21)

E0 − E1 cos θ = pc cosφ; (5.22)

We square and sum:

E2
1 sin2 θ + (E0 − E1 cos θ)2 = p2c2(sin2 φ + cos2 φ); (5.23)

E2
1 sin2 θ + E2

0 + E2
1 cos2 θ − 2E0E1 cos θ = p2c2; (5.24)

E2
1 + E2

0 − 2E0E1 cos θ = p2c2; (5.25)

now p2c2 = E2
e −m2c4 from the electron 4-momentum. Using energy conservation

we have

E2
e = ((E0 − E1)+mc2)2; subst. in 4-momentum (5.26)

p2c2 = (E0 − E1)
2 +m2c4 + 2mc2(E0 − E1)−m2c4; (5.27)
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p2c2 = (E0 − E1)
2 + 2mc2(E0 − E1) = E2

0 + E2
1 − 2E0E1 cos θ; (5.28)

E2
0 + E2

1 − 2E0E1 + 2mc2(E0 − E1) = E2
0 + E2

1 − 2E0E1 cos θ; (5.29)

E0 − E1 = E0E1

mc2
(1 − cos θ) (5.30)

Passing from energies to wavelengths: Ej = hνj = hc/λj

E0 − E1 = hc
( 1

λ0
− 1

λ1

)

= hc
(λ1 − λ0

λ1λ0

)

(5.31)

λ1 − λ0 = hc

mc2
(1 − cos θ); (5.32)

The constant quantity

λe = hc

mec2
= 2.4263102367(11)× 1012 m (5.33)

is called the Compton wavelength of the electron, where me is the electron mass

and h is Planck’s constant. The two digits in parenthesis represent the experimental

error on the previous two digits. So far we have only used relativistic kinematics:

nothing is said about the interaction between the photon and the electron: the above

discussion is valid no matter what interaction is involved. The interaction enters

into play when we calculate the cross section, i.e. the probability of the Compton

scattering. This was done by Klein and Nishina in 1928.

5.6 The Cross Section for Compton Scattering

Klein2 and Nishina3 in 1928 calculated for the first time the Compton cross section

using quantum mechanics.

dσ

d%
= 1

2
α2 r2

c P
2(Eγ , θ)

[

P(Eγ , θ)+
1

P(Eγ , θ)
− 1 + cos2 θ

]

(5.34)

where d% = sin θ dθ dφ and

P(Eγ , θ) = 1

1 + (Eγ /mec2)(1 − cos θ)
and (5.35)

2Oskar Klein (1894–1977), from Sweden. He’s also known for the Kaluza–Klein theories, which

speculate the existence of additional space dimensions.
3Yoshio Nishina (1890–1951) from Japan. He also discovered the isotope 237U.
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rc = h̄c

(2mec2)
(5.36)

is the “reduced” Compton wavelength of the electron, (h̄ = h/2π) is the “reduced”

Planck’s constant and

α = e2

4πǫ0h̄c
≈ 1/137 = 7.297 × 10−3, (5.37)

We call α = αEM the fine structure constant for the electromagnetic interaction. It

depends on the electron charge e, it is a dimension-less number, which gives the

“strength” of the electromagnetic interaction, and its value is totally independent of

the unit system we use.

ǫ0 = 8.854 × 10−12 F/m is the permittivity of vacuum.

Note how the Klein and Nishina formula for the differential cross section of

the Compton scattering depends on the fourth power of the electric charge,

while the electric charge does not appear in the kinematic formulas of Compton

scattering.

The K-N formula gives the angular dependence of the cross section: it gives the

probability that a photon is scattered at a given angle. As we have seen already for

the kinematic of the scattering, the process only depends on one angle: the one

between the initial and the final direction of the photon. We say that there is a

cylindrical symmetry around the axis of the initial photon direction. In other words,

the probability of scattering along the azimuth angle φ is uniform. Note also that the

cross section decreases when the photon energy Eγ increases. The cross section is

referred to each scattering centre, i.e. electrons; so we need to multiply it by Z to

obtain the Compton cross section for a material, as in Eq. (5.6).

5.7 Heavy Charged Particles

In this case the mass of the “projectile” particle is much larger than the mass of

the “target” particle in the material, which is mostly electrons. This means we are

dealing with protons, alpha particles or muons, or other particles which we’ll meet

later.

The incoming charged particle loses part of its kinetic energy in a series of many

interactions. In each of them the projectile transmits a small part of its kinetic energy

to the electrons in the target. The incoming particle is also deviated slightly from its

initial direction. The term multiple scattering is used to indicate this effect. The

Bethe-Bloch formula, below, describes the energy loss per unit of length of a heavy
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charged particle when colliding with the electrons in a medium:

−
〈

dE

dx

〉

=
(

e4

4πǫ2
0

)

z2

mev2
(ZN ) ln

(

2mev
2

I

)

(5.38)

This is the non-relativistic version of the formula, which is valid for a kinetic energy

of the particle in the interval from 0.5 to 500 MeV, when dealing with protons,

alpha particles or mesons. This formula is calculated in many, and more advanced,

textbooks (Cerrito 2017; Fernow 1986; Segré 1977). We can use it as a starting point

to highlight the features of the passage of electrically charged particles.

The electron electric charge e is present in the formula, because the energy loss

is due to electromagnetic interaction and, once again, it enters to the fourth power,

just like in Compton scattering cross section. The electric charge of the projectile z

(in units of e) enters the formula quadratically, so an alpha particle loses 4 times its

energy with respect to a proton of the same velocity v; this also enters the formula

quadratically and is measured with respect to the target, which is at rest. Z indicates

the atomic number of the target, or the number of electrons per atom and enters

linearly in the formula, like the atomic density of the material (Eq. (5.4)), which is

indicated with N . In other words the term (ZN ) is the average electron density. The

parameter I is the average ionisation energy of the target, and is shown in Fig. 5.10

Felix Bloch (1905–1983) from Switzerland was awarded the Nobel prize in 1952 for his

work on precision measurements of nuclear magnetic moments. He was the first director

general of the European laboratory CERN.

as a function of Z. These collisions occur between the charged particle and the

electrons in the target atoms and therefore the electron mass me is the only mass
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Fig. 5.10 Average ionisation energy as a function of the atomic number. The line represents a fit

to the data: I ≈ 22.8 + 9.7Z
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appearing explicitly in the formula. In general also in this case the density of the

material is factored out and 1/ρ 〈dE/dx〉 is called the stopping power. The mass of

the projectile particles, mp, appears if we re-write Eq. (5.38) in terms of the kinetic

energy E = 1/2mpv
2 of the incoming particle:

− 1

ρ

〈

dE

dx

〉

= Kmp
me

1

E

z2Z

M
ln

(

4meE

mpI

)

(5.39)

where

K = 2π α2h̄2c2NA = 0.078 MeV2 cm2

It is clear that at constant density, materials with higher Z have a higher stop-

ping power. For higher energies, the Bethe-Bloch formula has to be corrected

by a relativistic factor γ 2 inside the logarithmic term, which gives rise to an

increase of energy loss with the particle energy. The energy loss is minimum for

charged particles in the interval 0.1–1 GeV, which are called minimum ionising

particles.

At even higher energies radiative losses become important, with a mechanism

which is very important for electrons. Another clear limitation of Eq. (5.39) is

evident in the low kinetic energy limit, where the logarithmic term would become

zero and then negative, which is unphysical. Therefore, there is an intrinsic cut-off,

which depends on the ionisation energy. Equation (5.39) which is plotted in Fig. 5.11

for muons in copper and Eq. (5.38) have to be used with care. The stopping power

of copper for muons is shown in Fig. 5.12, for a large energy range. In this figure all

effects and corrections are taken into account.

Fig. 5.11 The simplified

form of the Bethe-Bloch

formula, Eq. (5.39), can be

used to calculate the energy

loss of muons in copper,

within its interval of validity:

as long as the particle is

non-relativistic and its kinetic

energy is not too low. The

results of the calculation of

the muon stopping power for

copper is shown as a function

of the muon kinetic energy
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Fig. 5.12 Specific energy loss in copper for muons as a function of their initial momentum.

Reprinted with permission from M. Tanabashi et al. (Review of Particle Physics), Phys. Rev. D,

vol. 98-1, p. 447 (2018). Copyright (2018) by the American Physical Society. Muons have a mass

about 200 times larger than electrons and are electrically charged. To obtain the energy loss per

unit of length the values on the y axis have to be multiplied by the copper density

In case of charged particles traversing a material, their flux remains constant, but

the kinetic energy of each particle decreases. This is very different from the case

of photons, whose number decreases exponentially inside the material. In case of

thick absorbers, particles can lose all their energy inside the material and come to

a rest after a well-defined range R which depends on their initial kinetic energy

Ek . To calculate the range we need to integrate Eq. (5.38) from Ek to zero kinetic

energy. The logarithmic term makes the analytic integration difficult, but above a

certain initial energy it just adds a constant. If we consider the logarithmic term as

a constant we have:

R =
∫ 0

Ek

dE
1

〈−dE/dx〉 ≈ Const

∫ 0

Ek

E dE = 1/2 ConstE2
k (5.40)

In the energy range where the average energy loss varies with the kinetic energy

as 1/E, the range of the particle increases quadratically with its energy. Writing

explicitly the entire formula, and using the log of the average energy, from Eq. (5.39)

we obtain:

R ≈ 1

2K

me

mp

M

Zρ

1

z2

[

ln

(

2meEk

mpI

)]−1

E2
k ; (5.41)
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µ

µ

Fig. 5.13 Energy deposition as a function of the position along the trajectory for 5 MeV

α-particles in copper. Most of the kinetic energy is deposited in a narrow layer near the end

of the particle trajectory. This feature is used in hadron therapy, where the peak is much more

pronounced, and in medical applications of α-emitting radionuclides. The curve is named

after William Henry Bragg (1862–1942), from England, he taught physics in Adelaide,

Australia, for 20 years, then in Leeds and London. He was awarded the Nobel prize in 1915

with his son Lawrence for their research on X-ray diffraction in crystals

the range is inversely proportional to the density of the material, as expected. This

formula has its own limitations: for instance, it calculates the path length, but the

trajectory is not a straight line, so we don’t obtain the depth in the material where

the particle would stop. However, it can be used to calculate the upper limit of

the range of α particles in air or β particles in Al. For practical applications, like

doping of semiconductor materials by ion implantation, more refined calculations

are implemented in computer-based simulations.

The energy loss per length of the path is larger as particles progressively lose

their energy, as is evident from the 1/E term in Eq. (5.39). Therefore, most of

their energy is lost at the end of the path, where their kinetic energy is lowest.

Plotting the specific energy loss as a function of the penetration depth we obtain the

characteristic Bragg curve, which has a peak of energy deposition near the end of the

particle trajectories, as shown in Fig. 5.13. This feature is used in hadron therapy,

where a beam of protons is aimed at a cancer and its energy is tuned to have the

protons stop inside the cancer volume, where most of its energy is delivered. For

the same reason α-emitting radionuclides for medical treatment are more effective

in delivering high dose to cancer cells than the γ -emitting nuclides.
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y

x

Fig. 5.14 Multiple scattering of charged particles traversing a material: they are deviated from

their initial direction by an angle θ which depends on the material and on its thickness x

5.8 Charged Particles Traversing Thin Layers

Electrically charged particles lose kinetic energy by a large number of electron

scattering events. After traversing a thin section of material the charged particles

emerge with an angle θ with respect to the original direction (Fig. 5.14). The

distribution of these angles is approximated by a Gaussian, and its standard

deviation is inversely proportional to the particle momentum and proportional to

the square root of the material thickness.

The energy loss distribution in thin layers, however, does not follow a Gaussian

distribution. The reason is that occasionally scattering events occur with a large

energy loss. The resulting distribution is skewed, with the average energy loss

being considerably larger than the most probable energy loss. The average energy

loss is still what calculated with Eq. (5.38), but the most probable energy loss is a

more significant parameter. The distribution is described by the following integral

function:

φ(x) = 1

π

∫ ∞

0

dt exp(−t log(t)− xt) sin(πt) (5.42)

This is the so-called Landau distribution; it is a slightly complicated function: the

variable x representing the energy loss is inside the integral and the function has no

free parameter. The shape of the distribution is shown in Fig. 5.15. It reproduces well

the energy loss in thin materials, as long as they are not extremely thin. In these cases

the Landau distribution is considerably wider than the experimental distribution and

better distributions have width and most probable value as parameters. The energy

loss distribution is also called straggling distribution.
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The distribution is named after Lev Davidovich Landau (1908–1968) from Russia. He was

awarded the Nobel prize in 1962 for his work on superconductivity. He is also known for his

textbook on theoretical physics, in ten volumes, written with Evgeny Lifshitz.
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Fig. 5.15 The Landau distribution describes the energy loss of charged particles in thin

absorbers, where they lose only a small fraction of their kinetic energy. Its analytical form is

shown in Eq. (5.42). For very thin absorbers this formula slightly underestimates the width

5.9 Electron Energy Loss

Electrons have the peculiarity that are identical to the main target they interact with

in the matter: other electrons.

Because of their small mass, electrons are subject to a large deceleration and emit

a considerable electromagnetic radiation, which is called bremsstrahlung, German

for “braking radiation”. When they interact with other electrons both particles

emit braking radiation, which interferes destructively at large distances. However,

when they scatter off the electric field of atomic nuclei their acceleration emits

electromagnetic radiation. The energy loss per unit of length, by radiation only,

is given by the following formula:

−
(

〈dE

dx

〉

)

rad

≈ 4NZ2α3(h̄c)2

m2
ec

4
E ln

183

Z1/3
(5.43)

where N = ρNA/M and NA is the Avogadro’s number, α ≈ 1/137, A and Z

are the mass and atomic number of the target, E is the energy of the electron and

h̄ = h/2π andme is the electron mass. As above, we can just note some features, e.g.

that this cross section increases linearly with the electron kinetic energy E.

We define the critical energy of an absorber Ec as the electron energy above

which the energy loss by radiation is larger than the energy loss by ionisation. It
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Fig. 5.16 The wavelength λ of the X-rays emitted by bremsstrahlung has a continuous

distribution. The wavelength distribution of X-rays emitted by 40 keV electrons is calculated

with Eq. (5.45) and shown here

varies as Ec ∝ Z−1: for solid material an approximate function is

Ec ≈ 610

Z + 1.24
MeV (5.44)

and its values are in the range 5–350 MeV. Low-energy electrons, such as those

produced by radioactive sources or used in cathode ray devices, lose most of their

energy by ionisation; however, braking radiation is never completely negligible.

The braking radiation is emitted in the X-ray range: energetic electrons, when

interacting with the matter, transform part of their kinetic energy into electromag-

netic radiation. This mechanism occurs in X-ray tube generators. The emitted X-ray

spectrum depends on the electron initial energyE0, but has a universal shape, which

is given by the Kramers’ law:

I (λ) dλ = k iZ
λ2

(

λ

λmin
− 1

)

dλ; where λmin = h c

E0
(5.45)

and I (λ) dλ is the X-ray intensity at wavelength λ, i is the electron intensity. The

shape of the wavelength spectrum is shown in Fig. 5.16.

At high wavelengths, the emission of X-rays is collinear with the electrons,

and is absorbed by the same material and by any other material which may be

present. This changes dramatically the spectrum shape at high wavelengths. At low

electron energy (E0 < mec
2) the emission of X-rays is maximum in the direction

perpendicular to the electron beam and is polarised with the electric field oscillating

along the electron direction. At higher energies (E0 ≫ mec
2) the radiation is

emitted mostly along the initial direction of the electrons. As X-ray detectors are
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normally calibrated according to the energy, rather than wavelength, we can change

variables in Eq. (5.45) and obtain the energy spectrum

λ = h c

E
; dλ = h c

E2
dE

I (E)dE = k iZ
h c

(

E0

E
− 1

)

dE (5.46)

It should be noted at this point that the bremsstrahlung cross section has a so-called

infrared divergence, meaning that an infinite number of photons with infinitesimal

energy are emitted. As the total energy loss is finite, we need to introduce, from a

theoretical point of view, a photon cut-off energy below which the interaction can be

ignored. This process is not the only one to require such a mathematical treatment.

In addition to generating braking radiation, electrons also ionise the atoms, just

like other charged particles. Electrons from the outer shells make a transition and

occupy the inner shells or energy levels which have been left empty by the ionisation

process, emitting electromagnetic energy, i.e. photons. The photon energy depends

on the difference between the energy levels of the atoms. Therefore the material

emits also a characteristic X-ray radiation, which depends on the material which is

irradiated. The resulting spectrum is shown in Fig. 5.17, where the following effects

are calculated:
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Fig. 5.17 Calculated energy spectrum of X-rays emitted by an X-ray tube with silver anode

operated with 40 keV electrons. The bremsstrahlung spectrum is calculated with Eq. (5.46).

The low-energy X-rays are absorbed by the anode itself and by the glass window; the

absorption cross section is assumed as σpe ∝ 1/E3
γ . The shape of the un-filtered spectrum

is shown as a dashed curve. The silver Kα and Kβ lines are added as narrow Gaussian

distributions. Compare it with the experimental spectrum shown in Fig. 5.23
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– Bremsstrahlung emission, as in Eq. (5.46),

– Absorption of low-energy X-rays by the material itself and by the glass window,

– Emission of K lines by the material, which we assume to be silver.

5.10 Neutrino Interactions with Matter

Neutrinos will be introduced more formally in the next chapter, but we have already

encountered them in describing the β decay. They are electrically neutral particles

and their mass is not precisely measured, it is extremely small, but not zero. The

present limit for all three types of neutrinos is at aboutmν < 1 eV. They only interact

with matter with the weak interaction. A feature of this interaction is that the cross

section increases with the neutrino energy, up to very high energies. Nevertheless,

the cross sections for various processes involving neutrinos range from 10−28 to

10−17 barn for energies in the range from 100 eV to 1 GeV. As a comparison, the

Compton cross section in lead (Z = 82) is of the order of 10 barn (Fig. 5.6), which

makes the cross section per electron 16 orders of magnitude larger. The energy

loss mechanisms of neutrinos would be similar, in principle, to the energy loss of

charged particles, but the multiple scattering occurs on a much larger scale, due to

the extremely small cross section.

We can look back at the equation describing the photon attenuation, Eq. (5.11).

Independently from the fate of the impinging particle, it describes the distribution

of the depth of its first interaction with the matter; the parameter 1/µ is the mean

path before interaction. Using the largest value of neutrino scattering cross section,

for a kinetic energy in the ≈ 1 GeV range (10−17 barn), in Eq. (5.11) the neutrino

mean free path in iron is:

µν = ρ NA
M
σ ;

µν(Fe) ≈ 7.87
g

cm3
× 6.022 × 1023 mol−1

55.84 g mol−1
× 10−17 × 10−24 cm2

µν(Fe) ≈ 8.5 × 10−19 cm−1; 1/µv = 1.2 × 1018 cm = 1.2 light years

The actual cross section can be slightly larger than that, if other processes are taken

into account, but it does not change the fact that neutrinos with a kinetic energy

up to about a GeV can pass through about one light-year of dense matter without

interacting at all. The very small cross section makes it very difficult to study

neutrinos, requiring a large mass of active detectors and a large intensity of neutrinos

to record a small number of neutrino interactions. On the other hand, it makes it

possible to study neutrino oscillations with neutrinos produced in an accelerator

and traveling long distances, of the order of thousands kilometers, without needing

any kind of vacuum pipe or tunnel.
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The first observation of anti-neutrinos occurred with the reaction:

νe + p → n + e+ (5.47)

which is sometimes called “inverse beta decay”; the measured cross section4 was

σ(νep → ne+) = (11.0 ± 2.6)× 10−44 cm2

A neutrino flux  ≈ 5 × 1013 cm−2 s−1 obtained from a nuclear reactor was used

to detect neutrinos for the first time.

Although neutrinos are able to ionise, for their extremely low cross section they

are not considered as ionising radiation for all practical purposes.

5.11 Passage of Radiation from the Point of View

of the Material

The energy deposited by radiation in a material has three effects: ionises the

material; increases locally its temperature; generates other radiation, which can be

absorbed by the material or escape it. An electron from photoelectric effect may

ionise other atoms, but also leaves behind a ionised atom, which receives an electron

from the environment and will emit X-rays, which can be absorbed photoelectrically

by neighbouring atoms and so on. Charged particles leave tracks of ions in the

material, but protons and mesons and heavy ions at a sufficiently high energy can

also displace atoms from a crystal lattice.

The total amount of radiation energy deposited per unit of mass in a material is

measured in Gray (Gy) and is also called absorbed dose

1 Gy = 1 J/kg = 6.24 × 1012 MeV/kg (5.48)

Of course, only the part of material which is interested by the radiation has to be

accounted for in the mass value. This is especially important if the radiation is

completely stopped, like in the case of charged particles. Large radiation doses can

damage solid material, induce or accelerate chemical reactions, accelerate ageing.

5.12 Particle Detectors

Ions separated by radiation can be transformed directly or indirectly into an electric

signal, or in some case into a permanent chemical change to detect ionising

4Frederick Reines and Clyde L. Cowan, Jr., Measurement of the free antineutrino absorption cross

section by protons, Phys. Rev. 113 (1959), p 273.
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Fig. 5.18 Schematics of a typical solid-state detector. The material is a semiconductor, with a

junction on one surface and a highly doped layer on the other surface. The typical thickness is 0.1

to 0.5 mm. The electrodes can also have the shape of strips or pixels, for spatial resolution. The

electric charges are separated by the radiation and drift in the electric field of a reverse-biased diode

structure. This generates a current, which is amplified by an external circuit and can be observed

with an oscilloscope. Positive ions in semiconductor crystals are called holes: the lack of electrons

move like bubbles in a liquid towards the negatively charged electrode

radiation. This happens in X-ray films, where the radiation ionises crystals of AgBr;

the subsequent chemical treatment removes bromine, leaving metallic silver as a

dark area in the film only in the areas which have been exposed to radiation.

In solid-state detectors, charged particles lose their energy, which partially goes

into crystal excitations, i.e. phonons, and partly to generate electron-hole pairs. On

average 3.6 eV is needed for a single pair in silicon, and a signal of ≈ 3 × 104

electrons can be generated by a minimum ionising particle. Electrons and positive

ions (“holes”) drift in an electric field in a reverse-biased diode structure and

generate a current pulse, which is amplified electronically, as sketched in Fig. 5.18.

In this case the distribution of pulse heights is proportional to the distribution of

energy loss. For thin detectors it is a modified Landau distribution.

In gas-operated detectors the same mechanisms are in place, but the energy loss

in a gas is typically smaller than in solids, because of the density factor. A smaller

electric charge is produced. To have a detectable electric signal the method of charge

amplification with gas discharge is used: the primary electrons, i.e. those generated

by radiation, are drifted to a small sized electrode, like a tiny wire; in its vicinity the

electric field is large enough that electrons acquire energy to ionise other molecules

of the gas. The resulting electric signal can be furtherly amplified with external

electronic circuits. When the internal amplification factor, which is controlled by

the voltage and diameter of the wire and by the gas pressure, is relatively small

the signal amplitude is proportional to the initial ionisation. The detector is called a

proportional chamber. When the gas gain is large we have the Geiger counters.
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Fig. 5.19 Schematics of a scintillator coupled to a photomultiplier: a scintillator detector (S)

produces flashes of light when hit by ionising radiation; light is transmitted through a window

to the vacuum tube where a photocathode (P) emits an electron for every photon; electrons are

amplified by secondary emission in the various dynodes (Dn); the electric signal is collected

at the anode (A)

The Geiger tube is named after Hans Geiger (1982–1945) from Germany, who

worked from 1907 to 1912 with E. Rutherford in Manchester, UK and then

taught in Tubingen and Berlin, Germany.

A third important class consists of scintillating detectors: all materials emit

photons when they are ionised and the electric charges recombine; in the majority

of cases the light is also re-absorbed; in scintillator materials this light can be

transmitted over a large distance and collected by a light-sensitive electronic

device, to be transformed into electric signals. In general, scintillating detectors

are made of two-component materials: a light-transparent material which hosts

a lower concentration of photoluminescence centres that emit at a wavelength

which is not attenuated by the hosting material. An example is thallium in sodium

iodide crystal. The energy from primary electrons activates the photoluminescence

centres, which produce very small flashes of light, which is detected by a device

called a photomultiplier, as sketched in Fig. 5.19. Scintillating detectors can be

solid inorganic, as NaI(Tl) or solid organic, like plastic scintillators, or liquid.

Scintillators are also used to enhance the sensitivity of photographic films to X-rays,

as shown in Fig. 5.22.

Detectors can be used to measure particle energies, or the position where

particles hit the detectors, e.g. for imaging, or also the time when particles hit the

detector. For each application there are advantages and disadvantages of the various

technologies. One parameter which is common to all detectors is the efficiency,

which is calculated as the fraction of incident radiation which gives an electric signal

which is recognised as such. Energy resolution is an important parameter, especially
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for spectroscopy. Particle detectors are used to measure the energy of the radiation

emitted by radionuclides, which is their identifying “fingerprint”. In this case the

energy resolution is a very important parameter.

5.13 Biological Effects of Radiation

Energy deposited by radiation in living cells has the same effects of creating ions,

increasing the temperature locally and generating other radiation. Ionising the saline

solution inside cells or the water between cells creates free radicals, which are

chemically very reactive. Their presence may have several effects: from killing cells

to generating mutations, including carcinogenic ones. The effect of radiation in a

living tissue is measured by the absorbed energy weighted by a factor that takes into

account how this energy is distributed. This is the equivalent radiation dose and is

measured in Sievert (Sv), The factor WR depends on the radiation type and ranges

from 1, for gamma rays, to 20 for α particles and heavy ions:

Equivalent radiation dose = absorbed dose ×WR; (5.49)

1 Sv = 1 Gy ×WR

Living cells have natural repair mechanisms to the radiation effects, it is also very

important to consider the time interval in which this dose is delivered, which is the

equivalent dose rate, in Sievert per hour (Sv/h) or per year (Sv/y). The same dose has

the highest effects if it is delivered in a short time. Radiation is used to kill germs and

sterilise equipment and food. It is also used to kill cancer cells: radiotherapy uses

alpha and beta-emitting radionuclides linked to molecules which are attracted to

cancer cells; hydrotherapy uses collimated beams of charged particles with tunable

energy, so that the position of the Bragg peak corresponds to the depth of the tumour.

The same radiation, if administered to healthy organs, will kill their cells in exactly

the same way and may also cause cancer. An equivalent dose of 1 Sv corresponds

to a 5.5% probability of developing cancer from radiation.

We are constantly exposed to natural radiation, from cosmic rays, from radon

gas, from other radioactive minerals, like 40K. In general, we absorb an equivalent

dose of approximately 1.5–5 mSv/y from natural sources, depending on the location

where we live: it is mainly linked to geology and altitude. In Europe the limit on the

effective dose for occupational exposure is presently 20 mSv/y. For all manipulation

of radioactive sources or operation of X-ray equipment the principle of reducing all

unnecessary exposure must be applied.

Other units of exposure are the rem, which originally stands for Röntgen

equivalent for men: 1 rem = 0.01 Sv. It is now based on the rad: 1 rad = 100 Gy.

These units are presently officially used only in the USA.
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5.14 Radiography

To obtain X-ray images of objects or parts of our body (Fig. 5.20), the object is

placed between a X-ray tube and an imaging detector, which can be a special

photographic film or an electronic detector. What we see is the shadow of the object

projected onto the detector. At a given X-ray energy or wavelength, materials of

different Z have different absorption coefficients: while water and other tissue can

be transparent, bones which contain calcium absorb the X-rays and project a shadow

onto the film.

The ideal generator would produce single-energy X-rays from a point-like source

at large distance from the object, in such a way that the rays can be considered as

parallel to each other, and objects project a sharp “shadow”. The ideal detector has

Fig. 5.20 Shadow of a human hand projected on an X-ray detector. The part in black the film has

been hit by X-rays, while the parts which have remained white have been shadowed by the bones,

which have absorbed the X-rays
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Fig. 5.21 Schematics of an X-ray tube. Electrons are produced by an incandescent filament in

vacuum; the production process is called thermionic emission; they are accelerated with the high

voltage to the desired energy. When they hit the cathode they produce a continuum spectrum

due to bremsstrahlung, but they also ionise the cathode atoms. When the electron energy is

larger than the K energy levels, occupied by the innermost electrons, also the characteristic X-ray

fluorescence lines of the cathode material are emitted. These lines are monoenergetic. Depending

on the application, the lower part of the spectrum may be intentionally suppressed by a filter, to

reduce the dose to the patient and to minimise the energy dispersion. The cathode is heated by the

electron current, which may reach 1 A. A rotating cathode is sometimes used for high intensities.

The cathode is inclined, because the X-ray emission is maximum in the direction perpendicular to

the electron velocity. To avoid penumbra effects on the film, the electrons are focused to reduce the

size of the X-ray source

100% efficiency, a granularity of the order of micrometres and a linear response over

several orders of magnitude. The aim is to have an excellent resolution, maximum

contrast, while minimising the radiation dose to the patient. In reality an equipment

is the best available compromise. Operating voltages range from 25 to 140 kV,

anodes are typically made of tungsten, for general purpose, or molybdenum for

soft X-ray mammography. Their K-level emission lines are Eγ = 69.5 and 20 keV,

respectively. Currents can reach 1 A and the lower part of the spectrum (E ≤ Eγ )

is filtered out to minimise the dose to the patient.

The detector can be a simple, but specific, photographic film, which may have

an enhanced detection efficiency by using a scintillator device, which converts X-

rays into light. Digital radiography uses either a light-sensitive device to detect

scintillation light, or pixelated detectors which convert directly X-rays into electric

signals and then into an image. This gives immediate feedback, without any

chemical processing of the film. A sketch of the devices is shown in Figs. 5.21 and

5.22.



98 5 Passage of Radiation Through Matter
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Fig. 5.22 Cross section sketch of an arm in contact with a radiology film detector. Two layers of

scintillating material are used to enhance the sensitivity to X-rays of the photo-sensitive film. Black

areas correspond to areas which were exposed to the X-rays, light areas are those in the shade of

material with high Z, like bones. The contrast depends on the difference of absorption coefficients

(µ) of the various materials at the dominant X-ray energy. Electronic detectors can replace the film

and lower the dose to the patient

The unavoidable Compton scattering inside the object, or patient, deflects the

incoming X-rays and reduces their energy, adding a noise component to the image

and decreasing the contrast. Special collimators can be used to reduce this effect,

at the price of efficiency, while energy-sensitive detectors can be used to filter out

Compton-scattered photons.

5.15 Problems

5.1 A case study: an X-ray tube operates in the range 25–140 kV. Calculate the

range of 40 keV electrons hitting a silver anode. (ρ = 10.5 g/cm3,M =
107.87 g/mol). For this study we can in first approximation neglect the energy

lost by radiation. Will the obtained value be larger or smaller than the real

one? Assume a current of 10 mA, calculate the energy loss in 1 s in the

anode and compare this value with the purely electrical power. Assuming no

heat exchange, a mass of the anode ma = 20 g, and a heat capacity Ch =
25 J/mol/K, calculate the temperature of the anode after 10 s of continuous

operation.

5.2 A radiology lab uses 40 keV X-rays from an apparatus with a silver anode,

whose measured emission spectrum is shown in Fig. 5.23. The walls of the

lab need to be thick enough to contain the radiation. What thickness of lead is

needed to attenuate the radiation intensity to 0.1% of the initial value?

What thickness is needed if we use concrete instead?.

The energy of the Ag emission lines Kβ and Kα and the corresponding

attenuation coefficients for lead are reported in Table 5.1. The lead density

is 11.3 g/cm3. Should we use the kβ or the spectrum end-point energy? The

attenuation coefficient for concrete at 40 keV is 0.5 cm2/g and its density is

2.4 g/cm3.
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Fig. 5.23 Spectrum of X-rays emitted by a tube with silver anode, operated at 40 kV and

measured with a CdTe detector (Courtesy Amptek, Inc. www.Amptek.com)

Table 5.1 Table of the X-ray

attenuation coefficients in

lead, for three values of the

X-ray energy

Line E (keV) µ(cm2/g)

kα 22 70

kβ 25 45

Bremsst. 40 14

5.4 Calculate the range of 5 MeV α particles (z = 2) in nitrogen at standard condi-

tions, which is an approximation for air, with density ρ = 1.2mg/cm3, Z = 7

and atomic mass M = 14.00 g/mol. The mass of an α particle is mα =
3727.3 MeV/c2.

5.5 A radioactive source of 90Sr emits β− with an end-point of 546 keV. Calcu-

late the range of electrons in aluminium, neglecting radiative energy losses.

What thickness of aluminium would shield 99% of all radiation, including

bremsstrahlung? Aluminium:M = 26.98 g/mol, ρ = 2.7 g/cm3.

5.16 Solutions

Solution to 5.1 First of all we verify that the kinematics of 40 keV electrons can be

approximated by non-relativistic formulae, so Eq. (5.41) is valid. From Eq. (5.41)

we first calculate the average ionisation energy I = 22.8 + 47 × 9.7 = 480 eV
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to be used in the average of the log term:

L = ln

(

2 × 511 × 40 keV2

511 × 0.48 keV2

)

= 4.42

we have:

R = 0.5 × 0.0016 MeV2

0.078 MeV2 cm2

0.511

0.511

107.00 g/mol

47 × 10.5 g/cm3

× 1

4.42
= 0.0005 cm = 5 µm

This value is larger than the real depth of electrons because we have neglected

the braking radiation and because the trajectory of electrons inside the material is

not a straight line. However, we have an order of magnitude of a few micrometres

of the anode which takes part to the X-ray emission. 10 mA= 10−2 C/s=
10−2/1.6 × 10−19 = 6.25 × 1016 e/s. In 1 s the energy loss is

6.25 × 1016 × 40 × 103 = 250 × 1019 eV = 250 × 1019 × 1.6 × 10−19 = 400 J

The value of the electrical energy is

W = I V t = 10−2 A × 40 × 103 V × 1 s = 400 J

The temperature of the anode increases by �T

�T = t × Wma

MCh
= 10 s × 400 × 10

107.87 × 25
= 14 K

Even with a very modest current, the temperature of the anode increases

considerably. This is the reason why rotating or water-cooled cathodes are used

in industrial applications.

Solution to 5.2 As the photoelectric cross section for a given material decreases

with the cube of the X-ray energy, we consider the maximum energy in the

spectrum, which is 40 keV. The attenuation coefficient for lead is µ′ = ρµ =
11.3 × 14 = 158.2 cm−1.

N(x)/N(0) = e−µ′x = 0.001; ⇒ −µ′x = ln(0.001);

x = − 1

µ′ ln(0.001) = 6.91/158.2 = 0.4 mm

In case of concrete µ′ = ρµ = 2.4 × 0.5 = 1.2 cm−1 and

x = − 1

µ′ ln(0.001) = 6.91/1.2 = 5.7 cm
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Fig. 5.24 Energy loss profile

of 5 MeV α particles in air, as

calculated with a numerical

integration of Eq. (5.39)

µ

Solution to 5.4 From Eq. (5.41) we first calculate the average ionisation energy

I = 22.8 + 7 × 9.7 = 90.7 eV to be used in the average of the log term:

L = ln

(

2 × 0.511 × 5 MeV2

3727.3 × 9 × 10−5 MeV2

)

= 2.86

we have:

R = 0.5 × 25 MeV2

0.078 MeV2 cm2

0.511

3727.3

14.00 g/mol

7 × 1.2 × 10−3 g/cm3
× 0.25

2.86
= 3.2 cm

Alpha particles are absorbed by a few centimetres of air (Fig. 5.24).

Solution to 5.5 From Eq. (5.41) we first calculate the average ionisation energy

for aluminium: I = 22.8 + 13 × 9.7 = 149 eV to be used in the average of the

log term:

L = ln

(

2 × 0.511 × 0.546 MeV2

0.511 × 1.49 × 10−4 MeV2

)

= 8.89

we have:

R = 0.5 × 0.298 MeV2

0.078 MeV2 cm2

0.511

0.511

26.98 g/mol

13 × 2.7 g/cm3
× 1

8.89
= 0.33 cm
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The β particles from 90Sr are stopped by a few mm of aluminium. In addition,

they produce bremsstrahlung radiation, with end-point at 546 keV and charac-

teristic K-lines of aluminium, at 1.6 keV. The low-energy X-rays from Al can

be easily shielded either by aluminium itself or by a thin layer of shielding with

higher Z. To shield at 99% from bremsstrahlung we can consider to use iron,

with ρ = 7.86 g/cm3 and µ = 0.084 cm2/g.

−µ′ x = ln(0.01)⇒ x = 4.6/0.66 ≈ 7 cm
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