
7The Sun

Our Sun is the only star whose surface we can study in detail due to its proximity. Through
space missions are also in situ measurements possible. The importance of our sun was
already recognized by the ancient civilized peoples. The names of the sun deity (sun
cult) are Aton, Ra, Re, Horus (Egyptians), Huitzilopochtli (Aztecs), Sunne, Sol (Germanic
peoples), Apollo, Helios (Greeks), Surya (Hindu), Lugh (god of light, Celts), Inti (Inca),
Mithra (Persians), Apollo, Sol (Romans), Svarožić (Slavs).

Solar physics has established as an own branch of astrophysics, and here has arisen a
line of research topics of great practical relevance: The study of solar-terrestrial relations.1

7.1 Basic Data and Coordinates

What are the most important state variables that characterize our Sun, and how can these
variables be determined? How can phenomena of the solar atmosphere be defined in a
coordinate system?

1 Formerly solar-terrestrial relations, now Space Weather.
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7.1.1 Basic Data

The most important state variables of the Sun are:

Mass 333,000 Earth masses = 1.98 × 1030 kg

Radius 109 Earth radii = 6959 × 108 m

Luminosity 3.826 × 1026 W = 3.826 × 1033 erg/s

Apparent brightness mV = −26 .m87

Effective temperature 5777 K

Rotation period ≈25.38 days

In astrophysics, one often gives the data of objects in units of the corresponding
value for the Sun, e.g., the mass of a star is 1.4 M⊙.

From its values the Sun is an average star, many stars are even smaller than the Sun and
less massive.

7.1.2 Coordinates

A reliable and save method to observe the Sun is the projection of its image onto a screen
behind the eyepiece of a telescope. To determine the position of phenomena on the surface
of the Sun, one uses the coordinates sketched in Fig. 7.1. The Position angle P is taken
from an astronomical yearbook, in Fig. 7.1 one sees the definition of the sign (+ or −).
The heliographic latitude B0 of center of the sun is also taken from a Yearbook:

• B0 > 0 one looks rather at the northern hemisphere of the sun,
• B0 < 0 one looks rather at the southern hemisphere.

The sun rotates differentially, i.e. faster at the equator than at the poles. Therefore one
has introduced the Carrington rotation that refers to the solar rotation at 16 degrees of
heliographic latitude. . Moreover, solar rotations have been numbered by since November
9, 1853, and the mean rotation period is 27.2753 days (synodic value, sidereal value is
25.38 days). Carrington rotation number 2238 began on November 28, 2020.

Determination of heliographic coordinates: One first calculates the latitude B0 of the
sun’s center and selects the appropriate grid of degrees onto which the sun’s image is
projected. Then one sets the east-west direction—one turns the measuring template until
the sun’s edge or a spot runs exactly on the E-W line. Then the position angle is set. Finally,
the coordinates can be read directly.
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Fig. 7.1 Solar coordinates

7.1.3 Distance

The attempt to determine the distance Earth-Sun is old. Aristarchus of Samos (320–250
B.C.) first established the heliocentric world system and tried to determine the distance of
the sun (Chap. 3).

Another method is the application of the third Kepler law (Sect. 3.3.5). Take a planet
which comes closer to the earth than the sun (Venus or Mars), determine its distance in
kilometers by means of parallax measurement, and then all distances in the solar system
result, since according to Kepler’s third law for any two planets 1 and 2 with the orbital
semi-axes a1, a2 as well as the orbital periods P1, P2 are valid:
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(7.1)

The distance determination with Parallax measurement is simple: sight an object from
two locations as far apart as possible whose distance is known. Then this object appears at
different angles relative to objects further away, and from the Parallax π one has according
to

sin π =
a

r
(7.2)



254 7 The Sun

Fig. 7.2 Determination of the
Venus parallax during a Venus

transit (transit) in front of the
the solar disk. From two distant
observing sites on Earth, the
planet can be seen passing in
front of the solar disk on path 1
and path 2, respectively. The
last observable Venus transit
was 2004, the next will be
2117

Venus

1

2
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the distance r, where a is the base length. Even simpler is the determination of the distance
from the measurement of signal propagation times. One sends a radar beam to Venus and
measures when it arrives again after reflection at the surface of Venus. The method is
however somewhat uncertain, since one does not know the layer, in which the signal is
reflected, sufficiently exactly.

A direct determination of the solar parallax is difficult, because during the day, when the
sun is above the horizon, no reference stars are visible. Figure 7.2 shows the determination
of the Venus parallax.

7.1.4 Solar Mass

As shown in Sect. 3.3.5, the solar mass can be calculated from the exact form of the 3.
Kepler’s Law:

a3

P 2 =
G

4π2 (M1 + M2) (7.3)

For example, let’s insert: M1 Mass of the Sun, M2 Earth mass, P orbital period Earth
around the Sun (1 year), a known Earth-Sun distance. Then we immediately get the mass
of the sun. Earth’s mass, M2 can be neglected here.

7.1.5 Radius

If the solar distance is known, then the solar radius in kilometers follows from the apparent
solar diameter. In the course of a year the apparent Sun radius varies between 32′26′′ (Earth



7.1 Basic Data and Coordinates 255

at perihelion, near the Sun, currently on January 4) and 31′31′′ (Earth at aphelion, far from
the Sun, currently on July 4).

7.1.6 Luminosity

Principle of determination: one measures the energy received on earth from the sun and
then takes into account the distance of the sun. Per square meter we receive on earth a
radiant power of S = 1.37 kW from the sun, the Solar constant S. This value is important
for solar pannel operators. But one should not expect 1 m2 collector area actually provides
this energy, since:

• is the value for outside the earth’s atmosphere,
• this is only true for perpendicular incidence of the sun’s rays,
• one must take into account the efficiency of the system.

The luminosity of the sun follows from:

L = 4πr2 S (7.4)

r—Earth-Sun distance.
The solar constant S indicates the amount of energy that can be absorbed at the Earth’s

location (i.e., in r = 1.496 × 1011 m distance) on an area of 1 m2 per second, i.e. S =
1367 Js−1m−2. This energy is distributed over the surface O = 4πR2 = 4π(1.496 ×
1011 m)2, and the total radiant power (luminosity) of the Sun is :

L = O × 1367
J

m2s
= 3..845 × 1026 W

The solar constant indicates the solar radiant power arriving at the earth.

7.1.7 Effective Temperature

We treat stars as black bodies, since Planck’s law of radiation applies to them. In
thermodynamic equilibrium (in a cavity of temperature T), the emission and absorption of
any volume element must be equal. If the emission is described by an emission coefficient
ǫν and the absorption is given by an absorption coefficient κν then in the case of a
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thermodynamic equilibrium (TE, thermodynamic equilibrium):

ǫν/κν = Bν(T ) (7.5)

where Bν(T ) is the Planck function described above (Eq. 5.34); this is known as
Kirchhoff’s theorem .

According to the Stefan-Boltzmann’s law of radiation the total radiative flux πF of a
star (by this is meant the energy flow coming from the interior per square centimetre of the
star’s surface, for example):

πF = σT 4
eff (7.6)

and one obtains for the Sun an effective temperature/indexSun!effective temperature eff =
5770 K. The measurement of πF is based on the measurement of the solar constant S.

Thus, we have given the main state variables of the Sun.
In Fig. 7.3 the spectrum of the Sun is shown. Likewise, the radiation curve of a black

body with T = 5800 K is underlaid.

F
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Solar spectrum outside the Earh's atmosphere
Solar spectrum at sea level
Radiation curve of a black body at T=5800 K

Terrestrial

absorption lines

Fig. 7.3 Spectrum of the sun outside the earth’s atmosphere and at sea level. You can see the
absorption by the Earth’s atmosphere. Abscissa: Wavelength in µm
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7.1.8 Sun: Observation

Important Never observe the sun with unprotected eyes. The simplest observation is
to project the image of the sun on an observation screen (stencil) behind the telescope.
Neutral filters in front of the telescope lens can also be used to attenuate the sunlight.

Observation Experiment: Observe the sun with a small telescope in projection. It is very
easy to see the center to limb variation, possibly sunspots and flares. By means of sketches
one can follow the migration of the spots in a few days which is due to rotation of the Sun.

Special solar telescopes are used in research (see Chap. 5).

• Tower telescopes: At the top of a vertical tower there is a Coelostat system that reflects
the light into a vertical tower, which is often evacuated to avoid heating up. The tower
host the telescope mirrors.

• Coronagraph: The solar disk is darkened by a cone aperture and filters and thus an
artificial solar eclipse is produced; one can observe the corona (this outermost part of
the solar atmosphere has about the brightness of the full moon). Problem: Stray light in
the earth’s atmosphere.

• H-Alpha (Hα) telescope: Observation of the sun in the light of the hydrogen line Hα

at 656.3 nm; with this one can see sunspots, prominences, filaments, flares. Thus also
structures of the chromosphere become observable.

• Spectroheliograph (Hale, 1890): The image of the sun falls on a narrow slit of a
monochromator. One observes the sun in a narrow wavelength range, and through a
scan one sees the whole sun.

• Lyot Filter: Consists of several birefringent quartz plates. Each plate is half the
thickness of the previous one. Due to the property of birefringence, light splits into
an ordinary ray Io and an extraordinary ray Ieo each with a different refractive index
and phase velocity. Waves in the same polarization state can only occur if the optical
path length of Io, Ieo are an integer multiple of the wavelength. By adding a polarizer,
to the plates, which is a filter, you get a transmission function with peaks. By using
liquid crystals you get a tunable filter.

• Radio heliograph: e.g. Nancay, the sun is observed at five frequencies between 150 and
420 MHz. Thereby one detects different heights in the solar atmosphere (→ the higher
the frequency, the deeper one sees into the solar atmosphere, i.e. closer to the solar
surface).

An example of a modern solar telescope commissioned in 2012 is GREGOR (Fig. 7.4). It
has a diameter of 1.5 m. The telescope is located at an altitude of about 2400 m on the
Canary Island of Tenerife.

The DKIST solar telescope (see Chap. 5) became operational in 2020 and, with a
diameter of 4 m, is the largest solar telescope ever built. In Europe there are plans for an
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Fig. 7.4 The new GREGOR telescope. Tip Tilt is a tiltable mirror which can partially compensate
for air turbulence and allows better solar images. (Source: KIS, Freiburg)

Fig. 7.5 The planned European Solar Telescope, EST [EST consortium]

EST, European Solar Telescope (Fig. 7.5), which could be operational in 2029 and whose
diameter would be similar to that of DKIST. Since DKIST is located in Hawaii and EST
on the Canary Islands, a round-the-clock solar observation would become possible.

The Sun, our nearest star, is the only star where details can be observed!
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7.2 The Structure of the Sun, the Quiet Sun

What layers does the sun consist of and how do these layers come into being? We have to
distinguish between the layers of the solar interior and the solar atmosphere.

7.2.1 General Structure of the Sun

The structure of the sun can be roughly subdivided in:

• Sun interior
– core,
– radiation zone,
– convection zone,

• solar atmosphere
– photosphere,
– chromosphere,
– corona.

In general, we can say that our Sun is the only star where surface details can be observed
directly. Thereby seen from Earth an angle of 1′′ corresponds to about 720 km on the solar
surface. Only recently quasi in situ measurements by space probes are possible.

The Sun is a gas sphere in which the density decreases almost monotonically towards
the outside. Physical quantities relating to the Sun are denoted by the subscript solar
sign ⊙.

From Table 7.1 one sees that within 0.5 R⊙ 96% of the mass is already concentrated. In
the following we discuss the individual layers of the sun and the phenomena of the quiet
(i.e. not active) sun occurring in them.

Table 7.1 Variation of the density in the solar interior

r/R⊙ r/1010 cm T[106 K] ρ[g/cm3] Mr P [N/cm2]

0.00 0.00 20 158 0,0 4 × 1012

0.1 0.7 16 118 0.0089 2.5 × 1012

0.2 1.39 11 45 0.44 6 × 1011

0.5 3.48 3.9 0.74 0.96 4 × 109

0.9 6.27 0.44 0.001 1.0 7 × 105
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7.2.2 Sun’s Interior

Near the center the Fusion from Hydrogen, H, to Helium, He, takes place. This Hydrogen

burning (actually a nuclear fusion) is described in more detail in Chap. 8 on stellar
structure. Our Sun has already burned about 50% of the available hydrogen. Fusion
produces neutrinos, which pass through the sun unhindered due to their small effective
cross-section. On Earth, special detectors can be used to detect these neutrinos originating
from the interior of the Sun and thus verify the theories of solar structure. Since the
measured neutrino fluxes do not correspond to the theory, there exists a neutrino problem

in solar physics. We have to consider :

• Neutrinos: arrive at Earth with only eight minutes delay, so they reflect the current rate
of nuclear fusion in sun;

• Photons: are emitted at the surface of the sun. However, it takes many 105 years
until a photon reaches the surface from the place of its origin (thereby changing from
extremely short-wave to long-wave) and is emitted. This is due to the many scattering
processes of the photons. The light of the present sun thus comes quasi from nuclear
reactions which took place many 105 years ago.

Another way to explore the interior of the sun is through the use of Helioseismology. The
sun oscillates, and from the analysis of these oscillations the physical parameters of the
sun’s interior can be determined. Analogue: From the sound of a bell, the bell material can
be inferred.

The evaluation of the neutrino flux from the Sun and helioseismology make it
possible to explore the interior of the Sun directly.

From this, it appears that our ideas about the structure of the Sun agree quite well with
observations.

Nuclear fusion in the solar interior can be roughly stated as:

4p →4 He + 2e+ + 2νe (7.7)

So neutrinos are produced, νe or, to be more precise, electron neutrinos. The first neutrino
experiment goes back to R. Davis Some chlorine atoms of the cleaning liquid C2Cl4
in a large underground tank are converted to 37Ar. This experiment was performed for
the first time in 1964, and only 1/3 of the expected neutrino flux was measured. In the
Superkamiokande experiment (1988), a tank filled with 50,000 t of highly pure water is
used about 1000 m below the earth’s surface. Free electrons are produced when neutrinos
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react with water molecules in the tank. The neutrinos are detected by the occurring
Cerenkov radiation of free electrons.

The measured low neutrino flux is explained by the fact that neutrinos change their
properties on their way to Earth. They change into muon and tau neutrinos, but only the
electron neutrinos can be measured. These neutrino oscillations would then also require a
finite rest mass. Sudbury neutrino experiment (SNO) can detect all three types of neutrino
(1999–2006), and neutrino oscillations are considered to be secured to explain the neutrino
problem of the Sun.

Energy is released during nuclear fusion in the form of gamma ray quanta. These are
absorbed and re-emitted in the radiation zone. Thus, in the radiative zone, energy transport
occurs by radiation. In the convection zone, energy transport then starts by convection:
Hot plasma flows upward, cools down, sinks downward, heats up again, etc.

The expansion of the three regions of the solar interior corresponds roughly to (1/3)R⊙
in each case , i.e., the convection zone extends, for example, to about 200,000 km below
the solar surface.

7.2.3 Photosphere

This layer emits almost the entire Solar radiation, whereby the maximum of the radiant
power lies at 500 nm. The thickness of the photosphere is about 400 km and is very thin
compared to the solar radius of about 700,000 km. Within the photosphere the temperature
decreases from 6000 K to 4000 K, the density from 10−7 to 10−8 g cm−3. The optical depth
is : τ = 0.5 at T = 5800 K and τ = 0.05 at T = 4800 K.

If you look at a solar image in visible light, you can see center to limb variation.
The solar disk appears brighter in the center than at the edge. If one looks towards the
solar limb, the visual ray must take a longer path through the solar atmosphere, and one
therefore sees into less deep and thus cooler layers than in the centre of the solar disc(cf.
Fig. 7.6). Important: The center to limb variation is wavelength dependent and becomes
more pronounced in the blue than in the red. In the radio wave range at λ > 1 cm one has
Limb brightening, since here the radiation comes from higher layers where the temperature
increases outward.

The center to limb variation indicates that the temperature increases inward from the
solar surface.

The solar spectrum is shown in Fig. 7.7 shown.
The surface of the Sun in the photospheric region is not homogeneous, but shows a

cellular pattern, which, because of its granular appearance, is also known as granulation

(Fig. 7.8) . These cells have an average extension of about 1000 km and a lifetime of ten
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Fig. 7.6 Limb darkening: The
visual ray going to the sun’s
limb penetrates less deep

Sun
Observer

Fig. 7.7 Solar spectrum
(credit: AURA)

minutes. From a depth of 200,000 km below the surface of the sun the energy transport to
the surface is by convection:

Hot plasma flows up, cools, and sinks back down, etc. The bright granules are 200 K
to 300 K hotter than the dark intergranular spaces where the plasma sinks down. If you
bring a spectrograph slit into an image of the Sun near the center of the Sun, the lines
coming from the photosphere appear wiggly (wiggly lines, Fig. 7.9). Lines coming from
the granulum are blue shifted, because the matter rises upwards, i.e. towards the observer,
and lines coming from the dark intergranulum are red-shifted, because here the matter
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Fig. 7.8 Solar granulation with sunspot; image taken by Hinode satellite

Granulum

Intergranulum

Granulum

Intergr.

Spectrograph slit

Fig. 7.9 The spectrograph slit lies over granular/intergranular regions. This results in a blue shift
for the rising granulum and a red shift for the sinking intergranulum when observed at the center of
the solar disk

sinks back into the interior of the sun. If one cannot separate granulum and intergranulum,
one gets a superposition of these line profiles, and since the bright and thus ascending
elements dominate in size, one gets a mostly C-shaped Bisector (which is the line that
bisects a line profile at equal intensities). The line profile is therefore asymmetrical. So
asymmetric line profiles at stars are always a sign, that there is convection also at their
surfaces.
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7.2.4 Chromosphere

The chromopshere is extending outward of the photosphere up to about 104 km height
(1.00–1.015 R⊙). The density decreases to 10−11 g cm−3, the temperature increases again
to 105 K. Because of the low density, the radiation of the chromosphere contributes almost
nothing to the total radiation, despite the high temperatures. During a total solar eclipse one
observes the Spicules, a bristly structure that aligns with magnetic fields. In the spectrum
of the chromosphere, which is seen to flash only briefly during a total solar eclipse and is
therefore known as the Flash spectrum one sees emission lines. These arise as follows:

• Lines that appear in absorption in the photosphere spectrum are visible as emission
lines in the chromosphere.

• Due to the high temperatures in the chromosphere, lines of highly excited or ionized
atoms are observed.

Both indicate high temperatures.
The chromosphere can also be observed outside a total eclipse. Spectroheliograms

are used to take monochromatic images. One measures through a narrowband filter the
radiation in the centers of strong absorption lines: at λ = 656.3 nm Hα, at λ = 393.3 nm
and λ = 396.8 nm the so-called H and K lines of Ca II (singly ionized calcium). In the
latter one sees the chromospheric network (supergranulation cells) about 30,000 km in
diameter, at the edges of which are strong magnetic fields. In other lines (e.g. Hα) one
sees prominences protruding beyond the solar limb, which can be seen as dark filaments
in front of the solar disk (Fig. 7.10).

7.2.5 Corona

In the outermost layer of the solar atmosphere, the corona, the density decreases to
10−18 g cm−3 and the corona merges outwards into the interplanetary medium. Its shape
depends on the activity of the Sun: At maximum it is symmetrical around the solar disc, in
the Minimum it is more concentrated to the equator.

The spectrum of the corona consists of the following parts:

• Continuous spectrum, K corona: photospheric light scattered by free electrons at
the corona. But then one should observe absorption lines. But because of the high
temperatures these are blurred (temperatures of several 106, K resp. speed of v =
8000 km/s) and won’t come up.

• L corona: emission lines; highly ionized elements, e.g. FeXIV (13-fold ionized iron),
this is the green corona line at 530.3 nm. From the ratio FeXIV/FeX one can determine
the temperature according to the Saha formula.

• F-Corona: Normal solar spectrum; originates from scattering by interplanetary dust.
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Fig. 7.10 Sun with
prominences projecting
brightly above the solar limb
and appearing dark in front of
the solar disk (source:
SOHO/NASA)

An observation of the corona outside of total solar eclipses is possible in the UV and in the
X-ray range as well as in the radio range (m-waves). In the X-ray light the coronal holes

can be seen. Here the magnetic field lines, which determine all structures in the corona,
are open over wide areas. Through these areas the Solar wind escapes.

If one observes the sun in the radio range, the Plasma frequency ν0 should be noted;
radio radiation below this frequency ν0 (or above this wavelength) cannot escape because
the refractive index becomes negative, < 0 .

ν0 =

√

e2Ne

πm
= 9 × 103

√

Ne [MHz] (7.8)

In this formula, the electron density Ne is given as particles per cm3. The electron density
in the corona decreases with increasing distance from the solar surface: At a distance of
1.03 R⊙ it is at most 350 × 106 cm−3 at a distance of 2.0 R⊙ it is 3.1 × 106 cm−3 and at
5 R⊙ only more 0.05 × 106 cm−3.

When observing in different frequencies, one can probe different layers of the solar
atmosphere.
If one observes the Sun in the radio range at higher frequencies, then one sees into deeper
layers because the electron density is higher there. So you can do a kind of tomography of
the solar corona when observing at different frequencies.
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The temperature increases strongly in higher layers of the solar atmosphere. The
reason for this is not yet fully understood.

7.3 The Active Sun

Our sun is not a static star—it is an active star (ex. Fig. 7.11), changing occur constantly.
We will first discuss the individual phenomena and then their effects on Earth.

7.3.1 Sunspots

The easiest way to determine the solar activity on the surface of the sun is by looking
at Sunspots. These were observed with the naked eye in ancient times when the sun was
low in the sky. For a sunspot to be visible to the naked eye, it must have a total extent
of about 40,000 km. Since it has been recognized that phenomena of solar activity affect
radio communications, satellite positions, corrosion of pipelines, electric power lines, etc.,
close attention has been devoted to the study of the Space Weather.

The first telescopic observations of the spots were made by G. Galilei (1610) Chr.

Scheiner, and other astronomers. At first sunspots were thought to be inner planets
wandering around the Sun. Then it was realized that their migration around the Sun could
be explained by the rotation of the Sun.

Spots consist of a dark core part, the umbra, which is surrounded by a filamentary
brighter penumbra (Fig. 7.12). The temperature in the umbra is 4300 K and in the

Fig. 7.11 Coronal Mass ejection (CME), recorded with LASCO-SOHO
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Fig. 7.12 Sunspot with flares at the edge of the sun and in the center of the sun disk; photograph
La Palma, Vazquez, Bonet, Sobotka, Hanslmeier

Fig. 7.13 Sunspot relative numbers (source: SIDC)

penumbra 5500 K. The intensity ratio between the spot and the photosphere is 0.13 at
a wavelength of 300 nm, and at λ = 1000 nm 0.46.

The number of sunspots varies with an average period of eleven years, which is the
Sunspot cycle (Fig. 7.13). The activity cycles have been numbered consecutively since
1760. In 2019, the cycle began with the number 25. Spots usually occur in groups of spots
with several individual spots. If g is the number of groups and f is the number of single
spots, then we determine the Relative number R:

R = k(10 g + f ) (7.9)
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Thereby k is a correction factor that takes into account the influence of the instrument.
At the beginning of a new cycle, spots occur at higher heliographic latitudes at ±35◦ on,
in the middle of the cycle at ±8◦. Thus one gets a Butterfly diagram, if one records the
positions of the spots in the course of an eleven-year cycle.

There can be up to two years of overlap between spots of the old cycle and the new
cycle. If one observes the spots at the solar limb, the penumbra on the side closer to the
center of the sun appears shortened. This is the Wilson effect. Lines of equal optical depth
are geometrically several 100 km deeper in large spots than in the photosphere; this leads
to an asymmetry of the penumbra at the solar limb.

The lifetime of the spots is a few days, for 90% of the spots less than eleven days.
If one examines spectral lines that are created in the spots, one sees a splitting due to

the Zeeman effect. Therefore spots are related to magnetic fields.
The magnetic flux densities measured in the spots2 are up to 4000 Gauss3 (Earth’s

magnetic field around 0.5 Gauss). The field lines pierce the photosphere vertically in the
umbra region and diverge like a razor brush. If H0 is the strength of the field at the center
of the spot and r is the distance from the spot center, then one has:

H(r) = H0(1 − r2) (7.10)

Why are spots cooler than the approximately 6000 K hot solar surface? Outside the field
in the sun there is the pressure pe. In the area of the spot to the pressure pi there is also
amagnetic pressure B2/2µ where µ denotes the magnetic permeability. In order to have a
stable structure, the following must hold true:

pi + B2/2µ = pe, (7.11)

thus pi < pe and because of ρi = ρe it follows that Ti < Te is. The temperature inside a
spot Ti is therefore lower than the surrounding photosphere temperature Te.

91% of all spots occur in bipolar groups. These are magnetic tubes driven by magnetic
buoyancy from the solar interior to the surface, and then produce a bipolar group at the
two puncture points (Fig. 7.14).

The Zurich classification is sketched in Fig. 7.15 (after Bray). Criteria for this are
whether a group is unipolar or bipolar, whether a penumbra is pronounced or not, and
the heliographic length extent.

The spot preceding in solar rotation is called the p-spot and the one following is called
the f-spot. If in a cycle of activity in the northern hemisphere the p-spot has a positive
polarity and the f-spot a negative polarity, then in the southern hemisphere it is the other
way round: the p-spot then has a negative polarity and the f-spot a positive polarity. On

2 Often one simply speaks of field strengths, although B = µH,µ =Permeability.
3 1 Gauss = 1 G = 10−4 Tesla.
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Magnetic field lines

Photosphere

Fig. 7.14 A bipolar spot group is formed when magnetic flux penetrates to the surface of the
photosphere

Fig. 7.15 Zurich sunspot classification; (a) unipolar (first row from top), (b) bipolar, without
penumbra (second row from top), (c) bipolar, penumbra at one of the two main spots, (d) Penumbra
at both main spots, small, etc.
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Fig. 7.16 Magnetogram of the
sun. White and black denote
different polarities
(SOHO/MDI)

the next cycle, the whole thing is reversed: In the northern hemisphere of the Sun, the
p-spot then has a negative polarity, and so on. This has been found by Hale and is known
as magnetic cycle (Fig. 7.16).

The spectrum of spots is difficult to observe, it resembles that of a K star. New results
of helioseismology show the dynamics below spots (Fig. 7.17).

Sunspots are areas of strong magnetic fields where convection is reduced.

7.3.2 Faculae

They are practically the counter part to the spots. They appear as extended areas of
excessive brightness (10% more than in the photosphere). Faculae usually occur in the
vicinity of sunspots; because of the contrast they are especially observable at the solar
limb, i.e. they are an overheating of the higher solar layers. Usually, faculae are found
at the same heliographic latitudes as the spots. The polar faculae occur at unusually high
latitudes in the years before or during a sunspot minimum.

In the range around 430 nm (G-band) sees one finds many molecular lines (CH,
vibrational states, rotational states) in the solar spectrum. At very good resolution with
a G-band filter, one finds bright, about 0.1′′ extended dots, G-band bright points, GBPs,
which are small magnetic elements.
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Fig. 7.17 Sunspot with structure below the photosphere (SOHO/MDI)

7.3.3 Prominences

These are clouds of matter in the corona. They can be observed as:

• At the solar limb: bright against the dark sky; either during a total solar eclipse or in the
light of a chromospheric line such as Hα;

• on the solar disk: they appear there dark against the bright photosphere, i.e. in
absorption, and are called Filaments.

Prominences are also subject to the eleven-year cycle. The main zone of their occurrence
corresponds to the spot zone. Shortly before the minimum the polar zone appears, which
moves poleward and reaches its maximum about two years before the spot maximum at
the pole. One distinguishes:

• dormant prominences: long-lived; thickness about 7000 km. Height usually up to
40, 000 km, length 20, 000 km; they are long, thin, and lamellar. They often stand only
on single feet in the chromosphere; their life is up to a year. They usually arise in groups
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Fig. 7.18 Prominence taken with the SDO/AIA instrument.

of spots or in flares. The sun rotates differentially, i.e. faster at the equator than at the
poles, therefore their position becomes more and more parallel to the equator.

• Active or eruptive prominences: usually associated with active spot groups. There are:

(a) Sprays: explosive rise with 1000 km/s (the maximum observed height was 1.5
million km!).

(b) Surges (splashes): ascent with 50–200 km/s; occur repeatedly in active spot groups.
(c) Coronal rain: After eruption, matter flows back like rain.
(d) Loops: Matter follows magnetic field lines.

The prominences (Figs. 7.10 and 7.18) always appear at the boundary between regions
with different magnetic polarities (neutral line). There the field lines run horizontally.
The ionized matter is held in place by the magnetic field, and its density is 100 times
greater than the ambient density; even in the case of the quiescent prominences, matter is
constantly flowing away and being replaced.

7.3.4 Flares and Coronal Mass Ejections

Solar flares can be observed throughout the electromagnetic spectrum. Carrington and
Hodgson observed for the first time in 1859 a Flare in visible light (which is very rare).
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Hale invented the spectrohelioscope, which could be used to observe the Sun at a particular
wavelength, and in 1920 found that flares were visible in the light of the hydrogen line Hα.
Then, in 1940, flares were observed in the radio region and, with satellites, later in the UV
and in X-rays.

The energy released in flares ranges from 1016 J (nanoflares) to 1025 J (large, so-called
Two Ribbon Flares).

A comparison: The Hiroshima bomb had an explosive force of 15 kt, with

1kt (kiloton TNT) = 4.184 × 1012 J. (7.12)

The largest ever found explosed Hydrogen bomb had 50 megatons, and the explosive
power of all conventional bombs in World War 2 reached about two megatons.

As an exercise you could estimate how large the energy release in a flare burst is
compared to the Hiroshima bomb.

For classification of flares one uses two systems:

• Importance: 1, 2, 3, 4 and the additions f for faint, n for normal and b for bright. S
indicates a subflare. So the brightest flares are 4b. The higher the value of this optical
classification, the longer the apparition usually lasts.

• X-ray classification: Since 1970 there are X-ray observations of flares, and one
classifies according to the flux in the range 1–8 Å in units of W/m2. In powers of
ten:

Class A: 10−8 W/m2, class B: 10−7 W/m2, C, M, X.

An M8 flare then has a maximum flux in the 1–8 Å range of. 8 × 10−5 W/m2. Note
that C1 flares can only be observed at the time of solar activity minimum, when the
X-ray background is weak.

If a flare eruption (eruptive flares) occurs, then there is associated:

• shortwave radiation (< 200 nm): of the same order of magnitude as the total solar
radiation in this region.

• X-ray radiation: Increased X-ray radiation causes disturbances in the Earth’s ionosphere
(Mögel-Dellinger effect). Increased ionization of the D layer occurs; radio waves that, in
order to be reflected from the F layer, must pass through the D layer twice, are strongly
attenuated, thus interfering with radio traffic.

• Corpuscular radiation: The particles with velocities between 1000 km/s and 2000 km/s
arrive at Earth one day after the flare outburst, causing magnetic storms, Auroras (green
and red oxygen lines, these are forbidden transitions).

• Radio bursts in the m-range.
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Fig. 7.19 A coronal mass ejection, CME, imaged by the SOHO solar satellite. The Sun itself is
obscured and its actual size is indicated by the circular ring (You can also see 4 planets and a few
stars in the image) (source: NASA/SOHO)

• Cosmic rays: particles are accelerated almost to the speed of light, in the upper
atmosphere of the earth these produce secondary particles and high-altitude showers
when they collide with atomic nuclei.

In 1970, CMEs, Coronal mass ejections (Figs. 7.11 and 7.19) were observed for the first
time. The matter released during a CME leaves the Sun at a speed of up to 2000 km/s.
The mass of the ejected matter is 1015 . . . 1016 g. Eruptive flares are likely to be caused by
CMEs. During the eruptive phase of a CME, the field lines are open, but then close again,
magnetic reconnection occurs, and an eruptive flare bursts (gradual flare). The intersection
of these loops with the solar surface appears as two parallel bands in Hα, and it used
to be referred to as two ribbon flares when the role of CMEs in flare outbursts was not
well understood. The same physics seems to be behind eruptive prominences (disparition

brusque).
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Fig. 7.20 Model for flare formation. At the beginning you have a bipolar group whose field lines
are not connected in the corona loop. In the second phase, the flare begins when reconnection of the
field lines occurs, and a current flows to the foot points in the photosphere. Finally, the flare moves
up into the corona

A Halo-CME is a CME that appears to be pointing directly towards the Earth. In this
case the CME appears as a halo around the sun. The CME is expanding and appears as an
ever-growing halo around the Sun.

Most of the flares are impulsive flares. They can be modeled with a single static
magnetic loop (Fig. 7.20). Again, there is a magnetic reconnection with subsequent
acceleration of particles, but with no connection to CMEs.

Hale has introduced the following classification for Magnetic structures (Mt. Wilson

classification), which is also important for the occurrence of flares:

• α: A single dominant spot, usually associated with areas of opposite polarity.
• β: Sunspot pair with opposite polarities.
• γ : Complex group with irregular distribution of polarities.
• δ: Umbrae with opposite polarities within a single penumbra.

In the δ-configuration there occur more flares than in the other groups. Such a configuration
can occur in all other groups. Here one has two poles with strong vertical fields close to
each other. One can give the following criteria for the occurrence of flares:

• large δ-Spots,
• Umbrae with large elongation,
• high shear in the transverse field or strong gradients in the longitudinal field,
• large spots always have strong flares.

Flares and CMEs arise from reconfigurations of the magnetic field, reconnection.
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7.3.5 The Radio Radiation

One must distinguish between solar radio radiation of a slowly variable component and
bursts.

The slowly variable component originates from discrete regions of the solar atmo-
sphere, predominantly active regions. The radiation flux is closely correlated with the
relative number; it is probably thermal radiation from the corona condensations. Its
temperature is about 107 K and the wavelength of the radiation is between 1–100 cm,
the maximum at 15 cm; the intensity at 10.7 cm is also used as a substitute for spot relative
numbers uses.

Radiation bursts produce radiation in the range of 1 cm to 15 m. In the centimeter range,
the intensity increases to 20–40 times the normal value, and in the m range, it increases to
105-fold of the normal value on.

Let us consider the so-called plasma frequency ωp. We assume electrons moving with
respect to ions at rest. In the case of a gas consisting only of electrons and ionized hydrogen
atoms, we find for the charge density:

ρ = ene (7.13)

From divE = ρ/ǫ0, ǫ0 = 8.854 × 10−12As/Vm, electric field constant (permittivity of
the vacuum) becomes in the one-dimensional case:

div(E) = dE/dx; → E = enex/ǫ0 (7.14)

and the equation of motion is:

ẍ = F/me = eE/me = −
e2ne

ǫ0me
x (7.15)

this is the equation of a harmonic oscillator, and one obtains the Plasma frequency To

ωp =

√

nee2

ǫ0ǫme

(7.16)

when the propagation in a medium of permittivity ǫ > 1 is considered.
The higher the electron density, the higher the plasma frequency. The plasma frequency

is also responsible for the reflection of radio waves in the Earth’s atmosphere, or how deep
into the corona one can look in the radio region.
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Fig. 7.21 Course of electron
density and temperature in the
different layers of the solar
atmosphere; the transition zone
from chromosphere to corona
is also called the transition

region.
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Corona: Observations at high high frequencies you see regions of high electron
density and therefore you look into deeper layers.

If you plot the bursts in the time-frequency diagram, one can see how the regions of
stronger radio radiation move through the solar atmosphere. The electron density decreases
outward and so does the plasma frequency (Fig. 7.21).

The Bursts are classified into:

1. Type I: m-range; short, steeply rising bursts; total duration less than 1 s; main
component of noise storms.

2. Type II: m range; emission in a narrow frequency band, shifting from high to low
frequencies with time; drift velocity in the frequency band is between 0.5 and 1
MHz/s. Duration about ten minutes; matter thus passes through the corona, i.e. from
the frequency drift one can read the height and the velocity from 400–1000 km/s.
Occurrence: relatively rare, in activity maximum one outburst every 50 h; correlation
with geomagnetic storms (these start 2–3 days after the outburst).

3. Type III: m range; narrow-band, but faster frequency drift than type II (20 MHz/s).
Duration 10 s, ascent rate 0.4 c. Height about 1 R⊙; during the sunspot maximum three
type III bursts per hour are observed. Occurrence mostly at the beginning of a flare
(Fig. 7.22).

4. Type IV: throughout the radio range; fast electrons; height above photosphere 0.3–
0.4 R⊙; no more plasma oscillations, because matter density is too low.

5. Noise Storms: m range; large number of individual radiation bursts; duration hours to
days; frequent at spot maximum. Type I bursts occur repeatedly; synchrotron radiation
of fast electrons; 0.3–1 R⊙ over the photosphere; preferably over spot regions.
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Fig. 7.22 Type III burst imaged by the Cassini spacecraft studying Saturn. More than an hour after
the event on the Sun, Cassini shows the radio emission and, in the frequency-time diagram, the
emergence of the radio emission at different altitudes in the solar atmosphere (lower frequencies at
higher altitudes) (source: Cassini/NASA)

7.3.6 X-rays of the Corona

In visible light, the corona can be seen during a total solar eclipse (Fig. 7.23). The missions
SOHO, TRACE, YOHKOH an d RHESSI enable also observations of the sun in the extreme
UV- and X-ray range where the radiation of the Sun varies by the following factors during
the eleven-year cycle:

• Variation in the UV range: ≈ 2,
• Variation in the X-ray range ≈ 100.

In Fig. 7.24 the sun is shown in the X-ray region shown. This is emitted due to the high
temperatures in the corona. One can clearly see the difference between the emissions near
the maximum and near the minimum of solar activity.

The energy of X-rays is a measure of the energy of the electrons that produce them. It
is useful to remember:4

1keV = 1.6 × 10−16 J (7.17)

4 In visible light at a few eV.
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Fig. 7.23 Total solar eclipse of 29.03.2006. Shortly before totality (diamond ring phase) some red
glowing prominences are visible, lower right: totality. Corona well visible (image A. Hanslmeier)

Fig. 7.24 The Sun in the X-ray region − left March 1993 (Sun very active), right near minimum
March 1995 (photo: YOHKOH)

According to this, X-rays can be divided into: (a) hard X-rays 10–100 keV, (b) soft X-rays
1–10 keV.

Consider the time evolution of flares: Hard X-ray radiation is mostly released during the
impulsive initial phase, soft X-ray radiation reaches the maximum with a time delay (some
minutes). For the first time, hard X-ray radiation was observed by the Solar Maximum
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Mission (SMM) around 1980. It was found that there are two sources of this X-ray radiation
localized at the foot points. The suggests non-thermal electrons moving down to the foot
points from the corona into the denser chromosphere. The microwave emission is also
related to this. The slow increase in the soft X-ray region corresponds to the time integral
of the hard X-ray emission radiation→Neupert effect.

The high temperatures in the course of flares lead to different radiation mechanisms:

• Thermal bremsstrahlung: protons attract free electrons; electrons change their velocity,
bremsstrahlung occurs, observed as soft X-rays. In thermal bremsstrahlung the particles
of the emitting plasma have a defined velocity v, and the distribution function
corresponds to of a Maxwell distribution:

f (v) = 4π
( m

2πkT

)3/2
v2 exp

[

−mv2

2kT

]

(7.18)

The emission from this plasma is then called thermal bremsstrahlung, and the radiation
power (in [W m−3]) is

PBR =
Z2

i nine

(7.69 × 1018)2 Te[eV]1/2 (7.19)

where ni , ne ion or electron density, Zi the charge number of the deflecting charge and
T is the temperature below which the energy is insufficient to emit a photon (frequency
ν) in the X-ray range (kT = h̄ν).

• Synchrotron radiation: electrons with very high velocities are accelerated along mag-
netic field lines. High energy electromagnetic waves are emitted tangential to the
direction of motion.

• Non-thermal bremsstrahlung: electrons with very high energy, no Maxwell distribution.

Coronal Holes Almost always to be observed at the poles of the sun ; they appear dark in
X-ray light, the gas density (4×1014 electrons m−3) as well as the temperature (≈ 1×106

K) are lower than in the surrounding area. The expansion is about 700 to 900 × 106 m.
The magnetic fields in the coronal holes are open and thus charged particles can escape
at high speed; this is the high speed solar wind. Before the minimum of the activity cycle
they cover the poles, near the maximum the polar holes shrink, and near the solar equator
smaller holes appear.

Other phenomena of the corona are arcs of active regions (“active region loops”), which
have an extent of about 107 m, temperatures of 2 − 4 × 106 K and an electron density of
1 − 7 × 1015 m−3 as well as X-ray bright points whose extent is 5 − 20 × 106 m, and T =
2.5 × 106 K and ρe = 1.4 × 1016 m−3.

At the time of the sunspot maximum, there are many bright coronal arcs (loops), at the
time of the minimum the Sun appears very faint in X-ray light.
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In the chromosphere and the corona the plasma follows the magnetic field lines
because of the low density.

7.4 The Space-Weather-Solar-Terrestrial Relations

We have discussed numerous phenomena on the Sun or in its atmosphere, where energetic
short-wave radiation or particles are released.

Under the term space weather we summarize their effects on the physics of the Earth
and near-Earth space, or in general their influence on the planets.

In the solar system these processes can be studied in detail and they are also of great
importance in clarifying the question of habitability of Exoplanets.

7.4.1 The Solar Activity Cycle

Sunspot counts are among the oldest scientific records ever. After the first telescopic
observations in 1610 by Galileo and others, interest in sunspots waned. The cause, as
we now know, was the fact that there were almost no sunspots, especially between 1645
and 1715 → Maunder Minimum.

The German amateur astronomer Samuel Heinrich Schwabe (1789–1875) wanted to
find planets within Mercury’s orbit, so he observed sunspots very carefully. He did not
discover an intramercurial planet, but he did discover the eleven-year sunspot cycle.
The Swiss astronomer Rudolf Wolf (1816−1893) then introduced the Sunspot relative

number R (“Zurich number”). Today the relative number R is defined as the mean
of observations from different observatories,5 and one forms monthly averages. The
Greenwich Heliophysical Observatory made records from 1874 to 1976, then the Debrecen
Heliophysical Observatory.

With the Sunspot cycle other solar activity phenomena also change, such as the
frequency of flares and CMEs.

5 SIDC Sunspot number, Solar Influences Data Center, Brussels.
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• Variation of CMEs: 1/day at minimum–6/day at maximum
• Solar wind

(a) Minimum: fast component (800 km/s) emitted almost all over the Sun, slow
component (400 km/s) in low latitude regions.

(b) Maximum: slow component becomes dominant; greater symmetry.

• Flares: the number of M and X flares, NM resp. NX , is correlated with the sunspot

relative number R, and one finds the following approximate formula:

NM = 2.86R NX = 0.23R (7.20)

Besides the variation with the activity cycle, there appear to be other cycles of flare
activity with periods of multiples of 24 days.

Other longe periods of solar activity are the Gleissberg cycle (about 90 years) as well as
the 22-year magnetic Cycle (Hale cycle).

7.4.2 Time Series, Period Analysis

Such periods can be analyzed by means of a power spectrum of relative numbers.
The power spectrum of a time series is essentially the square of its Fourier transform
(Chap. 17). Let us take a sine-function. This has a period, and the associated power
spectrum therefore has one peak. For a function with two periods, two peaks are found,
and so on. From the individual peaks in the power spectrum one can therefore conclude on
periods of a signal.

There are numerous programs for data analysis in the field of astronomy, which can
be downloaded from the internet. Especially widespread in the field of professional
astrophysics are IRAF, MIDAS, ANA and of course the programming language Python,
in which there are numerous ready-made astronomy packages. These are freely download-
able without license fees. IDL has a fee, but is very often used in the field of solar physics; a
demo version, which runs for about eight minutes without restrictions, can also be obtained
from the Internet. All mentioned programs work with a PC under Windows, Linux or
MacOS. As a good exercise try to download such a program and perform experiments
with power spectra.

To clarify the question whether the parts of the power spectrum at high frequencies are
periodic or not, one examines the underlying attractor. An attractor in the phase space is
a subspace of the phase space when, if t → ∞, is taken. One uses the correlation integral
to determine the fractal dimension of this attractor. A high fractal dimension means
Turbulence, Chaos. Periodic or multiply periodic systems have an integer dimension, the
value of which depends on the number of modes. If one has a low fractal dimension, then
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the system can be described with a few ordinary differential equations. Suppose the data
are given as time series:

x(t1), . . . , x(tn)

x(t1 + �t), . . . , x(tN + �t)

x(t1 + (d − 1)�t), . . . ., x(tN + (d − 1)�t)

Let x1 = [x(ti), x(ti +�t), . . . , x(ti + (d −1)�t)] a be a d-dimensional vector describing
a point in the d-dimensional space. So we can reconstruct an attractor from a scalar time
series in this way, from a single variable. The real attractor, which has generated this data
sequence, is of course embedding this d-dimensional attractor, if d → ∞. Therefore one
determines |xi −xj | for d = 1 and calculate the correlation integral of q-th order C

(q)

d=1(r).

Then one increases the dimension of the artificial phase space and calculates C
(q)

d=2(r).
This is repeated until of increase of the correlation integral does not change any more. The
Embedding theorem from Takens says that d ≥ 2n + 1 is sufficient, where n is the actual
but unknown dimension of the attractor.

This shows that one can arrive at a complete description of a physical system using a
time series.

7.4.3 The Solar Irradiance

Is the brightness of the Sun changing, and if so, what effect might this have on the Earth’s
climate?

Since 1979 the solar irradiance has been measured by satellites (ACRIM, ERBE,
SOHO, . . .). In principle, there are several components of its change, probably on different
time scales:

�S⊙
S⊙

=
�SS

S⊙
+

�SF

S⊙
+

�SN

S⊙
+

�SDO

S⊙
+

�SNM

S⊙
(7.21)

Thus, the solar irradiance changes go back to:

• �SS Spots;
• �SF flares;
• �SN network, this is seen well in Ca light; it coincides with the Supergranulation cells

(about 30,000 km diameter of each cell);
• �SDO caused by deep magnetic fields; these cause disturbances in the heat transport at

the base of the Convection zone and could show up as brightenings or darkenings at the
surface;

• �SNM non-magnetic origin.
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The Maunder Minimum

The American astronomer Douglass studied tree rings on felled trees around 1900 and
found that they had a specific pattern that was repeated at eleven-year intervals. Between
1645 and 1715 this periodicity disappeared. The English astronomer Maunder sent in 1922
Douglass a letter stating that virtually no sunspots were seen at that very period. Climate
records from this period revealed what is known as the Little Ice Age in Europe. That gives
you the context:

High solar activity → global temperature increase on Earth.

Since sunspots are more than 1000 K cooler than the surrounding photosphere, this at first
seems like a contradiction. Less energy is emitted in sunspots, but this radiation deficit is
overcompensated by enhanced radiation in the bright and hot flare regions.

A few years later Eddy found the connection between solar activity and the 14C-
Concentrations in tree rings. The sun emits electrically charged particles. But energetic
particles also reach us from sources outside the solar system (supernova explosions, the
nucleus of the galaxy, etc.). If the earth had no magnetic field, these particles would hit the
earth’s surface unhindered.

We are doubly protected from cosmic ray particles:

• Earth’s magnetosphere mainly protects us from cosmic ray particles, rays coming from
the sun itself.

• The magnetic field of the Sun extends into interplanetary space, as do solar wind
particles in this space, which is called the heliosphere. The Heliopause is located
at about 100 AU. In the area of the Termination Shock the solar wind particles are
decelerated from supersonic velocity of the particles to a velocity below the local
sound velocity of the plasma, i.e. from about 350 km/s to 150 km/s. The medium
is compressed, heating occurs. The medium compresses, heating occurs. Behind the
termination shock is the heliosheath, which has an extension of several 10 AU. At the
heliopause the influence of the solar wind ends. On 30 August 2007 Voyager 2 reached6

the Termination Shock, which was located at a distance of 84 AU. The distance of the
shock is determined by the solar activity.

The Solar Activity is linked to the Sun’s magnetic field: When activity is high, the density
of the interplanetary magnetic field is higher than when solar activity is low. Therefore,
when solar activity is low, more energetic fractions of cosmic rays can reach the Earth’s
atmosphere, where they then produce secondary particles and neutrons. When a neutron

6 Launched on 20 August 1977.
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collides with a nitrogen nucleus 14N the radioactive 14C isotope is produced. The plants
then take this up, and you can therefore measure from the 14C how much solar activity
there has been. However, the whole thing only occurs with a time delay (about 20 years).
Since year 1, the following minima or maxima have been found:

• Maunder minimum: 1645–1715,
• Spörer minimum: 1460–1550,
• Medieval maximum: 1100–1250 (unusually warm period, Greenland means green

land),
• Medieval minimum: 640–710,
• Roman Maximum: 20–80.

In addition to the eleven-year cycle, there is probably the approximately 90-year Gleiss-
berg cycle.

So we can use the following indicators (proxies) back into the past. :

• Relative numbers, spots;
• Cosmogenic isotopes: 14C; Be-isotopes .
• Polar Ice Drilling : The particles cannot move crosswise to the magnetic field lines and

preferentially arrive at the poles; thus the effects are greatest here.

So does the sun change our climate? Generally speaking Climate changes occur due to the
following causes:

• Circulation in the Earth’s atmosphere or in the oceans (cf. Gulf Stream); this is
related to the movement of continental plates over the course of Earth’s history (plate
tectonics).

• Mountain formation: Mountains and plateaus have great influence on climate; on the
side where winds rise you have precipitation, on the other side you have drought. Ex:
Andes: On the eastern slopes you have dense forests, on the western slopes deserts.

• Changes of the Earth’s orbit: Due to the interference of the other planets, the
eccentricity of the Earth’s orbit changes by 6% in a cycle of 100,000 years. The tilt
of the Earth’s axis changes by about 3◦ with a period of 41,000 Years.

• Greenhouse Effect: Since the beginning of industrialization around 1750, the CO2-
content in the earth’s atmosphere increased from 280 ppm to 360 ppm. But not only the
CO2 is responsible for the greenhouse effect, but also the methane content, which has
more than doubled. This greenhouse effect could raise the global temperature between
1 ◦C and 3.5 ◦C (associated with a rise in sea level of 50 cm, which would currently
affect 100 million people).
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Fig. 7.25 Reconstruction of the sunspot relative numbers. It can be seen that solar activity has been
increasing again since 1900 and that there are long periods of varying solar activity (according to
Solanki)

• Solar activity: at the time of maximum, the Sun is about 0.1% brighter, corresponding
to 1.3 W/m2. Studies have shown that a 0.1% change in solar radiation leads to a global
temperature change of 0.2 ◦C.

Since solar activity has been increasing overall since 1900, some of the temperature
increase could be caused by the sun. Note here the increase since 1900 in Fig. 7.25.
However, the observed increase in solar activity since 1900 is only sufficient to explain
the Earth’s temperature increase up to about 1970, i.e., the presently observed rapid
temperature increase since 1970 is certainly due to the anthropogenic greenhouse effect

(CO2-increase).
So in the long run, the sun certainly determines our climate.

Space Weather

The Earth’s magnetic field and the effects of the solar wind have already been discussed
in Sect. 6.3.3 also the effects of incoming particles (Van Allen belt, auroras).

Changes in solar activity can influence currents in the Earth’s atmospherere (GIC,

geomagnetically induced currents). These can cause surges in overhead power lines and
thus destroy transformers, paralyzing the power supply to large areas (this occurred in
Quebec in 1989). Geomagnetic activity is described by the K-, Ap and Kp index.

X-rays are produced during the eruption of a solar flare. This increases the ionization in
the Earth’s atmosphere, the ion density as well as the electron density increase. A sudden
ionospheric perturbation occurs, sudden ionospheric disturbance, SID). Radio signals are
already absorbed in the D layer of the atmosphere and radio communication is interrupted.
On the other hand, at the maximum of solar activity, higher frequencies are reflected in
the Earth’s atmosphere, increasing the range for RF transmissions. High-energy particles
from the solar wind cause the effect of bit reversal in computers, resulting in incorrect
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commands; satellites can get out of control. The Earth’s upper atmosphere is heated by
increased shortwave radiation during a flare, it expands, and near-Earth satellites can thus
be severely slowed and crash to the surface. Solar flares also pose a significant radiation
threat to astronauts.

That’s why people all over the world are now trying to predict what is known as Space
Weather. When and with which intensity is the outbreak of a solar flare or CME to be
expected? What precautionary measures can be taken?

7.5 Helioseismology

In the year 1962 it was discovered that the upper photosphere oscillates up and down
with a period of 5 min (5 minute oscillation.) In reality there is a superposition of many
oscillations. Waves wander into sun-inside, where temperature is much higher, and there
waves are reflected upward again (Fig. 7.26). The reflection at the solar surface occurs due
to the extreme decrease in density and temperature.

The sun therefore oscillates like a (resonant cavity). By studying different frequen-
cies, one can therefore detect different layers.

The propagation speed of sound waves is

v =
√

κRT/M (7.22)

κ = cp/cv, R = 8.31 J/(molK).

Fig. 7.26 Propagation of a
wave front into the solar
interior. Because of Ti > Ta

the speed of sound is also
greater there, and the wave
front is bent upwards
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Table 7.2 Absorption lines
and oscillations observed in the
centres of the lines

Line [nm] Element [nm] Period [s] v [km/s]

39.37 Ca II 150 2.00

656.28 Hα 180 1.34

516.87 Ni I 300 0.31

The most pronounced is the 5-minute oscillation. The higher the spectral lines originate
in the solar atmosphere (photosphere), the greater the amplitude of the oscillation. In
addition, the period (frequency) changes with altitude (cf. Table 7.2).

7.5.1 Mathematical Description

As will be shown in more detail in the chapter on stellar structure, one can start from
the equations of an equilibrium state of a star: In such a state of equilibrium one has
ρ = ρ0(r), P = P0(r),� = �0(r), v = 0 i.e. density, pressure and gravitational potential
depend only on the distance from the center r . If � the gravitational potential, v the
velocity of a fluid, Ŵ the ratio of the specific heats, then holds:

ρ
dv

dt
= − grad P + ρ grad � (7.23)

dρ

dt
+ ρ div v =0 (7.24)

1

P

dP

dt
=

Ŵ

ρ

dρ

dt
(7.25)

∇2� = − 4πGρ (7.26)

The first equation is the equation of motion, the second the equation of continuity, the third
the adiabatic equation, and the fourth the Poisson’s Equation. Now suppose one can take
any variable f in the form: f = f0 + f1 with

f1 = Re [exp(iωnlt)f̄1(r)Y
m
l (
, φ)] (7.27)

where Re is the real part and Y m
l (
, φ) the spherical function.

Ym
l (
, φ) = Pm

l (
)exp(imφ), (7.28)

where P m
l (
) is the associated Legendre function. If a star is spherical, then its oscillation

frequency does not depend on m. Only when the deviations from the spherical shape are
small do the above formulas hold. In the case of the sun one has different m-modes with
different frequencies. The oscillation frequency depends on l and n. The numbers n, l,
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Fig. 7.27 Oscillation modes of the sun

m indicate how often the function f1 in the radial as well as in the θ - and φ-direction
vanishes. Furthermore |m| ≤ l (Fig. 7.27).

In solving the system of equations one has the problem of boundary conditions. At the
center of a star, everything is clear. But stars do not have a defined surface. One could
simply assume that all waves are reflected back at the surface of the Sun (since there, by
definition P, ρ disappear). In reality, however, some energy is transferred outward into the
solar atmosphere.

If the changes in gravitational potential due to the oscillations are negligible, we have a
2nd order DE (differential equation). This is sufficient for most perturbations: certain parts
of the star move outward, other parts move inward. In the case of radial oscillations only,
a perturbation vector ξ may be introduced as:

v =
dξ

dt
(7.29)

and further:

� = c2
s ρ

1/2
0 div ξ (7.30)

Thereby cs is the speed of sound in the undisturbed star:

cs = (ŴP0/ρ0)
1/2 (7.31)
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The equation for the radial part is then simply:

d2�

dr2
= − 1

c2
s

[

ω2 − ω2
c − S2

l

[

1 − N2

ω2

]]

� (7.32)

We therefore have, in addition to ω the three frequencies:

• ωc acoustic cutoff frequency

ω2
c =

(

c2
s /4H 2

p

)

(1 − 2dHp/dr) (7.33)

• Sl Lamb frequency

Sl = cs[l(l + 1)]1/2/r (7.34)

• N Brunt-Väissälä frequency:

N2 = g

[

1

ŴP

dP

dr
−

1

ρ

dρ

dr

]

(7.35)

where the pressure scale height is given by:

Hp = |ρ/(dρ/dr)| (7.36)

and

g = GM/r2 (7.37)

It can be seen that: Sl is always real, ωc, N can become imaginary. If N2 becomes
imaginary, one has convection (chapter about star-construction!).

Equation 7.32 can be written as:

d2�

dr2
+ K2

r � = 0 (7.38)

• K2
r > 0: behavior of solution depends on radius.

• K2
r < 0: exponential behaviour, the modes fall exponentially (evanescent modes).

There are two domains where K2
r is positive:

• High frequencies ω > Sl , ωc: Then the pressure fluctuations become important, one
speaks of p-modes.

• Low frequencies ω < N : One speaks of Gravity mdoes (engl. gravity modes), g-modes.
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Sl, ωc, N depend on location in the sun. Sl decreases monotonously from center to surface,
N becomes imaginary in the Convection zone. The p-modes can propagate into the solar
interior up to the Lamb frequency, and at the surface they terminate at the acoustic cut off
frequency. The g-modes are absorbed or reflected in the convection Zone. Therefore the p-
modes can be observed more easily than the g-modes, because g-modes are exponentially
attenuated in the convection zone. The p-modes of smallest order (l) penetrate deepest into
the Sun. Together with the g-modes, they thus provide clues to the deep interior of the Sun.

The Sun is not strictly spherical: one must consider rotation and magnetic field. For a
rotating star, the oscillation frequency depends on m, each frequency ωnl thus splits into
the 2 l + 1 frequencies ωnml. From this rotational splitting, one can study how the Sun’s
rotational velocity changes in the interior.

7.5.2 Observational Results

The SOHO-MDI- the VIRGO instruments have been used to measure vertical velocities
propagating through the Sun. With VIRGO oscillations of the solar brightness were
measured. Figure 7.28 shows deviations from the mean rotation of the Sun (left) and
temperature deviations in the interior of the Sun (right). A temperature increase has been
detected at the transition zone between the convection zone and the radiation zone. At this
zone, called tachoclyne, also occurs a jump in the rotation speed of the sun:

• The interior rotates slower and like a rigid body,
• the outer layers rotate faster and differential.
• Therefore, shearings occur; these shearings cause the solar dynamo.

Fig. 7.28 Temperature deviations in the Sun (right), deviations from the mean solar rotation (left)
(NASA/ESA SOHO)
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Fig. 7.29 Course of solar
rotation at the surface
(differential, at r/R = 1); from
the so-called tachoclyne the
Sun rotates like a rigid body
(SOHO-MDI, ESA/NASA)

The zone in the centre of the sun, where the nuclear reactions take place, indicates that
this is 0.1% cooler than the assumed 15 million K. So possibly the sun is producing less
energy today.

With the Michelson Doppler Imager (MDI) on board SOHO, the rotation of the Sun has
also been measured. In Fig. 7.28, left, dark means faster rotation than average, light means
smaller. A band-like structure is found that rotates slightly faster than the surrounding area,
and this structure extends about 20 000 km into the depths. Sunspots form at the edges of
these bands.

In Fig. 7.29 results of SOHO-MDI observations are reproduced, showing the pattern of
rotation as a function of distance from the center of the Sun. At the solar surface (r/R = 1)
one can clearly see the differential rotation, i.e. higher frequency at the equator than e.g.
at 60◦ heliographic latitude. At the transition layer between the convection zone and the
radiation zone (tachoclyne) the solar rotation changes into a rigid rotation. This results in
strong shear in the tachoclyne region.

SOHO/VIRGO was used to measure the brightnesses of the Sun at various wavelengths.
The data can then be transformed into Fourier space and the power spectrum calculate.
This shows over which frequencies a signal is distributed. In the data one can see the
p-modes as well as the granulation and supergranulation.

Since February 2010 the NASA mission SDO (Solar Dynamics Observatory) has been
sending data. The EVE (Extreme UV Variability Experiment) can be used to obtain images
of the Sun every 10 s in the range 0.1 to 105 nm. With HMI (Helioseismic and Magnetic
Imager) one can determine the variation of the magnetic field, and with AIA (Atmospheric
Imaging Assembly) one gets an image every 10 s in nine different UV-ranges and at visible
range.

Objective of SDO: Evolution and formation of activity regions on the Sun.
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7.6 Magnetohydrodynamics of the Sun

The magnetohydrodynamics (MHD) studies the connection between magnetic fields and
plasma motions.

We give a brief overview with applications to solar physics.

7.6.1 Maxwell’s Equations

We want to give here briefly the basic equations. Starting point are the Maxwell’s
equations:

∇ × B =µj +
1

c2

∂E

∂t
(7.39)

∇.B =0 (7.40)

∇ × E = −
∂B

∂t
(7.41)

∇.E =
ρe

ǫ
(7.42)

B—magnetic induction, E—electric field strength, j—electric current density, ρe—electric
charge density, ǫ—dielectric constant, µ—magnetic permeability.

In astrophysics we assume ǫ, µ as constant and ǫ ≈ ǫ0 = 8.854 × 10−12 F m−1, µ ≈
µ0 = 4π × 10−7 H m−1 . Further it is to be noted that the properties of the plasma are
isotropic except for one exception: The thermal heat conduction κ is preferentially along
the magnetic field lines!

The simplified Ohm’s law is:

j = σ(E + v × B) (7.43)

In the case one has a plasma consisting of electrons and only one type of ions, then:

j =niZievi − neeve (7.44)

ρE =niZie − nee (7.45)

ni—Number of ions, ne—number of electrons, ve—velocity of the electrons. Zie—charge
of the ion, -e—charge of the electron.

In general, in almost all astrophysical cases one assumes that magnetic fields are
permanent and electric fields can be neglected.

There are no magnetic monopoles (∇B = 0). Electric fields are produced by
changing magnetic fields. Magnetic fields, which are generated by the displacement
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current 1/c2∂E/∂t are negligible. If one has a high current density j then magnetic fields
are generated (cf. 1st Maxwell equation). For a stationary medium holds:

∇ × B =µj (7.46)

∇ × E = − ∂B/∂t (7.47)

j =σE (7.48)

This gives the following equation insert (7.48 into 7.46 and then form the vector product):

∂B

∂t
+

1

µ0σ
∇ × ∇ × B = 0 (7.49)

and because of ∇ × ∇ × B = grad divB − ∇2B and divB = 0:

∂B

∂t
=

1

µ0σ
∇2B (7.50)

In Cartesian coordinates, one then obtains, e.g.:

∂Bx

∂t
=

1

µ0σ

[

∂2Bx

∂x2
+

∂2Bx

∂y2
+

∂2Bx

∂z2

]

(7.51)

The solution of this equation indicates how magnetic fields decay, along with the currents
they produce. One can estimate the approximate decay time:

τD = µ0σL2 (7.52)

L . . . within this distance the currents should change. From the DG 7.51 it also follows
that if at time t = 0 a field of the form Bx = B0exp(iky) is given, the equation is:

Bx = B0 exp(iky) exp(−k2t/µ0σ) (7.53)

λ = 2πk Is the wavelength of the spatial change of the field.
In the laboratory, the currents decay very quickly because the material has a low

expansion. In stars, one has a high conductivity as well as a large L. That is why there
is a fossil field here, which comes from the time of star formation.

7.6.2 Induction Equation

With the induction equation we describe how a magnetic field develops with plasma
movements.
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From 7.43 one eliminates E = j/σ − (v × B)/σ . Thus, Eq. 7.41 to:

∇ ×
1

σ
[j − v × B] = −

∂B

∂t

Since the velocities under consideration are small compared to c, one can use in 7.39 the
term 1/c2(∂E/∂t) omit and ∇ × B = µ0j (induction equation):

∂B

∂t
= ∇ × (v × B) + η0∇2B (7.54)

where η0 = (µ0σ)−1 is the magnetic diffusivity, σ the electrical conductivity.

• The ratio ∇ × (v ×B)/(η0∇2B) is known as magnetic Reynolds number Rm = l0v0/η0

.
• Diffusion ∼ η0∇2B.
• Rm ≫ 1 then one can neglect the diffusion → magnetic field is frozen in the plasma

and one can also write E = −v × B.

7.6.3 Plasma Equations

Now we can write down how plasma moves. Here the total derivative with respect to time
is composed of

• Space point fixed, time derivative, thus ∂/∂t

• Time point fixed, difference of velocity at different space points: v∇.
Therefore is the substantial derivative:

D

Dt
=

∂

∂t
+ v∇ (7.55)

One has the Mass continuity:

Dρ

Dt
+ ρ∇v = 0 (7.56)

The Lorentz force is given by :

FL ≈ j × B (7.57)

The Equation of motion of plasma becomes:

ρ
Dv

Dt
= −∇p + j × B + ρg + ρν∇2v (7.58)
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and thereby is: ∇p a pressure gradient, j × B the Lorentz force, ρg the force of gravity
(gravitational acceleration g⊙ =264 m s−2), ρν∇2v viscosity.

Furthermore, one still needs an energy equation. Into this goes the thermal conductivity.
For the corona, note:

κ⊥
κ‖

≈ 10−12
(7.59)

I.e. heat conduction occurs mainly along the field lines.
The magnetic force on a moving charge (v) is

F = qv × B (7.60)

If one has a magnetic field in a conducting fluid, then the force exerted by it is:

Fmag = j × B =
1

µ0
∇ × (B × B) (7.61)

(here we have Eq. 7.46 used). This can be written as:

Fmag = −grad (B2/2µ0) + B∇B/µ0 (7.62)

The two right-hand terms mean:

1. Gradient of an isotropic pressure,
2. Stress along the field lines.

Therefore, if one has a magnetic flux tube with the pressure Pi and if the pressure in the
surrounding medium is Po, then the equilibrium is:

Po = Pi +
B2

2µ0
(7.63)

P = RρT/µ... gas pressure. If holds Ti = To then it follows:

ρi < ρa (7.64)

So our flux tube is lighter than the surroundings and rises upwards, magnetic buoyancy.

There is a connection between the plasma and the fields:

• The plasma determines the motion of the magnetic fields (photosphere of the Sun); we
speak of frozen field lines.
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• The magnetic field determines the motion of the plasma (when the density of the plasma
is low, e.g. corona).

The speed of sound in a gas is:

cs =
√

γP/ρ (7.65)

Hydromagnetic waves propagate with the Alfvén velocity:

cH =
√

B2/µ0ρ (7.66)

7.6.4 Motion of a Particle in a Magnetic Field

Now let’s consider the motion of a single charged particle in an electromagnetic field;
q...particle charge; the equation of motion (Lorentz force) reads:

m
dv

dt
= q(E + v × B) (7.67)

If b is a unit vector, then we decompose the fields into two components:

B0 =B0b (7.68)

E =E‖b + E⊥ (7.69)

v =v‖b + v⊥ (7.70)

Since v×B0 = B0(v⊥ ×b) perpendicular to b, we get from the equation of motion above:

m
dv‖
dt

=qE‖ (7.71)

m
dv⊥
dt

=q[E⊥ + B0(v⊥ × b)] (7.72)

From the first equation, we immediately have:

v‖ = (qE‖/m)t + v‖0 (7.73)

So: the motion of the particles is parallel to the field lines. Particles of different charges
q move in opposite directions! The solution of the second equation results in a circular
motion around b with the Frequency |q|B0/m and the Gyration radius rg = mv⊥0/|q|B.
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Example

An electron has the Gyration frequency 1.8 × 1011(B/T) Hz and a gyration radius of
6 × 10−9(v⊥0/km s−1)/(B/T ) m.
If there is an additional non-magnetic force F normal to B then the result is a Drift velocity
of:

vDF = F × B/qB2 (7.74)

If F = mg, i.e. gravitation, then one sees that the Drift velocity is proportional to the ratio
m/q, i.e. the Ion drift is much larger than electron drift. This drift of particles in different
directions produces currents.
Now to understand understand Flares, one needs the concept of magnetic reconnection.

of Suppose two oppositely directed magnetic field lines are brought closer together by
plasma motion. When the field lines approach each other, the gradient becomes large, and
between them there is a neutral point where the field disappears. Dissipation now causes
reconnection of the field lines, and the plasma then moves in the opposite direction to the
original motion. This causes a release of magnetic energy in the vicinity of the neutral
point.

Solar Dynamo

The activity cycle of the sun can be explained with the dynamo theory. The starting point is
a poloidal field extending from pole to pole along the z-axis. Due to the differential rotation
of the sun (rotation is faster at the equator than at the poles, ω-Effect), the magnetic field
lines are wound up in the toroidal direction, and a toroidal field is formed (Fig. 7.30).
From the toroidal field, Coriolis force and convection again produce a poloidal component
(α-effect).

For the mathematical description the principle of mean field electrodynamics is used:
The magnetic induction and the velocity are divided into a mean and a fluctuating part
written:

B = B0 + b, v = v0 + u (7.75)

The average magnitudes B0, v0 change only slowly with time. u let be given, b shall be
found: Put above approach and get for the mean and fluctuating part:

∂B0

∂t
= ∇ × (v0 × B0) + ∇× < u × b > +η∇2B0 (7.76)
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Solar surface

Flux tube
Bipolar

group

Fig. 7.30 Principle of the solar dynamo. The ω-effect is the winding up of the field lines at the
equator due to differential rotation. A poloidal field is transformed into a toroidal one. Flux tubes
rise from the interior of the sun to the surface due to magnetic buoyancy and pierce the photosphere
forming a bipolar group. Due to the α effect (twisting of the field lines by convection and Coriolis
force) the toroidal field again becomes an inverted poloidal field

and:

∂b

∂t
= ∇ × (b0 × b) + ∇ × (u × B0) + ∇ × (u × b− < u × b >) + η∇2B (7.77)

η = 1/µ0σ—magnetic resistance, <>—mean value.

Corona Heating

The following energy densities can be given for the corona:

• Kinetic energy

Ekin =
1

2
mpnv2 (7.78)

with n = 1015 m−3 as particle density and v = 1000 km/s one obtains for the energy
density 8 × 10−4 J m−3.

• Thermal energy

Etherm = nkT (7.79)

with T = 106 K one obtains for the energy density 1 × 10−2 J m−3
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• Potential energy

Epot = nmpgh (7.80)

mp mass of the proton, h = 105 km The energy density is 5 × 10−2 J m−3

• Magnetic energy:

Emagn =
B2

2µ0
(7.81)

with 10−2 T the energy density is 40 J m−3. The magnetic energy dominates the corona.

Finally, we address the problem of Heating of the corona.

• Earlier idea: the solar surface (lower photosphere) is convective, sound waves are
generated there; these have an energy density of:

1

2
ρv2 (7.82)

Thereby ρ the density of matter and v is the velocity of the particles carrying the waves.
This energy is conserved as the waves propagate upward. As the wave moves into a
region of lower density (the density naturally decreases from the photosphere into the
corona), the wave will increase in amplitude. Eventually it will become a shock wave,
releasing its energy into the surrounding medium.

• MHD waves: Energy dissipation as soon as the Alfvén velocity cH is greater than
the local speed of sound cs is. Another possibility would be magnetic reconnection.
Magnetic field lines often enter the corona in large arcs, their foot points migrating
by convection. From the corona holes, which correspond to open magnetic field
configurations, the solar wind flows away. In the ecliptic plane, the typical velocity is
400 to 500 km/s. Ulysses was a space mission in which a probe was to study primarily
the poles of the Sun. To do this, the probe was first sent to Jupiter, where it received
the necessary gravity assist Got to get out of the ecliptic plane. To the great surprise
of solar physicists, it was found in 1995 (minimum solar activity) that there are also
coronal holes at the poles from which the solar wind flows off at up to 700 km/s.

• Spicules:

(a) Type I; amounts to T < 100,000 K, then cool plasma sinks back down,
(b) type II; amounts to T > 1,000,000 K, then hot plasma rises upward into the higher

corona. This has been established with HINODE satellite observations. In most
spicules, plasma heating occurs only up to about 100,000 K, but there are some
where the temperature rises to much higher values.

Heating causes the corona to expand → Solar wind.
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7.7 Further Literature

We give a small selection of recommended further reading.
An Introduction to Waves and Oscillations in the Sun, S. Narayanan, Springer, 2012
Magnetohydrodynamics of the Sun, E. Priest, Cambridge Univ. Press, 2017
The Sun from Space, K. Lang, Springer, 2008
The Sun, M. Stix, Springer, 2004
The Sun and Space Weather, A. Hanslmeier, 2006

Tasks

7.1 Compare the solar radiation on Venus with that on Earth!

Solution
FVenus
FEarth

= ESun
4πd2

Sun−Venus
/ ESun

4πd2
Sun−Earth

= 12

0.722 = 1.9

7.2 The sun loses about 3 × 10−14 M⊙/yr . How much of this does the earth absorb?

Solution

The earth takes the fraction
AEarth
A1 AU

= πR2
Earth

4πR2
1 AU

= (6×106)2

4(1.5×1011)2 = 4 × 10−9

and thus M = 8.8 × 109 kg/day. So the captured solar wind makes the Earth heavier by
almost nine billion kg per day. What simplifications have been made here?

7.3 Jupiter is about 5 times as far from the Sun as the Earth. How large does the sun
appear in Jupiter’s sky?

Solution

1/5 of the diameter in Earth’s sky.

7.4 Determine the kinetic energy of a proton in the solar wind and compare it with the
energy of a X-ray photon.

Solution

Ekin = 1/2mv2 = 1
2 (1.7 × 10−27) × 450, 0002 J = 1.7 × 10−16 J (Solar wind: v = 450

km/s). An X-ray photon at a frequency of 1018 Hz has an energy of E = hν = 6.626 ×
10−34 × 1018 J = 6.626 × 10−16 J Thus protons have an energy of the same order of
magnitude as X-ray photons and can destroy cells, for example.



302 7 The Sun

7.5 Calculate how long it takes the solar wind to reach the system Alpha Centauri (d =
1.33 pc) to reach.

Solution

1.33 pc = 3.9 × 1013 km and t = d/v = (3.9 × 1013) s/450 = 8.7 × 1010 s = 2700 years

7.6 Estimate the magnetic Reynolds number in an active region of the solar surface!
Typical values are: l0 ≈ 700 km, η0 = 1 m−2 s−1, v0 ≈ 104 m/s.

Solution

Rm = 7 × 109 ≫ 1, therefore magnetic field is frozen in the plasma.



8State Variables of Stars

In this section we deal with the determination of the most important properties or state
variables of a star: radius, temperature, mass, density, gravitational acceleration, chemical
composition, magnetic field and rotation. First, we briefly review the trigonometric
distance determination. Although the distance of a star is not a state variable characterizing
the star itself, its knowledge is necessary for the determination of other physical parameters
of stars.

8.1 Distance, Magnitudes

The apparent brightness of a star depends on its true luminosity and its distance. Thus,
although the distance of a star is not a quantity characterizing the star itself, it is important
for deriving other essential physical state quantities.

8.1.1 Apparent Brightness

How bright is a star? The brightness depends on:

• the true luminosity of the star,
• the distance of the star.

In antiquity the concept of magnitude classes, lat. magnitudo, was introduced. The
brightest stars called 1st magnitude stars, the faintest stars just visible to the naked eye
are then 6th magnitude stars.1

1 Because of light pollution in big cities you can only see stars up to about 3rd magnitude.

© Springer-Verlag GmbH Germany, part of Springer Nature 2023
A. Hanslmeier, Introduction to Astronomy and Astrophysics,
https://doi.org/10.1007/978-3-662-64637-3_8
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Table 8.1 Apparent
brightnesses Stars

Sun −26 .m8

Full Moon −12m

Venus −4 .m5

Sirius −1 .m6

Polaris +2 .m12

Faintest stars visible to the naked eye +6 .m0

Note Magnitude classes in astrophysics refer to stellar brightnesses and have nothing to
do with the size (diameter) of a star!
Sensory perceptions (eye, ear) are always proportional to the logarithm of the stimulus; this
is known as the Weber-Fechner law. To accommodate both the brightness scale of ancient
astronomers and Weber-Fechner law it was defined: Given are two stars with the apparent
magnitudes m1,m2. Let the intensity of their radiation be I1 respectively. I2. Then:

m1 − m2 = −2,5 log(I1/I2) (8.1)

I1/I2 = 10−0,4(m1−m2) (8.2)

m comes from the Latin term magnitudo. Furthermore, it was determined that for a
difference of �m = 1 the intensity ratio is 2.512. If �m = 2 then the intensity ratio
is 2.512 × 2.512 etc. To a �m = 5 corresponds to an intensity ratio of 100 (2.5125). This
scale can also be used to indicate very bright objects as the sun and the moon (Table 8.1).

One can also convert the astronomical magnitudes into the usual physical values: The
magnitudes depend on the spectral range—take, for example, the visual range, V, which
is defined around a central wavelength of 550 nm, then the following holds: The flux at
V = 0 is 3640 Jy, the dλ/λ = 0.16, where

1 Jy = 1.51 × 107 Photons s−1 m−2 (dλ/λ).
Let’s calculate how many photons arrive outside the Earth’s atmosphere (a) for a star

V = 0 and (b) V = 20.0.

Solution

(a) 1.51 × 107 × 0.16 × 3640 = 8794 × 106 photons m−2 ≈ 106 photons cm−2.
(b) At a brightness of V = 20 holds 10−0.4V = 10−8 and thus 10−8 ×1.51×107 ×0.16×

3640 = 8794 × 10−2 photons m−2 ≈ 10−2 photons cm−2.
How do you set the zero point of the scale? This is done using the international pole

sequence, a series of Stars around the celestial north pole.

Star magnitudes are given in magnitude classes. The larger this value, the fainter the
star.
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8.1.2 Distance

The annual movement of the earth around the sun leads to the stellar parallaxes.

A nearby star is seen at different angles against more distant background stars, so the
position of a nearby star in the sky shifts slightly with a period of one year.

The main objection to the heliocentric system was always that such parallaxes could not
be detected. Only in 1838 Bessel determined the parallax of the star 61 Cygni and Struve

those from Wega. The problem lay in the accuracy of the measurement, since all stellar
parallaxes are below 1′′. If a is the distance sun-earth and r the distance earth-star, then for
the parallax of a star is valid

π[rad] = a/r (8.3)

A star is located at a distance of 1 pc (1 pc = 206,265 AU), if its parallax is 1′′ is 1.

r[pc] = 1/π[′′] (8.4)

8.1.3 Absolute Brightness, Distance Modulus

As already mentioned, the apparent magnitude m of a star depends on the luminosity and
the distance:

m = m(L, r) (8.5)

The apparent brightness says nothing about the true brightness (luminosity).
Therefore one still has the term absolute brightness, M. The absolute brightness is

understood to be the apparent magnitude that a star would possess at a unit distance of
10 pc = 32.6 light-years.

Relationship between apparent and absolute brightness:

m − M = 5 log r − 5 (8.6)

The expression

m − M (8.7)

is called Distance modulus.
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Table 8.2 Absolute
magnitudes of various objects

Object Absolute brightness

Brightest galaxies −23

Supernova 1987 A −15.5

Globular cluster −10...−6

Brightest stars −9

Sun +4.79

Weakest stars ∼ 20

Table 8.3 HIPPARCHOS
parallax measurements of some
bright stars

Star HIP no. Brightness in V Parallax in ′′

Sirius 32349 −1.44 0.37931

Canopus 30438 −0.62 0.01043

Rigil Kent 71683 0.01 0.74212

Arcturus 69673 −0.05 0.08885

Vega 91262 0.03 0.12893

The absolute brightness of the sun is about 4.m8. At a distance of 10 pc it would
therefore be an inconspicuous star, just visible to the naked eye.

In Table 8.2 the absolute luminosities of some objects are given. Thus, a supernova at a
distance of 10 pc would shine much brighter than the full Moon.

Using the HIPPARCHOS satellite one could measure the parallaxes of 18,000 stars
with an accuracy of 10−3. The mission (carried out by the European Space Agency ESA)
took place between 1989 and 1993. A total of 120,000 astrometric and photometric data
were recorded (Table 8.3).

ESA’s GAIA (Global Astrometric Interferometer for Astrophysics, launch Dec. 2013)
mission measures parallaxes of more than 109 Stars in our Milky Way. Similar to the solar
satellite SOHO, GAIA was positioned at one of the Lagrange points in the Sun-Earth
system (in this case L2). The satellite measured each star about 70 times during the five-
year mission. The measurement accuracy for stars up to the 15th magnitude class is 20 µas
where 1 µas = 10−6 arcseconds. In April 2018, the DR2 catalog was released, covering
more than 1.7 billion stars.

The main objectives of the GAIA mission (see Fig. 8.1) were:

• Astrometry: accurate position determination, parallax determination, determination of
proper motion of objects.

• Radial velocity measurements of more than 100 million stars (brighter than 17m).
• Determination of important physical parameters such as mass, temperature.
• Accurate tests of general relativity (by measuring curvature of space).
• Discovery of exoplanets.

Other methods of determining the distance of stars are discussed in the following chapters.
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Fig. 8.1 The GAIA satellite. ESA

8.1.4 Bolometric Brightness

Stars do not only radiate in the visible range, but also e.g. in the UV, IR, X-ray range. The
measured luminosities in the visible spectral range are therefore too low. In order to get a
measure for the total radiation of a star, one introduced the term bolometric brightness.

The bolometric correction B.C. is used to correct for these missing amounts of energy.
The bolometric brightness refers to the entire spectrum.

Example The absolute brightness bolometric brightness of the Sun is 4.M87. The absolute
bolometric magnitude 4.M74.

The brightest stars reach −9M , the faintest +17M .
All magnitudes must still,be corrected for the amount of interstellar extinction.

The bolometric magnitude measures the total radiation of a star.
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8.2 Stellar Radii

In this section we address the problem of determining the true stellar diameters. Since the
stars are far away, it is very difficult to determine the angular diameters.

8.2.1 Basic Principle

An object with the true diameter D appears at a distance r at an angle 
:


 [′′] = 206, 265
D

r
(8.8)

This formula is valid only for small angles.
For the sun one determines the radius trigonometrically. The apparent solar diameter is

32′ and with the solar distance of r = 149 × 106 km one obtains the Solar radius to

R⊙ = 6.96 × 105 km (8.9)

For stars, the problem is to measure the extremely small apparent diameter as a conse-
quence of their large distance.

8.2.2 Stellar Interferometer

The starlight is directed into a normal telescope by two mirrors placed at a distance
D (several meters) apart (Fig. 8.2). Since stars are extended objects, albeit of extremely
small angular extent. For simplicity, let us imagine a stellar disk consisting of two halves
separated by a distance of α/2 from each other. The light passes through both mirrors. As
a result of the angular extent of the star, the wavefronts are inclined with respect to each
other by the angle �. Therefore, the following superpositions occur:

• First wave: comes, for example, from the left edge of the star. After reflection from the
two mirrors, the rays are combined, interference occurs, and amplification occurs when
the path difference is a multiple of the wavelength: � = n λ

D
.

• Second wave: comes from the right edge of the star. It forms with the first one an angle
of α/2. Thus again a Interference occurs.

Both systems amplify when

α

2
= n

λ

D
. (8.10)
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Interference pattern,

right and left stellar limb

Wavefront

right stellar limb

Wavefront

left stellar limb

Fig. 8.2 Schematic of the Michelson interferometer Michelson interferometer

As long as α ≪ � the star is also point-like for the interferometer. But as soon as

� = α =
λ

D
(8.11)

the interference system disappears. D, the distance between the two mirrors, can therefore
be varied until the interference system disappears. But from this then follows the angular
diameter α of the star. If one still knows the distance, then one has the linear diameter.

This type of interferometer is also called Michelson interferometer (Michelson, around
1920). There are also intensity interferometers.

8.2.3 Stellar Occultations by the Moon

The Moon runs in the course of time on an orbit slightly inclined to the ecliptic over the
sky. If the moon occults a star, a diffraction figure is formed by the diffraction of the light
at the moon’s edge, and due to the small but finite diameter of the star, it does not disappear
immediately behind the moon’s limb. Thus one can determine the diameter of a star, but
this is only possible for stars which can be occulted by the moon, i.e. which are located
along a narrow band around the ecliptic (Fig. 8.3).

Theoretically one could argue that such star occultations can also be produced
artificially at the telescope and so the diameter can be determined. The problem here,
however, is that as a result of the air turbulence in the Earth’s atmosphere, there are
constant changes in the position of the stars’s position, making measurements impossible.
In the moon-star system, on the other hand, the atmospheric conditions are the same for
both the lunar limb profile and the star at the moment of occultation.
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Fig. 8.3 Shortly before the
moon occults a star, there are
diffraction phenomena because
of the lunar limb and the
unevenness at the lunar limb
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8.2.4 Eclipsing Variable Stars

At least half of all eclipsing variable stars are double or multiple systems. If we lie in the
line of sight of a double star system, then it comes to occultations. A star 1 has a diameter
D and is eclipsed by a star 2 with diameter d orbiting with the velocity v. The whole system
has a relative velocity of V. If star 2 approaches the observer as a result of its orbit, then
one measures the following Doppler shift:

�λ1

λ0
=

V + v

c
(8.12)

If star 2 moves away because of its orbit, then:

�λ2

λ0
=

V − v

c
(8.13)

and thus:

�λ1 − �λ2

λ0
= 2

v

c
(8.14)

Consider, a binary star system as in Fig. 8.4, consisting of a large star 1 and a smaller
companion star 2.

If star 2 disappears behind 1, an occultation occurs (Fig. 8.4, 1’–4’), the brightness of
the whole system decreases. Similarly, if star 2 passes in front of star 1 as seen from us
(transit), the brightness of the system decreases. The time t1 is the time when star 2 starts
to cover star 1, at t2 it is completely in front of star 1 and so on. We therefore obtain for
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Fig. 8.4 Diameter determination in eclipsing variable stars. For 1 to 4, a transit occurs; for 1’–4’,
the smaller star is eclipsed by the larger one
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Fig. 8.5 Geometry of eclipsing stars

the diameters of the two components:

D + d = v(t4 − t1) (8.15)

D − d = v(t3 − t2) (8.16)

However, there are several uncertainties in this method:

• instead of circular, orbit is elliptical;
• star is not exactly spherical;
• surface brightness of stars is not uniform (cf. center to limb variation of the Sun);
• in reality both stars move around the common center of gravity.

In Fig. 8.5 it is shown that the inclination of the orbit must be very small in relation to the
line of sight of the observer, in order to observe occultation.

Interesting is the star Betelgeuse (α Ori), which is about 200 pc away and is a triple
system. The closest component orbits the main star in only 2.1 years, passing through
the widely extended Chromosphere of Betelgeuse (Fig. 8.6). On December 12, 2023,
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Fig. 8.6 α Ori with its inner
component

Chromosph.

the asteroid Leona will occult Betelgeuse. The extent of Betelgeuse varies between 290
million and 480 million km, so Earth’s orbit would fit comfortably within the star.

8.2.5 Speckle Interferometry

The Speckle interferometry technique uses short exposures of stars to eliminate the Seeing.
The turbulence of the Earth’s atmosphere has longer periods, so exposures are made around
1 ms and therefore images are obtained that are close to the resolution limit of a telescope.
If one has an unresolved point light source, then its image brightness depends on the
exposure time. In speckle interferometry the optimal integration time is ≈ λ1.2. If one
has longer exposure times, the image becomes blurred to a seeing disc (blurring) and is
about 1′′ large. If the exposure times are smaller than the coherence time tc ≈ 10 ms (in the
optical range, in the IR 100 ms), then we obtain a group of bright Speckles whose size is
approximately that of the Airy disk (r0).2 Thus, the influence of the atmosphere is frozen.
The speckles are distributed over an area of diameter λ/r0, the number of speckles is of
the order of the sub-apertures D2/r2

0 . The observed image I ′ is a convolution between the
true image and the so-called point spread function (PSF) of the telescope. This indicates
how an ideal point source of light behaves after passing through the telescope. In classical
spectral analysis one tries to restore the original amplitude, and in bispectral analysis one
also tries to restore the phases. One has thus (F stands for the Fourier transform):

F(I ′) = F(I)F (b) (8.17)

I—Original intensity distribution of the object, b—PSF of the telescope. High spatial
frequencies are not affected by the Earth’s atmosphere, but low ones are, and therefore
low spatial frequencies are disturbed by seeing.

2 Corresponds to the resolving power of a telescope.
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8.2.6 Microlensing

With the methods described above, radii can only be determined for relatively large
evolved stars (cf. HRD, Sect. 8.5). For small main sequence stars, the determination of radii
is difficult because their angular diameter is too small. Under the term Microlensing one
understands the deflection of light by an object according to the general theory of relativity,
which, however, does not lead to separate images as in the case of galaxies (multiple
images of a galaxy or quasar—due to lens effect of a n unseen galaxy lying between the
observer and the galaxy), but only to an increase in brightness. The lens moves through the
connecting line earth-star, and the latter changes its brightness analogously. The change in
brightness is symmetrical, and the event lasts a few weeks or months. By evaluating the
photometric light curve one can determine the diameters of the objects. Such events are
more frequent in double stars.

8.3 Stellar Masses

The Mass of stars is the most difficult to determine; however, it is a fundamental state
variable on which many other parameters depend: Stellar evolution, age of stars, nuclear
fusion, etc.

8.3.1 Kepler’s Third Law

Directly derivable is the mass only, if a star with a mass M1 has a companion with a mass
M2 so it is a double star or multiple system. One can also use exoplanets to determine the
mass of a star. The third Kepler’s Law reads:

(M1 + M2)

a3 U2 = const = 1 (8.18)

The units here are: mass M in solar masses, a the distance between star and companion
in AU and the orbital period U in years. We therefore get the mass sum:

M1 + M2 =
a3

U2
(8.19)

How can one now determine the necessary quantities a, U?

• Visual binary stars: both components observable, → a in AU once their distance is
known. Then follows the mass sum. The mass ratio follows from the analysis of the
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Fig. 8.7 Double star in which only one component is visible, but which clearly shows regular
variations (HIPPARCHOS)

absolute orbit, i.e., one must know the motion of the two components about their
common center of mass.

M1/M2 = a′′
2/a′′

1 (8.20)

• Only bright component visible: in most cases, however, the fainter component is not
directly observable and only the absolute orbit of the brighter component is known
(Fig. 8.7).

a1/a = M2/(M1 + M2) (8.21)

This is estimated according to a resolved and inserted:

(M1 + M2)

(

M2

M1 + M2

)

=
a3

U2
(8.22)

• Exoplanets: This can be simplified for extra solar planets where: M2 ≪ M1 and
therefore M2 + M1 ≈ M1.

• Spectroscopic binary stars: One does not see the double stars separatedly, but due to the
motion of the two components there is a periodic shift of the spectral lines due to the
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Fig. 8.8 Spectroscopic double
star (α Aur). The masses of the
two components are about 2.5
solar masses [HIPPARCHOS]

Doppler effect. Problem: Orbital inclination i is unknown. Let v is the orbital velocity
in the direction of the observer, then we get:
– a1 sin i, when only one spectrum is known;
– (a1 + a2) sin i = a sin i when both spectra are visible and only relative line shifts

can be measured;
– a1 sin i and a2 sin i when both spectra are visible and absolute shifts have been

measured (Fig. 8.8).
The problem is the orbital inclination i. From mathematics one has for the averaging
over the orbital inclinations i:

sin3 i = 0.59 (8.23)

– Spectroscopic eclipsing variability: Here is i = 90◦.

Overall, there are good mass determinations for only a few 100 stars.

8.3.2 Gravitational Red Shift

For stars with large gravitational acceleration, the relativistic red shift apply: Light consists
of photons of energy E = hν. One can attribute the photons a mass m (rest mass = 0):

E = mc2 = hν → m = hν/c2 (8.24)
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The photons did work against gravity, lose energy, which ∝ λ−1 and the light appears
reddened according to the classical derivation:
Gravitational red shift:

�λ

λ
=

GM

Rc2
(8.25)

Where R is the radius of the star. From this formula, we see that the relativistic red shift
is large for stars of large mass that are very compact (small R).

As an example, consider white dwarfs. These final stages of the evolution of stars below
1.4 solar masses are very compact; M ≈ 1 M⊙, R ≈ 0.01 R⊙; white dwarfs have a
relativistic red shift of is 10−4.

8.3.3 Microlensing

Microlensing can also be used for mass determination. There are several projects. One
of them is to find neutron stars and black holes using the Hubble Space Telescope. So
far, the masses of neutron stars and black holes are only known if they are companions in
a binary system. Masses of isolated neutron stars and black holes can be determined by
microlensing. For this purpose one regularly records star fields and

• examines them for symmetrical variations in brightness (in the case there occurs an
alignment of earth-neutron star or black hole—another star in thee field)

• make precise position measurements of the stars, astrometry.

To increase the probability of a microlensing event, one chooses dense stellar fields in the
Galactic plane, since the stellar density is high there.

Important: The mass of a star determines its lifetime and evolution.

8.3.4 Derived Quantities

Density is directly obtained from the mass and radius

ρ =
M

4π
3 R3 (8.26)
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Also one immediately gets the Gravitational acceleration of a star:

g = GM/R2 (8.27)

A first evaluation for many stars results in the following value ranges for:

• Mass: 0.2–60 M⊙,
• Radius: 0.1–500 R⊙.

Although there are several methods for determining stellar masses, their determina-
tion is difficult but extremely important because it determines the further evolution
of a star.

8.4 Stellar Temperatures

There are many different temperature terms. The values derived from the different methods
do not match exactly because stellar radiation does not behave exactly like that of a black
body.

8.4.1 Stars as Black Bodies

Here there are different definitions. Basically one assumes that the stars radiate like a Black

body, and then defines:

• Effective temperature: The temperature of a star that corresponds to the radiation from
a blackbody emitting the same energy per unit area as the star.

• Radiative Temperature: The temperature which corresponds to the radiation of a black
body in a narrow wavelength range.

• Color temperature: The Temperature corresponding to the radiation of a black body in
a spectral range (= color).

• Gradation temperature: The temperature whose intensity-wavelength curve at a given
wavelength has the same slope as that of the intensity curve of a black body.

• Wien’s temperature: Follows from the maximum of the intensity distribution.

For an A0-V star, one has (e.g. TF (500) is the temperature at a wavelength of 500 nm):
Teff = 9500 K TF (425 nm) = 16,700 K TF (500 nm) = 15,300 K.
The differences between these temperature terms indicate that the radiation of stars is

only to a first (but mostly good) approximation that of a black body.
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8.4.2 Other Temperature Terms

Temperature can also be defined in terms of kinetic temperature, or in terms of atomic
states of excitation and ionization.

• Kinetic temperature: From of the kinetic theory of gases we know that particles move
with the most probable velocity

vth =

√

2RT

µ
(8.28)

(R is the gas constant). This thermal velocity is also partly responsible for the width of
the spectral lines.

The thermal velocity of particles depends on the temperature and the particle mass.

• Electron temperature Te: Defined through the kinetic temperature of the electrons (note:
me = (1/1800)mp, electrons have only 1/1800 of the proton mass).

• Ionization temperature Tion: Results from the ratio of the number of atoms in different
ionization states (Saha formula, is a function of temperature and pressure).

• Excitation temperature Texc: The Boltzmann formula is used to obtain the relative
atomic numbers in different excited states (which depends on temperature).

• Band temperature: molecules generate dark bands in the spectrum due to their
rotational or vibrational transitions.

8.5 Classification of Stars, HRD

We now come to one of the most important diagrams in astrophysics. If we plot the
temperatures of the stars against their luminosities, we obtain the Hertzsprung-Russell
diagram, HRD.

Stars can be classified according to their line spectrum.

8.5.1 Spectral Classification

A single star spectrum is obtained when starlight is focused through a telescope and falls
on a spectrograph where it is split. The spectrum itself is recorded either photographically
or by CCD.

Angelo Secchi has introduced Spectral types around 1863. The classification still
in use today was introduced in 1910 by Annie Cannon. This is also known as the
Harvard Classification. Cannon herself classified 400,000 stars (Henry Draper catalogue).



8.5 Classification of Stars, HRD 319

Fig. 8.9 Spectra of the stars. Hydrogen lines are most prominent in A stars, the later the spectral
type, the more lines are visible in the spectrum (Copyright: KPNO 0.9-m Telescope, AURA, NOAO,
NSF, Princeton)

Originally stars were classified according to the strength of their hydrogen lines. The stars
with the strongest hydrogen lines were given the designation A and so on. Today one uses
a sequence of descending temperature and therefore the strange order:
O – B – A – F – G – K – M
These are simply remembered: oh be a fine girl (guy) kiss me. Further, one still subdivides
decimally. We briefly discuss the individual types (Fig. 8.9):

• O: The hottest stars, bluish, He-II lines; He-I lines increase from type O5; there are also
lines of Si IV, O III, N III, and C III. Balmer lines of hydrogen are present, but relatively
weak compared to the other lines.

• B: White-blue stars; He I dominates, no He II; the hydrogen lines become stronger;
Mg II and Si II. Very often they are surrounded by envelopes, which are noticeable by
characteristic shapes of the spectral lines (Fig. 8.10).

• A: White stars; H lines dominate; at A0 the strength of H lines is greatest; lines of
ionized metals (Fe II, Si II, Mg II). Ca II lines become stronger (Fig. 8.11).

• F: White to slightly yellowish stars, strength of hydrogen lines decreases, neutral metal

lines appear. Ca II H and K lines become stronger; neutral metals (Fe I, Cr I).
• G: Yellowish stars; Ca II dominates; at G2 the H and K lines of ionized calcium (Ca II)

are strongest; neutral metals become stronger, no more ionized metals (Fig. 8.12).
• K: Reddish stars; first appearance of molecular bands; neutral metals. Bands of TiO.
• M: Coolest, red stars; neutral metal lines strong, molecular bands dominant.

Since the radiation of stars conforms to a Planck curve to a first approximation, one has
problems at both ends of the spectral sequence:
For very hot stars the maximum of the intensity distribution is in the UV region, for very
cool stars it is in the IR region.
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Fig. 8.10 Stars with an envelope: formation of the characteristic line profile of the hydrogen line
Hα . The emission comes from the envelope, the displacement from its rotation

Fig. 8.11 Spectrum of the star Vega (A0)

Fig. 8.12 The line-rich spectrum of a G star

8.5.2 The Hertzsprung-Russell Diagram

In 1911 Hertzsprung established the most important diagram for stellar astrophysics. The
absolute brightness of the stars (corresponding to the true luminosity of the stars) is plotted
against their spectral type (Fig. 8.13). However, one must consider selection effects:

• If one creates a Hertzsprung-Russell diagram for stars in the solar neighborhood,
mostly faint stars are found there.
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Fig. 8.13 The
Hertzsprung-Russell diagram
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• If one generates such a diagram for bright stars, then obviously stars of large luminosity
are preferred.

→ Most important result: the stars are not randomly arranged in an HRD:

• Diagonally runs in the HRD the main sequence from top left to bottom right.
• On the upper left there are hot luminous stars,
• and on the lower right, cool stars of low luminosity.
• More than 90% of all stars fit into this main sequence. main sequence).
• Furthermore, the HRD shows that there are stars which are clearly above the main

sequence at a given temperature, but whose luminosity is higher.

So in the HRD, we plot: spectral type and luminosity of the stars. Since stars radiate like
black bodies in a good approximation, one can use the temperature instead of the spectral
type or even more simply the color or the color index of the stars. Color index (color index,

CI) is the difference of brightnesses:

color index = mshort wave − mlong wave (8.29)

The Hertzsprung-Russell diagram is fundamental in astrophysics. One plots the
temperature (spectral type, color) against the luminosity (absolute brightness) of
the stars.
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Standardized color systems have been introduced. Very often the UBV system is used:

• U stands for brightness in the near UV,
• B for brightness in the blue range,
• V for brightness in the visual range.

So one measures brightnesses with these filters and then simply speaks of a brightness in
U, B, V and often writes instead of mU , mB, . . . simply U,B, . . . For the spectral type A0
is defined : U − B = B − V = 0.

The color index C.I. is given by the difference of brightnesses in different wavelengths:

C.I. = mshort wave − mlong wave (8.30)

From the color index, one can immediately determine temperature; e.g., for B − V :

B − V = 7090
1

Teff
− 0.71 (8.31)

In Fig. 8.14 a Color-brightness diagram, CBD, is shown.
In Table 8.4 shows some photometric systems.
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Fig. 8.14 Hertzsprung-Russell diagram with color index B-V as the x-axis. This is called a color-
brightness diagram (CBD)
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Table 8.4 Photometric
systems

Designation Central wavelength [nm] Filter width [nm]

U 365 70

B 440 100

V 550 90

R 720 138

I 806 149

Z 900 –

Y 1020 120

J 1220 213

H 1630 307

K 2190 390

L 3450 472

M 4750 460

N 10,500 2500

Q 21,000 5800

What is the sign of U − B for our sun? Our Sun is a cool star with maximum intensity
at 550 nm. Therefore its brightness in U is lower than in B, lower brightness means higher
value for the magnitude class, therefore mU > mB → mU − mB > 0 → U − B > 0

An important parameter is the metallicity (abundance of metal), defined as

Fe/H = log
(Fe/H)Star

(Fe/H)Sun
(8.32)

Metal Poor Stars have a negative metallicity. A metallicity of −1 means that the object
shows only about 1/10 of the metal abundance in the spectrum as our Sun.

8.5.3 Luminosity Classes

The luminosity of a star is given by its surface 4πr2 and the Stefan-Boltzmann law σT 4
eff:

L = 4πr2σT 4
eff (8.33)

If a star has a much higher luminosity at a given temperature, then its surface area
must be larger, therefore it is called a giant star.

Temperature alone is not sufficient to define the location of a star in the HRD. Therefore,
a star of given temperature may be a normal main sequence star or may be above it; then
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it is a giant star. For this reason in 1937 the Morgan-Keenan luminosity classes have been
introduced:

• I: supergiants (Ia, Ib, Ic);
• II: bright giants (IIa, IIb, IIc),
• III: giants (IIIa, IIIb, IIIc),
• IV: subgiants, (IVa, IVb, IVc),
• V: dwarf stars (Va, Vb, Vc), main sequence stars.
• VI: subdwarfs.

In the HRD, therefore, above the main sequence on the right are the supergiants, below
them the bright giants, and so on. A G2 supergiant is 12.5 magnitudes brighter than our
Sun.

The absolute brightness of the Sun is 4 .m6; a supergiant of similar spectral type (G2)
at this distance would have a brightness of −7 .m9; for comparison, Venus reaches about
−4 .m5!

The next star is α Cen and has the same spectral type as our Sun (G2V). Its brightness
is V = −0.33 the distance is 1.3 pc, and the absolute magnitude is 4 .m5. The star Capella
(α Aur) is of the type a G8 III, has V = 0.09 and a distance of 14 pc. Its absolute brightness
is therefore −0.59. Here,V means the brightness measured in the visual band.

In Table 8.5 the characteristic state variables of the main sequence stars are listed.

The position of stars in the HRTD: main sequence stars (about 80% of all stars) in
the diagonal; hot, massive stars are on the left; cool, low-mass stars are on the lower
right.

Table 8.5 Characteristic state variables from main sequence stars

Spectral type Mass[M⊙] Luminosity[L⊙] Temperature[K] Radius Sun = 1

O5 40 7 × 105 40.000 18

B0 16 27 × 104 28.000 7

A0 3.3 55 10.000 2.5

F0 1.7 5 7500 1.4

G0 1.1 1.4 6000 1.1

K0 0.8 0.5 5000 0.8

M0 0.4 0.05 3500 0.6
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Fig. 8.15 The origin of the typical line profile a stellar envelope

Special features in the spectrum are indicated by:

• n: diffuse blurred lines; nn very diffuse; indicates rapid rotation of the star;
• s (sharp) sharp lines;
• e: emission lines (suggesting an extended envelope around the star from which these

lines originate) (Fig. 8.15);
• v (variable); spectrum variable;
• k (K line); strong interstellar Ca-II line;
• p (peculiar); any peculiarities in the spectrum. Here Metallic stars there are the Ap stars

or the Am stars (metallic line stars).

8.5.4 Balmer Discontinuity

In the so-called Paris classification one determines:

• D: Size of the Balmerdiscontinuity at λ = 370 nm. This results from the extended
continua in the short-wavelength and in the long-wavelength region of 370 nm.

• λ1: Location of the Balmer discontinuity = intersection of the registered continuum
with the parallel to the long-wavelength continuum through the bisector of the Balmer
discontinuity.

The Balmer discontinuity D does not occur at the theoretical series limit, but occurs earlier
because the higher order transitions converge. This happens earlier the higher the electron
pressure. Therefore D is determined by the temperature and thus defines the spectral type;
λD Is defined by pressure and is therefore characteristic of luminosity. Giant stars have
a very extended atmosphere and therefore low pressure, and their spectral lines appear
sharp.
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Another possibility of spectral classification is the narrow band classification,where
one measures the intensity within a narrow bandwidth (3–15 nm) at defined points in the
spectrum.

Objective prism spectra have only a low dispersion (≈ 50 nm/mm), and therefore one
uses as a criterion:

• Size and sharpness of the Balmer discontinuity,
• intensity of the Balmer lines,
• Ca-II line intensity.

8.5.5 Star Population and FHD

In astrophysics, all elements heavier than He are called Metals .

According to the metal content one distinguishes between two stellar populations:

• Population I: young Stars, 2−4 % heavy elements,
• Population II: old stars, low content of heavy elements (less than 1%).

We will talk about this later in the stellar evolution.
From the observational side, a color-brightness diagram, CBD, is still easier to obtain.

One plots color (a measure of temperature and therefore spectral type) against luminosity
(absolute brightness). To determine the color, one simply measures the brightness with
two different color filters (e.g., in the B and V filters, Fig. 8.16). In a two-color diagram

for example, one plots B-V against U-B. The result is a wave in the diagram. At A0 the
Balmer depression decreases, U becomes brighter, opposite to the temperature response;
at F5 the Balmer depression decrease predominates again. The influence of a reddening

Fig. 8.16 Determination of
the B-V brightness. Let a star a

have a temperature of 10,000
K, and the maximum of its
radiation, given by a Planck
curve, lies in the B region. A
second star b has the maximum
of its radiation in the V-range

In
te

n
s
it
y

B V
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Fig. 8.17 In the two-color diagram, the color index U-V is plotted against B-V. A possible reddeing
of the colors of the stars of a star cluster, caused by interstellar matter, is indicated

by interstellar matter has the effect of a shift in the diagram. Let us assume that we are
looking at a two-color diagram of the stars of a star cluster, which are practically all at
the same distance from us. Then the reddening due to interstellar matter affects all stars
equally and is shown in Fig. 8.17.

8.5.6 The Mass-Luminosity Relation

For main sequence stars there is a mass-luminosity relationship:

L ≈ M3.5 (8.34)

Thus, if we know the luminosity of a main sequence star, it follows its a mass.
The masses decrease along the main sequence from the top left to the bottom. Right
downwards.

From the position of a star in the HRD follows its temperature, luminosity and mass.
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8.6 Rotation and Magnetic Fields

Both effects are important for the activity of a star. In the spectrum, rotation is noticeable
by an elliptical line profile, magnetic fields also lead to a broadening (Zeeman effect).

8.6.1 Rotation

Solar rotation can be determined directly:

• by so-called tracers, e.g. migration of sunspots due to solar rotation, the equatorial solar
rotation velocity is vrot⊙ = 2 km/s,

• spectroscopically.

For some eclipsing binaries, one also proceeds by the spectroscopic method. If the right
or the left edge of the star becomes visible for a short time, there is a bump in the radial
velocity curve (Fig. 8.18).

Indirectly, the rotation of a star can only be determined from the width of its spectral
lines. This line broadening occurs because, in effect, one half of the star is moving toward
the observer (hence blue shift) and the other away from it (hence red shift). Rotating stars
provide an elliptical line profile. Again, of course, the inclination of the rotation axis is

Time

Radial Velocity

Observer

Fig. 8.18 So-called bump in the radial velocity curve of a star, when a component is close to before
or after total occultation
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Fig. 8.19 Line broadening;
thermal (left) and due to
rotation of a star (right)

Thermal Rotation

unknown, and we obtain (veq—rotational velocity at the equator):

veq sin i. (8.35)

If i = 0 then one looks at the pole of the star, and one observes no rotation broadening.
The limit for rotation follows from the condition:
Gravitational acceleration = Centrifugal acceleration.

GM

R2 =
v2

rot

R
vrot = 440

√

M/R km/s (8.36)

Rotation changes as stars evolve.

Protoplanetary disks slow down the rotation. The Spitzer-telescope;3 is equipped by a
0.85-m mirror, and one observes in the IR between 3 and 180 µm. It has been found
that young stars in the Orion Nebula region (a so-called star forming region) rotate more
slowly when there are protoplanetary disks around them that show up in IR radiation. Stars
without detectable protoplanetary disks on the other hand rotate more rapidly.

Stellar rotation (Fig. 8.19) influences stellar evolution and star formation.
There are already some 105 Stars whose v sin i is know:

• Early types, i.e. spectral type O, B, A, and early F: 50−400 km/s, i.e. high rotation rate.
• Late types, i.e. spectral type G, K, M: rotate slower, vrot sin i < 50 km/s
• Trend in HRD: rotation rate decreases with stellar mass; the lower the mass, the slower

stars rotate.

Rotation mixes elements or can explain anomalies; rotation affects stellar activity
(starspots, winds, ...). High rotation rates cause an outflow of stellar matter at the equator,
which accumulates in a shell (shell stars).

3 Launched 2003.
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Fig. 8.20 Principle of Doppler
imaging for the detection of
starspots. The starspot makes
the line profile appear less deep
(sketched below); rotation of
the star changes the position of
this bump

Continuum

8.6.2 Magnetic Fields

The direction of the angular momentum axis of the atoms is quantized; in the presence of
a magnetic field, the terms split → Line splitting, Zeeman effect.

By means of “Doppler Imaging” (Vogt, Penrod, 1983) we can detect stellar spots

as magnetically active regions. Let us take a stellar photospheric line which is Doppler
broadened by the rotation of the star. If a large starspot now moves across the stellar disk
as a result of the rotation, then this can be seen in the spectrum. Due to he spot

1. Continuum shifted down to entire line profile;
2. Component of the spot Doppler-shifted due to rotation.
3. Measured line: subtract 1−2; less light is subtracted at the point of Doppler shift.
4. → Bright “bump” due to spot in line profile (Fig. 8.20).

Another way to detect starspots is by using a technique called Zeeman Doppler imaging or
by observing eclipses of stellar spots in active binary stars. Many magnetically active stars
are close binary systems (close binaries), and one or both components rotate extremely
rapidly due to tidal interaction.

One can also see fine structures in the Balmer lines of hydrogen, which can be traced
back to matter motions in the stellar chromospheres or coronae → stellar prominences.

Here again the hydrogen line Hα is a useful proxy. This line originates in stellar
atmospheres usually in the chromosphere. The calcium lines (H and K lines) are also used
to determine the magnetic activity of stars: One measures their equivalent width.

Starspots, prominences etc. can only be detected by special spectroscopic tech-
niques.
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8.7 Peculiar Stars

We discuss here some special stars. First the particularly bright stars (bright therefore,
because they are either very close to or actually shine very brightly); then some special
types of stars, such as eclipsing variable stars, where there a Mass Exchange between the
components occurs.

8.7.1 Bright Stars

We give in Table 8.6 the brightest stars visible in the northern sky.
Compare in Table 8.6 the actual luminosities of the stars Deneb and Sirius! As a

measure of Luminosity we use the absolute Brightness.
m − M = 5 log r − 5, where r in [pc]. Deneb: m = 1.25 and r = 3227.7/326 =

990 pc → M = −8.73. Sirius: M = 1.43. Deneb is therefore 10.15 magnitudes brighter
than Sirius.

Table 8.6 Brightest Stars at north sky

Name Designation Brightness (V) Distance [Ly] Spectral type

Sirius α CMa −1.46 8.6 A1Vm

Arcturus α Boo −0.04 312.6 K1 III

Vega α Lyr 0.03 25.3 A0V

Capella α Aur 0.08 42.2 G5IIIe

Rigel β Ori 0.12 772.5 B8a

Procyon α CMi 0.38 11.4 F5IV-V

Betelgeuse β Ori 0.50 427.3 M1Ia

Altair α Aql 0.77 16.8 A7V

Aldebaran α Tau 0.85 65.1 K5III

Antares α Sco 0.96 603.7 M1I

Spica α Vir 0.98 262.1 B1III

Pollux β Gem 1.14 33.7 K0III

Fomalhaut α PsA 1.16 25.1 A3V

Deneb α Cyg 1.25 3227.7 A2Ia

Regulus α Leo 1.35 77.5 B7V

Bellatrix γ Ori 1.64 242.9 B2III
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Table 8.7 Some known
eclipsing binaries

Name, designation Distance [Lj] Period Variation

Algol, β Per 93 2d 20h 48m 2 .m3–3 .m5

Sheliak, β Lyr 1000 12.9 d 3 .m4–4 .m6

8.7.2 Algol and Eclipsing Binaries

Eclipsing variables like Algol Stars (eclipsing binaries) have already been mentioned in
the discussion of the methods for the mass- and diameter determination of stars. Algol4

is the second brightest star in the constellation Perseus (β Pers). Its name (Devil’s Star)
comes from the fact that it is variable (Table 8.7). It is a triple system; two components,
closely adjacent and occulting each other as seen from us, are orbited by a third far away. In
the Algol stars, the occulting components are still round, i.e., not deformed by gravitational
interaction; for the Beta Lyrae stars (named after the prototype β Lyr), the two components
are elliptically deformed. The data of β Lyr can also be found in Table 8.7.

In the spectrum of β Lyr one sees the continuum with emission lines of the B8 giant, an
absorption spectrum of the B5 star and an emission spectrum. In the B8 spectrum one sees
periodic Doppler shifts of ±180 km/s while the lines of the B5 spectrum show no shifts
and originate from the gas envelope.

The Roche sphere (Roche lobe) is the region around a star within which matter is
gravitationally bound to the star. In a binary star, one of the components may expand
over the Roche sphere → Matter outside the Roche sphere falls on the other star. The
point at which the Roche spheres of the two stars M1, M2 touch, corresponds to thereby
the Lagrange point L1 (Fig. 8.21).

For the β-Lyr stars, the B8 component fills the Roche sphere; the second component
is smaller and less luminous, but has the larger mass. Just before the occultation of the
B8 component, so-called satellite lines are produced, which are red shifted. These are
produced by the rotation of the gas disk (accretion).

For Algol stars, one component fills the Roche limit.
Narrow binary systems are classified as follows (Fig. 8.22):

• D, detached, separated systems; the two masses M1, M2 are much smaller than the
Roche interface.

• SD, semi detached, semi separated systems. One component extends to the interface.
• C, contact, contact systems, both components reach the interface.

The W-Ursae-Majoris stars are short-period contact systems.
One can estimate how large the mass transfer is by measuring the change in period.

4 al-gu-l, the demon.
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Roche sphere

Orbital plane
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Lagrange
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Fig. 8.21 The Roche boundaries around two stars M1, M2 where m1 > m2. As soon as one star
fills its Roche sphere (up to the point L1), mass transfer occurs to the other star

Separate double star system

Roche-Limit

Semi detached system

Contact system

Fig. 8.22 Kopal classification of close binary star systems. From Stars and Space
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8.8 Further Literature

We give a small selection of recommended further reading.
Astrophysics for Physicists, A.R. Chourdhuri, Cambridge Univ. Press 2010
An Introduction to Modern Astrophysics, B.W. Caroll, D.A. Ostlie, Cambridge Univ.
Press, 2017
Astrophysics—a very short introduction, J. Binney, Oxford Univ. Press, 2016
An Introduction to Stellar Astrophysics, F. LeBlanc, Wiley, 2010

Tasks

8.1 Calculate the absolute brightness of the sun: m = −26.7, distance of the Sun in pc =
1/206,265.

Solution

M = −5 log r + 5 + m = −5 log(1/206.265) + 5 − 26.7 = 4.87

8.2 Take a cool supergiant with T = 3000 K with a luminosity of 104L⊙. What is its
magnitude?

Solution

R∗ = 400 R⊙.

8.3 A galaxy has an absolute luminosity of −20M. How bright does it appear to us at a
distance of (a) 1 Mpc, (b) 1000 Mpc?

Solution

(a) 5m, (b) 20m.

8.4 Discuss which sign(s) the bolometric correction has.

Solution

Always negative.

8.5 Aldebaran (α Tau) has α = 0.023′′. The Distance d is 20.8 pc. Calculate the true
diameter.
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Solution

D = (1.1 × 10−7)(20.8 pc) = 2.3 × 10−6 pc = 7.2 × 107 km. Thus Aldebaran has 50
times the diameter of the sun.

8.6 Calculate the relativistic red shift for our sun.

Solution

�λ/λ = 10−6.
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The term stellar atmosphere is very broad: In principle, it is understood to mean those
layers of a star in which the spectral lines are formed. In our sun this essentially occurs in
the photosphere, (only 400 km thick) but also in Chromosphere and even in the Corona.

The physics of stellar atmospheres deals with the formation and interpretation of
spectra → qualitative and quantitative spectral analysis. First we want to sketch a quantum
mechanical description of the emission-absorption processes.

Important input parameters for the physics of stellar atmospheres are temperature and
gravitational acceleration.

The homogeneity of stellar atmospheres is no longer given as soon as one considers
e.g. center to limb variation or large spots. Magnetic fields or stellar winds also cause
anisotropy of the plasma. Let us consider two extreme cases:

Sun: Atmosphere (photosphere) very thin, plane-parallel approximation possible.
Super giants: Atmosphere extremely extended, so spherical models better.

9.1 Quantum Mechanical Description

In this section, we will give a brief overview of the quantum mechanical description of a
particle to understand the origin of the spectral lines, as well as the quantum mechanical
parameters to describe the electron configuration.

9.1.1 Description of a Particle

ψ(x, y, z, t) let be a complex function with which the state of a particle can be completely
described quantum mechanically.

© Springer-Verlag GmbH Germany, part of Springer Nature 2023
A. Hanslmeier, Introduction to Astronomy and Astrophysics,
https://doi.org/10.1007/978-3-662-64637-3_9
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The probability dw(x, y, z, t) of finding a particle at time t at the location r = (x, y, z)

is given in quantum mechanics by the absolute square of the Wave function:

dw(x, y, z, t) = |ψ(x, y, z, t)|2dV (9.1)

The normalization simply states that the probability of finding the particle anywhere must
equal 1:

∫

|ψ2|dV = 1 (9.2)

9.1.2 Schrödinger Equation

The classical energy is given by the sum of kinetic and potential energy:

E =
p2

2 m
+ V (r, t) (9.3)

In quantum mechanical description, one replaces energy and momentum by the operators:

E → ih̄
∂

∂t
(9.4)

p → −ih̄∇ (9.5)

The operator on the right-hand side of the Schrödinger equation is also known as the
Hamilton operator and denoted by H. With this the Schrödinger equation becomes

ih̄
∂

∂t
ψ(r, t) = Hψ(r, t) (9.6)

respectively:

ih̄
∂

∂t
ψ(r, t) =

h̄2

2 m
∇2ψ(r, t) + V (r, t)ψ(r, t) (9.7)

The Schrödinger equation is a non-relativistic equation. If one wants to understand spin,
for example, one needs the relativistic Dirac equation (it predicts, among other things, the
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Fig. 9.1 Hydrogen atom, in
the center is the proton, p+,
mass mp, surrounded by an
electron e−mass me

spin of the electron, and the existence of antiparticles1).

ih̄
∂ψ

∂t
=
(

cαp + βmc2
)

ψ (9.8)

And α =
(

αx , αy , αz

)

consists of 4×4-matrices and p = h̄
i
∇.

β =
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(9.9)

αy =











0 0 0 − i

0 0 i 0

0 − i 0 0

i 0 0 0
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0 0 0 − 1
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0 − 1 0 0











(9.10)

9.1.3 Wave Functions for Hydrogen

Only for the hydrogen atom, the Schrödinger equation can be solved analytically. Let us
use Polar coordinations r,
,� (Fig. 9.1). One separates the wave function in

ψ(r,
,�) = Rnl(r)Ylm(
,�) (9.11)

• radial solutions: Rnl →Laguerre polynomials. The square again gives the probabilities
at what distance one can find the particle.

• Ylm Spherical harmonics.

1 Discovery of the positron in 1932.
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The Laguerre polynomials are solutions of the Laguerre differential equation

x y ′′(x) + (1 − x) y ′(x) + ny(x) = 0 n = 0, 1, . . . (9.12)

And one finds :

L0(x) =1

L1(x) = − x + 1

L2(x) =
1

2
(x2 − 4 x + 2)

L3(x) =
1

6
(−x3 + 9 x2 − 18 x + 6)

resp. the formula of Rodriguez:

Ln(x) :=
ex

n!
dn

dxn
(xne−x) (9.13)

For the associated Laguerre polynomials the DE is:

z y ′′(x) + (k + 1 − x) y ′(x) + (p − k) y(x) = 0 (9.14)

where n = 0, 1, . . . k ≤ n, and one finds:

Lk
0(x) =1

Lk
1(x) = − x + k + 1

Lk
2(x) =

1

2

[

x2 − 2 (k + 2) x + (k + 1)(k + 2)
]

The formula of Rodriguez reads:

Lk
n(x) =

ex x−k

n!
dk

dxk
(e−x xn+k). (9.15)

In the radial part of the wave function one has then:

Rnl(r) = Dnl e
−κ r (2 κ r)l L2 l+1

n+l (2 κ r) (9.16)

Where Dnl is a normalization constant, κ a characteristic length and n is the principal
quantum number, l the orbital angular momentum quantum number.
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The spherical harmonic functions are defined as follows:

Ylm(θ, φ) =
1

√
2π

NlmPlm(cos θ)eimφ (9.17)

where Plm(x) are the assigned Legendre polynomials

Plm(x) :=
(−1)m

2l l!
(1 − x2)

m
2

(

∂

∂x

)l+m

(x2 − 1)l (9.18)

and Nlm are the normalization factors:

Nlm =

√

2 l + 1

2
·
(l − m)!
(l + m)!

(9.19)

For bound states, the solution to the Schrödinger equation is:

En = −
µZ2e4

8 h2ǫ2
0

1

n2 = −R
Z2

n2 (9.20)

For the transitions of an electron between two states n1, n2 (see Table 9.1), we find the
following wavelength of emission or absorption of a photon:

1

λ
=

1

hc

(

En1 − En2

)

= RH

(

1

n2
1

−
1

n2
2

)

(9.21)

Table 9.1 Hydrogen atom:
important transitions

Series ni nj λ

Lyman Lα 1 2 121.6 nm

Lβ 1 3 102.6

Lγ 1 4 97.3

Lδ 1 5 94.9

Balmer Hα 2 3 656.3

Hβ 2 4 486.1

Hγ 2 5 434.0

Hδ 2 6 410.2

Paschen Pα 3 4 1875.1

Pβ 3 5 1281.8

Pγ 3 6 1093.8

Pδ 3 7 1005.0
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RH the Rydberg constant. It holds

RH =
µ

me
R∞ =

(

MH

MH+me

)

R∞ (9.22)

and R∞ = 109,737.31 cm−1.
In addition to hydrogen, the universe also contains Deuterium, but only at about 2 ×

10−4 of the hydrogen abundance. The Rydberg constant for deuterium is:

RD =
µD

H
RH (9.23)

and the reduced masses are:

µH =
MH + me

mHme

µD =
MD + me

MD + me

(9.24)

and µH/µD = 1.00027. From this follows for the wave numbers of the Hα-line:

H: 15238.7 cm−1 D: 15233 cm−1.

9.1.4 Quantum Numbers

One has four quantum numbers:

• three quantum numbers give space geometry,
• the 4th quantum number the spin.

Thus:

• R(r) principal quantum number, n = 1, 2, 3, . . .

• 
(θ): orbital number, l = 0, 1, 2, . . . n − 1; identifies the Orbital angular momentum

of the electron, gives the shape of the orbital.
• �(φ): magnetic quantum number, −l,−l + 1, . . . , l − 1, l; 2l + 1 Values
• ms = ± 1

2 Spin quantum number.

In the field of IR spectroscopy the rotational quantum number J and the vibrational

quantum number v are important, and k describes the precession motion of a molecule
around its rotation axis. Furthermore, there is also the nuclear spin quantum number.

In IR spectroscopy, the excitation of the molecules plays an important role: they can
oscillate or rotate, but these states are quantized.
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Table 9.2 Quantum numbers and orbitals

Quantum number Character Range Designation

Main quantum number n 1,2,3,. . . K,L, M,. . .

Secondary quantum number l 0,. . . , n−1 s,p,d, f,. . .

Magnetic quantum number m −l,. . . , l

Spin quantum number s −1/2,+1/2

9.1.5 Electron Configurations

Pauli Principle In a Quantum Cell electrons must differ in at least one quantum
number. Therefore, all electrons in an atom distribute themselves to different states.

A summary is given in Table 9.2.
The principal quantum numbers define the shells; the minor quantum numbers define

the subshells.
Each shell can be occupied at most by 2n2 electrons, and one denotes the shells by K

(for n = 1), L (for n = 2), M (for n = 3), etc. The outermost shell determines the chemical
behavior (valence shell). The occupation is in this order:

1. 1 s
2. 2 s 2p
3. 3 s 3p
4. 4 s 3d 4p (Hund’s rule). . .

Electron configuration is important for labeling radiative transitions. Suppose there are five
electrons in the 2nd sub shell of the 2nd shell, then they are given as follows:

2p5

Where p stands for the 2nd subshell.

9.1.6 Hydrogen Fine Structure

The electron spin is a consequence of the relativistic treatment of quantum mechanics →
Coupling between Orbital angular momentum l and spin s⇒ total angular momentum j of
the electron.
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Schröedinger 

equation

without

spin

Relativistic

effects
Hyperfine

structure

(core)

n=1

I=0

∆En=10eV
∆EHFS=10-6eV

1s1/2 5.8 10-6eV
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F=1
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Fig. 9.2 Fine structure or hyperfine structure in the hydrogen atom.

Hydrogen: s = 1/2, therefore for l �= 0 : j = l ± 1/2.
Besides there is the hyperfine structure. Here the nuclear spin, i, must be taken into

account. Thus one has

f = j ±
1

2
(9.25)

Because of the nuclear spin, the ground state can be divided into two levels f = 0
resp. f = 1 can be split. The energy difference is only 6 × 10−6 eV and the transition
corresponds to a frequency of 1420.4 MHz or a wavelength of 21 cm (chapter on galaxies)
(Fig. 9.2).

9.1.7 Complex Atoms

For an atom with N electrons and charge number Z is the Schrödinger equation:





N
∑

i=1

(

−
h̄2

2me

∇2
i −

Ze2

4πǫ0ri

)

+
N−1
∑

i=1

N
∑

j=i+1

e2

4πǫ0|ri − rj |
− E



ψ(r1, . . . rN ) = 0

(9.26)

In the first sum stands the kinetic energy as well as the Coulomb attraction between
electron and atomic nucleus. In the second sum stands the expression for the repulsion
between electron-electron. This makes the equation no longer analytically solvable.
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Atomic ions containing the same number of electrons belong to the so-called isoelec-
tronic series.

A splitting of the spectral lines occurs trough2 interaction of the orbital angular
momentum of an electron with the spin. Because of the electron spin, the electron has
a magnetic moment. This is coupled to the magnetic moment of the nucleus → for one
spin direction the energy increases, for the other it decreases. → Increase of the number
of the Energy levels, hence more lines.

One distinguishes:

• light atoms (e.g. C): spin-orbit coupling, LS coupling (Russel-Saunders coupling).
Here the electrostatic interaction of all electrons is large compared to the spin-orbit
interaction of single electrons. Thus the spin-orbit coupling of an electron is broken,
and the total momentum is:

J =
∑

i

li +
∑

i

si (9.27)

• jj-coupling applies to heavy atoms. The electrostatic interaction of all electrons is small
compared to the sum of all spin-orbit interactions of individual electrons:

J =
∑

i

ji (9.28)

9.2 Excitation and Ionization

In this section we discuss the distribution of electrons/atoms among the different

• Excitation states: this leads to the Boltzmann formula,
• ionization states: this leads to the Saha formula.

This can then be used to explain why hydrogen lines are only faintly visible in very hot
stellar atmospheres.

2 Very well known: Splitting of the D line of Na.
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9.2.1 Thermodynamic Equilibrium

In thermodynamic equilibrium, TE, the internal energy is distributed uniformly by
collisions among all particles.

Example of a non-equilibrium: an extremely thinly distributed gas (e.g. interstellar matter);
collisions hardly occur there because of the low density; likewise in thin atmospheres
(corona of the sun, etc.).

Within TE one can calculate particle-speeds by the Maxwell distribution:3

F(v) =
√

2

π

(mM

kT

)3/2
v2exp

(

−
mMv2

2kT

)

(9.29)

Where F(v) is the distribution function of the velocities, mM is the particle mass, k =
1.38 × 10−23 JK−1 Boltzmann constant. The probability that a particle has a velocity in
the interval v1, v2 is calculated from

w =
∫ v2

v1

F(v)dv (9.30)

and the fraction of particles in a small velocity interval �v is approximately

f = F(v)�v (9.31)

The most probable velocity is obtained from the maximum of the distribution function,
i.e., one sets the derivative of Eq. 9.29 to zero.

vmax =

√

2kT

mM

(9.32)

The root mean square velocity is found from the kinetic theory of gases:

pV = 1

3
nMv̄2 pV = nRT (9.33)

3 1860 Maxwell, Boltzmann.
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Hence

√

v2 =
√

3kT

m
=
√

3RT

M
(9.34)

A doubling of the temperature increases the root mean square velocity by a factor of
√

2.
For the mean kinetic energy per particle we find:

Ekin =
3

2
kT (9.35)

Maxwell distribution is valid for thermodynamic equilibrium.

9.2.2 Boltzmann Formula

We assume thermal equilibrium. The average state of the atoms is not supposed to change.
Any excitation in which an electron jumps from a level A to a level B is compensated by
a transition from B to A, one therefore has equilibrium:

A → B = B → A (9.36)

NA, NB let be the number of atoms in state A and B respectively, where state B is said to
have a higher energy than A , B > A.

The Boltzmann formula gives the distribution over the different excited states.4

NB

NA

=
gB

gA

exp[(EA − EB)/kT ] (9.37)

g is the multiplicity of the level (statistical weight) and E is the energy. Please note:

1. NB/NA increases with increasing temperature
2. If the temperature is given, then the ratio NB/NA increases when EB − EA decreases

between two energy levels.
3. In plasma physics, one often computes with:

1eV

k
=

1.60 × 10−19 J

1.38 × 10−23 J/K
= 1604 K (9.38)

4 Ludwig Boltzmann, 1844−1906.
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4. Consider a volume of gas containing H and He atoms. Both atoms produce spectral
lines, but which lines are stronger? Let the number of H atoms in state 2 compared to
state 1 be N2/N1 = 1/10. The ratio N2/N1 for He, however, will be much lower, since
other (higher) excitation energies are required.

The strength of a line therefore depends on the element and the temperature T.

Let us examine the effect of temperature on the distribution of hydrogen atoms in a stellar
atmosphere in the ground state and in the first excited state.

1. Number of hydrogen atoms in the ground state N0, statistical weight g0 = 2.
2. Number of hydrogen atoms in the first excited state N1, statistical weight g1 = 8.

Further E1 − E0 = 10.2 eV, and from the Boltzmann formula

N1

N0
=

g1

g0
exp(−(E1 − E0)/(kT )) (9.39)

we get T = 3000 K:

N1

N0
=

8

2
exp

(

−
10.2 × 1.6 × 10−19

1.38 × 10−23 × 3000

)

=3 × 10−17

T =6000 K :10−8

T =12,000 K :10−4

Up to a temperature of about 10,000 K the intensity of the spectral line increases accord-
ing to this formula, which agrees with observations. However, at higher temperatures, it
must be taken into account that the ionization also increases!

9.2.3 Saha Equation

At higher temperatures, the atoms become ionized. Therefore, a hot gas consists of
neutral atoms, ions, and free electrons. The higher the electron density Ne the higher the
probability that an ion captures an electron and becomes neutral. Therefore, two processes
are relevant to the distribution among the different ionization states:

• Ionization
• Recombination
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If the rate of ionization equals the rate of recombination, then again we have equilibrium:

X ⇋ X+ + e− (9.40)

The Indian physicist Saha has established the equation named after him: Ni+1 is the
number of ions in the (i+1)-th ionization state, Ni the number of ions in the i-th ionization
state, χi is the ionization potential.

Ni+1

Ni
=

A(kT )3/2

Ne
exp (−χi/kT ) (9.41)

In A stand atomic constants as well as the partition function (degeneracy) resulting from
the statistical weights.

We consider N+/N0 for hydrogen as a function of temperature. It is found that below
7000 K most H is neutral. The ratio N2/N1 increases with T, but at high temperature T

there are no more neutral H atoms. The curve N2/N reaches a maximum at 10,000 K. The
transitions from n > 2 to n = 2 is called Balmer series. The strength of the Balmer lines
is greatest at T = 10,000 K.

The general form of the Saha equation is (ui partition function or degeneracy, Pe

electron pressure):

Ni+1

Ni
Pe = 2

ui+1

ui

(2πme)
3/2(kT )5/2

h3 exp
(

−
χi

kT

)

(9.42)

Written logarithmically:

log

(

Ni+1

Ni

Pe

)

= −χi
 +
5

2
log T − 0.48 + log

2ui+1

ui

(9.43)

Where Pe in dyn (1 dyn = 1 cm g s−2 = 10−5 N), χ in eV and 
 = 5040/T .
One can make a very simple estimate of the temperature of a stellar atmosphere.

Suppose a particular ion is very abundant, i.e., its associated spectral line is very strong.
Then its ionization potential becomes ≈ kT .

9.3 Radiation Transport

The transport of radiation is described by a transfer equation. This involves (i) emission,
(ii) absorption; both processes are described by macroscopic coefficients.
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9.3.1 Transfer Equation

Inside of a stellar atmosphere there is a flow of energy outwards. Energy transport is
possible in principle by:

• Heating, conduction,
• Radiation,
• Convection.

In radiative transfer, which is most important to the physics of stellar atmospheres, photons
are continuously absorbed and then re-emitted in all directions. As a result, less intensity
reaches the observer, and dark spectral lines are seen. What is important here is the
temperature gradient, the amount by which the temperature decreases with altitude. You
have lower and hotter layers radiating energy to the higher lying, cooler layers.

We now examine the main laws of this radiative transfer. The radiation field can be
described by the intensity Iν . In general, this also depends on the direction of the radiation.
The frequency dependence is described by the index ν. The radiation energy dEν that is
emitted in the frequency interval [ν, ν + dν] during the time dt through a perpendicular
surface dF into the solid angle dω is:

dEν = IνdtdFdωdν (9.44)

Note: In exact thermal equilibrium, the radiation is independent of the direction of
radiation, hence isotropic. The intensity distribution is then given by the Planck function:

Iν = B(ν, T ) (9.45)

Now we make a balance: what happens when the radiation passes through a thin layer of
matter of thickness ds (Fig. 9.3)?

→ Absorption: the change in intensity when passing through ds is:

dIν = −Iνκνds (9.46)

For this an Absorption coefficient κν is introduced. This has the dimension 1/L, L—
length, and is a function of chemical composition of the matter and of the degree of
ionization and excitation, i.e. of T and P (cf. Saha equation).

→ Emission: this causes an increase in intensity, and we introduce the Emission

coefficient ǫν :

dIν = ǫνds (9.47)

Again, this coefficient depends on temperature and pressure.



9.3 Radiation Transport 351

Fig. 9.3 Change in the
instensity I coming from the
stellar interior as it passes
through a layer ds. Absorption
changes the intensity to I − dI

d =1

I-dI

ds
I

If thermal equilibrium holds, then:

ǫν

κν
= B(ν, T ) (9.48)

which is known as Kirchhoff’s theorem. Note:

In general, a stellar atmosphere is not in thermal equilibrium, because this would
mean the same temperature for every depth T and isotropic radiation.

In reality, we observe a net outward radiation flux, and the temperature drops. If we
use the approximation for thermal equilibrium locally, then we speak of a LTE (local

thermodynamic equilibrium).
Now we complete the balance: The change of intensity dIν when passing through a

layer ds is equal to emission minus absorption:

dIν = −Iνκνds + ǫνds (9.49)

We divide this by ds: dIν

ds
= −Iνκν + ǫν .

One introduces the optical depth τν :

τν =
∫

κνds (9.50)
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Fig. 9.4 Relationship between
optical depth τ , geometric
depth t resp. geometricdepth s,
seen from an angle 


d

d sec ds

s

t,

I(0,I(0,0)

If one has only one absorption, it follows from 9.49

dIν = − Iνκνds

−
∫

dIν/Iν =
∫

κνds = τν

Iν =Iν,0e
−τν

Extreme cases:

• τν ≪ 1 optically thin,

• τν ≫ 1 optically thick.

Let’s estimate the thickness of the solar photosphere. The mean value for the absorption
coefficient is:5 κ̄ = 3 × 10−8 cm−1. For an optical depth of 1, according to the above
formula, the intensity falls to the (1/(e)-th part. Therefore, we find the thickness of the
photosphere �s from the relation

κ̄�s = τ ∼ 1

and thus �s = 300 km.
Let us go back again to our considerations about the radiation intensity. Let us assume

that our surface element dF forms an angle with the normal θ . The depth t and the path
distance s are related via (Fig. 9.4):

cos θ = −dτ/ds (9.51)

5 Averaging over all frequencies ν.
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Applying Kirchhoff’s theorem, we find:

cos θ
dIν(t, θ)

dτν

= Iν(t, θ) − Bν(T (t)) (9.52)

At radiative equilibrium, the radiative flux is independent of the depth t:

F =
∫ π

θ=0

∫ ∞

ν=0
Iν(t, θ)2π cos θ sin θdθdν = σT 4

eff (9.53)

At the stellar surface the incident radiation vanishes, i.e. Iν(0,
) for 0 < θ < π/2. The
solution becomes simple if one assumes that the absorption coefficient is independent of
the frequency: this is called as grey stellar atmosphere . One can also assume an averaged
absorption coefficient for example the Rosseland’s opacity coefficient:

τ̄ =
∫ t

−∞
κ̄dt (9.54)

9.3.2 Solutions of the Transfer Equation

The source function is:

Sν = ǫν/κν, (9.55)

With this the transport equation becomes:

cos θ
dIν

dτν

= Iν(τ, θ) − Sν(τ ) (9.56)

In American literature one often finds : µ = cos θ . To solve, substitute:

sec θ = 1/ cos θ τ/ cos θ = τ sec θ = ξ

and substitute this into the transgfer equation:

dI

dξ
− I = −S

Now we multiply this by the integrating factor e−ξ :

d(Ie−ξ )

dξ
= −Se−ξ dIe−ξ

dξ
=

dI

dξ
e−ξ − e−ξ I
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and we get

Ie−ξ = −
∫

Se−ξ ′
dξ ′

and therefore:

Ie−τ sec θ = −
∫

Se−τ ′ sec θdτ ′ sec θ

and finally

I = −
∫ τ

∞
S(τ ′)e−(τ ′−τ )secθdτ ′secθ

Let us now consider the most important case for us: radiation at the surface: Then τ = 0,
and we get (the ′ omitted):

Iν(0, θ) =
∫ ∞

0
Sν(τ )e−τν secθdτνsecθ (9.57)

So this is the intensity reaching the observer. If one looks vertically into a stellar
atmosphere (θ = 0), and the same temperature prevails (Sν independent of τν):

Iν = Sν

∫

e−τνdτν = Sν(1 − e−τν )

Now we can apply to this the two cases optically thick and optically thin:

• optically thick: τ ≫ 1, then e−τ = 1/eτ → 0 and you have Iν = Sν ;
• optically thin: τ ≪ 1, from e−τ = 1 − τ follows: Iν = Sτ τν .

The general solution of 9.57 can be integrated numerically. However, we study one
approach.

Eddington-Barbier Approximation

One expands the soruce function:

S(τ) = S(τ ′) + (τ − τ ′)
dS

dτ

∣

∣

∣

∣

τ ′
+

(τ − τ ′)2

2

d2 S

dτ 2

∣

∣

∣

∣

τ ′
+ . . .
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This is put into the formula 9.57, and obtains for the first two terms:

Iν(0, θ) =
∫ ∞

0

(

S(τ ′) + (τ − τ ′)
dS

dτ

)

exp−τ sec θdτ sec θ

= − S(τ ′)exp−τ sec θ

∣

∣

∣

∣

∞

0
+ (cos θ − τ ′)

dS

dτ

∣

∣

∣

∣

τ ′

and integrating term by term.

If τ ′ = cos θ is, then the second term disappears, and it follows:

I (0, θ) = Sτ=cos θ (9.58)

One can easily show that then the next term of the series expansion becomes a minimum.
We have therefore, to a good approximation:

The outgoing intensity is equal to the source function at the optical depth τ = 2/3.

This also provides a simple relation for the Center to limb variation .

Gray Atmosphere, Milne Solution

One replaces the frequency-dependent absorption coefficient with an appropriate mean
value, κν → κ , and then obtains:

cos θ
dI (τ, θ)

dτ
=I (τ, θ) − S(τ)

I =
∫ ∞

0
Iνdν S =

∫ ∞

0
Sνdν

The source function is then equal to S(τ) = J (τ) =
∫ ∫

I (τ, θ)dω/4π , i.e. the intensity
integrated over the sphere. With the conditions F+ = F,F− = 0 one obtains

S(τ) =
3

4π
F [τ + q(τ)] (9.59)

Where 1/2 ≤ q(τ) ≤ 1; q(0) = 1/
√

3 = 0.5774. In practice one calculates with:

q(τ) = 0.7104 − 0.1331exp−3.4488τ (9.60)


