
10Stellar Structure

In this chapter we cover the main equations describing the structure of a star. Furthermore,

we trace the evolution of stars in the Hertzsprung-Russell diagram. The Voigt-Russell

theorem states that the total stellar evolution is determined by the initial mass and the

chemical composition.

10.1 Basic Physical Laws of Stellar Structure

Only a few equations are needed to describe the internal structure of a star. We start from

the simplification that all physical parameters depend only on the distance r from the

stellar center. So, for example, we can describe the temperature inside the star by the

simple function T(r). We therefore think of stars as homogeneous, isotropic, unflattened

spheres of gas.

10.1.1 Hydrostatic Equilibrium

In a stable star gravity is balanced by the internal pressure:

Gravity (acting inward) = internal pressure (acting outward).

This state of equilibrium is called hydrostatic equilibrium.
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380 10 Stellar Structure

What happens if this equilibrium is not fulfilled? There are the two extreme cases:

• If the internal pressure falls away, the star collapses immediately as a result of gravity,

• without gravity, the star would expand.

We consider the simplest model of a star:

• Spherically symmetric gas sphere,

• homogeneous structure,

• the model should be static,

• no rotation,

• no magnetic fields.

From this follows: All physical parameters f depend only on the center distance r, thus

become f (r).

We briefly examine a case where such a simplification is not justified. The star Vega

(α Lyr) is an example of a rapidly rotating star: Prot = 12.5 Hours. Because of this

rapid rotation, the temperature on Vega is different: at the equator, about 7600 K, at the

poles about 10, 000 K. The star is oblate, and the poles are closer to the stellar center and

therefore hotter.

The theorem of Zeipel states

Teff ∝ g
1/4
eff

(10.1)

where geff is the effective gravitational acceleration, i.e. the actual acceleration reduced by

the effect of the centrifugal force .

Let r be the distance from the stellar center. Consider a thin shell of mass of thickness

dr at the position r in the stellar interior. The mass per unit area is ρdr , the weight

−gρdr . The weight is the inward gravitational force. The outward pressure is equal to

the difference between the pressure Pi of the side of the mass shell facing the center and

the pressure Pe:

Pi − Pe = −
∂P

∂r
dr (10.2)

Thus we have (Fig. 10.1):

∂P

∂r
= −gρ (10.3)
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Fig. 10.1 Hydrostatic

equilibrium

Fig. 10.2 On the derivation of

the mass continuity equation

Let us set for g = GM(r)/r2, then the condition for the hydrostatic equilibrium

(Eulerian form):

dP

dr
= −

GM(r)ρ(r)

r2
(10.4)

One can use instead of r is also the mass m inside the sphere with radius r as an independent

variable, and one obtains then the Lagrangian Form:

∂P

∂m
= −

Gm

4πr4
(10.5)

where m = M(r).

Within a shell of thickness dr the mass is dM(r) (Fig. 10.2):

dM

dr
= 4πr2ρ(r) (10.6)

This is known as Mass continuity equation and represents our second fundamental

equation describing stellar structure. If R is the radius of the star, then the total mass is:

M = 4π

∫ r=R

r=0

ρ(r)r2dr (10.7)

In Lagrangian form, the equation is:

∂r

∂m
=

1

4πr2ρ
(10.8)
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We estimate the central pressure Pc for the Sun. G = 6.67 × 10−11N m2/kg2; M⊙ =
1.989 × 1030 kg, R⊙ = 6.96 × 108 m. Equation 10.4 can be written approximately as:

dP

dr
≈

Psurface − Pc

R

and the pressure at the surface is Psurface ≈ 0.

From this, the mean density of the Sun follows to:

< ρ⊙ > = 3M⊙/4πR3
⊙ = 1410 kg/m3

Let’s set r = R⊙ and M(r) = M⊙ in the two basic equations, then we get:

Pc ≈ GM⊙ < ρ⊙ > /R⊙ ≈ 1014N/m2

Since 1 atm = 1.01 × 105 N/m2, we find Pc = 109 atm. Since the actual central density

of the Sun is greater, the central pressure must also be greater.

10.1.2 Equation of Motion with Spherical Symmetry

We again consider a thin shell of mass with dm at the distance r from the center. The force

fP per unit area results from Pressure gradients:

fP = −
∂P

∂m
dm

The gravitational force per unit area is :

fg = −
gdm

4πr2
= −

Gm

r2

dm

4πr2

Now, if the sum of both forces is not zero, then there is an acceleration of the mass shell:

dm

4πr2

∂2r

∂t2
= fP + fg

and by substituting and dividing by dm:

1

4πr2

∂2r

∂t2
= −

∂P

∂m
−

Gm

4πr4
(10.9)
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• If only pressure gradient → Outward acceleration , ∂P/∂m < 0.

• If only gravity → Collapse.

From 10.9 hydrostatic equilibrium emerges if ∂2r/∂t2 = 0.

Now we investigate deviations from hydrostatic equilibrium:

• We assume the pressure vanishes. This gives us the so-called free fall time τff . From

the equations

1

4πr2

∂2r

∂t2
= −

Gm

4πr4
g = Gm/r2 |∂2r/∂t2| ≈ R/τ 2

ff

we get the free fall time:

τff ≈

√

R

gρ
(10.10)

• Explosion time: Here gravity is turned off, and we get:

τexpl ≈ R

√

ρ

P
(10.11)

The speed of sound is the typical speed at which disturbances propagate in the stellar

interior. The speed of sound is given by:

vc ≈

√

P

ρ
(10.12)

Therefore τexpl is of the same order of magnitude as it takes a sound wave to travel from

the stellar center to the stellar surface (given by τs ≈ R/vc).

In general, the formula for calculating the speed of sound in an ideal gas with an

adiabatic exponent κ and molar mass M is:

c =

√

κ
P

ρ
=

√

κ
RT

M
(10.13)

Let us make a rough estimate of the speed of sound at the surface of the Sun, T =
6 × 103 K. For the molar mass, we set the value 0.029 kg/mol (actually the value for

air), κ = 1.4, gas constant R = 8.31 J mol−1K−1. We find 1500 km/s, which is very

close to reality.
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• The hydrostatic time scale is obtained by equating: τff = τexpl:

τhydr =

√

R3

GM
≈

1

2

1
√

Gρ̄
(10.14)

For our sun τhydr = 27 min. For red giants with M ≈ M⊙, R ≈ 100 R⊙ the hydrostatic

time scale become much longer: τhydr = 18 d. For a compact White dwarf on the other

hand with M ≈ M⊙, R = R⊙/50 we get a very short time scale of τhydr = 4.5 s.

Since in most cases the stars change on timescales that are very large compared to

τhydr the assumption of a hydrostatic equilibrium is justified.

10.1.3 General Relativity

Effects of general relativity become important in the case of very strong gravitational

fields: e.g. in the case of neutron stars. We will only sketch the derivation.

First, one starts from Einstein’s field equations which shows the relation between matter

(given by the so-called energy-momentum-tensor Tik) and space curvature (given by the

Ricci tensor Rik) and the metric tensor gik which describes the distance between two points

in space:

Rik −
1

2
gikR =

κ

c2
Tik κ = 8πG/c2 (10.15)

Einstein’s field equations:

Space-time geometry is on the left, energy/matter distribution is on the right.

Matter → Space curvature.

The metric tensor follows from the line element ds2, which describes the distance

between two points in space.

Example for line element in Euclidean space

ds2 = dx2 + dy2 + dz2 (10.16)

Since the line element follows in general from

ds2 = gikdxidxk (10.17)

one has in the Euclidean case:

all gii = 1, and gij = 0, if i �= j .
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R is the curvature scalar and follows from Rik. For an ideal gas the components of the

energy-momentum tensor are

T00 = ρc2; T11 = T22 = T33 = P (10.18)

Let us assume for the line element in polar coordinates:

ds2 = eνc2dt2 − eλdr2 − r2(dθ2 + sin2 θdφ2) (10.19)

From the line element we read the components of the metric tensor and from its

derivatives one can calcclate the Ricci tensor. After a long calculation we find the Tolman-

Oppenheimer-Volkoff (TOV) equation for hydrostatic equilibrium in general relativity:

∂P

∂r
= −

Gm

r2
ρ

(

1 +
P

ρc2

) (

1 +
4πr3P

mc2

) (

1 −
2Gm

rc2

)−1

(10.20)

If we consider not too strong gravitational fields, then one can derive as approximation:

One keeps in the expansion only terms which are linear 1/c2 are:

∂P

∂r
= −

Gm

r2
ρ

(

1 +
P

ρc2
+

4πr3P

mc2
+

2Gm

rc2

)

(10.21)

This is the Post-Newtonian approximation.

Fundamental to stable stars is the equation for hydrostatic equilibrium.

10.1.4 Equation of State

Our set of equations to describe stellar structure needs to be complemented by an equation

of state. Let us suppose that the gas in a star satisfies the laws for an ideal gas:

P(r) = n(r)kT (r) (10.22)

The pressure P(r) thus depends on the particle density n(r) (number of particles per m3).

k is the Boltzmann constant k = 1.381 × 10−23 J/K. One can also write:

n(r) =
ρ(r)

µ(r)mH
, (10.23)
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where mH = 1.67 × 10−27 kg is the mass of the hydrogen atom. The equation of state

of ideal gases is valid in the interior of the star as long as the interaction of neighbouring

particles is small compared to their thermal (= kinetic) energy. The Molecular weight µ is

equal to the atomic weight divided by the number of all particles (nucleus + electrons). If

we assume complete ionization, then the molecular weight µ becomes for :

• Hydrogen: number of particles 2 (one proton, p, and one electron, e−), therefore µH =
1/2.

• For Helium: 3 particles (2e−, nucleus), atomic weight = 4 (since in the nucleus 2 p and

2 n). Hence µHe = 4/3.

Very often one denotes with X the fraction of hydrogen, Y the fraction of helium, and

Z the fraction of elements heavier than helium (such elements are often called metals in

astrophysics). The average molecular weight is then :

µ = [2X + (3/4)Y + (1/2)Z]−1 ≈ 1/2 (10.24)

We therefore get following equation of state of ideal gases:

P(r) = ρ(r)kT (r)/µ(r)mH (10.25)

In the case of massive stars, the gas pressure is supplemented by the Radiation pressure

(by momentum transfer of the photons):

Prad(r) =
a

3
T 4(r) (10.26)

a = 7.564 × 10−16 J m−3 K4.

We estimate the central temperature of the sun. Using the values Pc and < ρ⊙ >:

Tc ≈
PcµmH

< ρ⊙ > k
= 12 × 106 K

Modern computer models provide a central temperature of 14.7 million Kelvin. At such

high temperatures, the gas behaves like a plasma. It consists of ions and electrons and is,

on the whole neutral.

The total pressure is then:

P = Pg + Prad (10.27)

Consider a gas in a volume dV, which is completely ionized by pressure. ne let be the

number of free electrons. The velocity distribution of the electrons is given by a Boltzmann
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distribution, their mean kinetic energy is:

Ēkin =
3

2
kT (10.28)

If (px , py , pz) are the coordinates in momentum space, then:

f (p)dpdV = ne
4πp2

(2πmekT )3/2
exp

(

−
p2

2mekT

)

dpdV (10.29)

Let us now assume that, ne remain constant and T decreases. Then the maximum of the

distribution function (pmax = (2mekT )1/2) shifts to smaller values of p, and the maximum

f (p) becomes larger, since ne =
∫ ∞

0 f (p)dp.

10.1.5 Degeneracy

The Fermions include particles with half-integer spin, such as electrons, but also other

elementary particles such as quarks and nucleons (protons, neutrons). For these particles

the Pauli principle states:

Each quantum cell of a 6-dimensional phase space.

(x, y, z, px, py , pz) (10.30)

must not contain more than two fermions, in our case electrons.

The volume of such a quantum cell is:

h3 = dpxdpydpzdV

So if we consider a shell [p,p + dp] in momentum space, then there are 4πp2dV/h3

quantum cells that contain no more than 8πp2dpdV/h3 electrons; therefore from quantum

mechanics follows the condition:

f (p)dpdV ≤ 8πp2dpdV/h3

The state in which all electrons have the lowest energy without violating the Pauli

exclusion principle is that in which all phase space cells up to momentum pF are occupied

by two electrons; all other phase space cells p > pF are empty:

f (p) =
8πp2

h3
p ≤ pF (10.31)

f (p) =0 p > pF (10.32)
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From this then to be derived:

nedV = dV

∫ pF

0

8πp2dp

h3
=

8π

3 h3
p3

F dV (10.33)

Thus, according to the Pauli exclusion principle, no more than two fermions differing in

spin quantum number can occupy the same energy state. This is also called gas degeneracy.

Because of the much lower mass, degeneracy occurs first in electrons. Thus, one may have

the case where the electron gas is already fully degenerate, but the ion gas is not yet. In the

case of degeneracy, the equation of state changes. In the case of complete degeneracy one

distinguishes between

• non-relativistic degeneracy, ρ < 2 × 106 g cm−3,

P = K1ρ
5/3 (10.34)

and

• relativistic degeneracy, ρ > 2 × 106 g cm−3:

P = K2ρ
4/3 (10.35)

K1,K2 depend on the chemical composition.

In the case of degenerate stellar matter, the density now depends only on pressure

and no longer also on temperature.

Degeneracy can be expected for certain stars and in some cases electrons in other cases

neutrons are degenerated: :

• Degenerate electrons: Red giants, white dwarfs.

• Degenerate neutrons degenerate electrons: Neutron Stars.

Degeneracy occurs at very high densities. Repulsion between electrons (neutrons) is

a consequence of quantum mechanics (Pauli exclusion principle) and not electrical

repulsion. In the case of degeneracy, the equilibrium condition is: Gravity = degenerate

pressure. If the star receives more matter (through accretion), gravity increases; however,

the degenerate pressure increases only slightly, and therefore the star shrinks.
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The greater the mass of a degenerate star, the smaller its volume and therefore its

radius.

10.1.6 Summary: Equation of State

We summarize for which physical parameters one has to calculate with which equation of

state:

• Photon gas—Radiation pressure: . ρ < 3.0 × 10−23µT 3; pressure P = 2.521 ×
10−15T 4.

• Ideal nondegenerate gas:

3.0 × 10−23µT 3 < ρ < 2.4 × 10−8µeT
3/2; pressure P = 8.31 × 107ρT/µ.

• Non-relativistic fully degenerate electron gas:

2.4 × 10−8µeT
3/2 < ρ < 7.3 × 106µe; Print P = 1.004 × 1013

(

ρ
µe

)5/3

• Relativistic fully degenerate electron gas (white dwarfs):

7.3 × 106µe < ρ ≤ 1011; Print P = 1.244 × 1015
(

ρ
µe

)4/3
.

• Degenerate neutron gas:

1011 ≤ ρ ≤ 1014; Pressure P ≈ 1010(ρ)5/3.

10.2 Energy Transport

How is energy transferred inside a star? In principle, energy transport is possible by energy

transport:

• thermal conduction,

• radiation,

• convection.

Heat conduction occurs through collisions. This type of energy transport works very well

in solids (especially in metals); but less well in gases because their thermal conductivity is

low.

10.2.1 Convection

Consider in Fig. 10.3 a bubble of gas that is supposed to move upward inside a star due to

a random disturbance. As this travels a distance dr, its temperature changes from T1 to T2.
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Fig. 10.3 Convection in a star.

If the temperature change

(T2 − T1) of an upward moving

gas bubble is smaller than that

of the surrounding (T ′
2

− T ′
1
), it

is lighter and rises further

upwards, and one has

convection

We assume here that during the ascent of the gas bubble there is no heat exchange with the

environment. Then the temperature change of the gas bubble can be given by the adiabatic

temperature gradient:

dT

dr

∣

∣

∣

∣

ad

(10.36)

The surrounding matter changes its temperature from T ′
1 to T ′

2, and the temperature

gradient is to be described by :

dT

dr

∣

∣

∣

∣

rad

(10.37)

that is, by the radiation gradient. For the occurrence of convection in a star therefore

applies the Schwarzschild criterion. If the temperature change of a volume element moving

upwards due to a random perturbation is |dT/dr|ad and if the temperature gradient of the

environment is equal to |dT/dr|rad then no convection occurs if holds:

∣

∣

∣

∣

dT

dr

∣

∣

∣

∣

rad

<

∣

∣

∣

∣

dT

dr

∣

∣

∣

∣

ad

(10.38)

In stars, convection occurs in different regions:

• Massive stars: the core is convective, the envelope is in equilibrium (Fig. 10.4, right).

This is related to the extreme temperature dependence of energy production in the core,

which implies a high radiation gradient. Convection in the core results in better mixing

of the elements.

• Low-mass, cooler stars (e.g., the Sun): the core is in equilibrium, and the envelope

becomes convective (Fig. 10.4, center). This is explained by the increasing number of

layers from the surface inwards, in which elements such as hydrogen or helium are

ionized, and therefore reduce the adiabatic gradient. In the case of the Sun, convection

begins about 200,000 km below its surface.
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Fig. 10.4 Convection in stars;

in stars with more than 1.5

solar masses (M > 1.5)

convection occurs in the core

region

The cooler the stars, the deeper the convection zone reaches! Stars with less than 0.5

solar masses are fully convective.

In the Centre of the Sun the temperature is about 15 million Kelvin, and at the surface it

is about 6000 Kelvin. In the radiative zone of the Sun, energy transport is by radiation.

The formula for this can be derived by assuming a diffusion approximation. The free path

length of the Photons lPh is given by:

lPh =
1

κρ
(10.39)

It is only a few centimeters, so the diffusion approximation is a reasonable assumption

(lPh ≪ R⊙).

The following estimate shows how long it takes for a photon to travel from the interior

of the Sun to the surface and be emitted: The total solar radius is made up of all the partial

distances li, therefore:

L =
∑

i

li = l1 + l2 + . . .

Since the partial distances are vectors pointing in arbitrary directions, holds:

< L2 > = < l2
1 > + < l2

2 > + . . . + < L2
N >

therefore we get:

< L2 > = N < l2 >

Now l ≈ 1 cm, < L >= R⊙ = 7 × 1010 cm and < L2 >≈ 1022 cm therefore N ≈ 1022

and from t = < L2 > /c = 3 × 1012 s = 105 years.
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Therefore, we now see photons (i.e., radiated energy) from the Sun produced by nuclear

fusion in its interior about 100,000 years ago!

Let us consider diffusion in general: a concentration n of particles is said to depend on

r. Let the mean free path length be l and its mean velocity v. Let j describe the diffusion

flux of particles from sites of high concentration to sites of low concentration:

j = −
1

3
vl

dn

dr
(10.40)

Now we put into this equation the parameters that describe our radiation field:

1. n → u = aT 4, radiation density,

2. v → c,

3. l → lPh,

4. j → Lr/4πr2, radiation flux.

One can immediately see dn/dr → du/dr = 4aT 3dT/dr; a = 4σ/c, and resolved by

the temperature gradient gives the diffusion approximation:

dT

dr
= −

3

64πσ

κρLr

r2T 3
(10.41)

One can also derive this equation by the following reasoning: Take a thin shell, where

the radiative flux is given by F(r) = σT 4(r). At the point r + dr one has a temperature

T + dT and the flux is F + dF = σ(T + dT )4 ≈ σ(T 4 + 4T 3dT ). dT is negative because

the shell of mass is cooler on the outside than on the inside. The flux absorbed inside the

shell is then:

dF = 4σT 3(r)dT (10.42)

This absorption comes from the Opacity (it describes quasi the transparency) of the stellar

material:

dF = −κ(r)ρ(r)F (r)dr (10.43)

On the other hand, the luminosity of the star is :

L(r) = 4πr2F(r) (10.44)
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and therefore

L(r) = −[16πσr2T 3(r)/κ(r)ρ(r)](dT /dr) (10.45)

An exact treatment still gives the factor 4/3:

L(r) = −
64πσr2T 3(r)

3κ(r)ρ(r)

dT

dr
(10.46)

If one has a high opacity, then convection becomes dominant. The gradient is then:

dT

dr
=

(

1 −
1

γ

)

T (r)

P (r)

dP

dr
(10.47)

where γ = cp/cv where cp, cV are the specific heat capacities at constant pressure and

constant volume, respectively.

Let us determine the luminosity of the Sun from radiative transfer. For this we

approximate dT/dr → −Tc/R⊙ and thus find the gradient −2 × 10−2 K/m. In the above

equation we then set r → R⊙, T (r) → Tc, ρ(r) → ρ⊙:

L⊙ =
9.5 × 1029

κ
J/s

Here we still have to define a suitable value for the opacity κ . κ is the effective cross-

section per gas particle multiplied by the number of particles in 1 kg. A mass of 1 kg

of completely ionized hydrogen contains 6 × 1026 protons and as many electrons. For

electron scattering, the effective cross section is 10−30 m2 for photoionization of hydrogen

10−20 m2; photoionization as a source of opacity predominates in the solar interior, one

has roughly:

10−3 ≪ κ ≤ 107

Thus our estimate is:

1022 ≤ L⊙ ≪ 1032 J/s

The mean value of 1027 J/s fits well to the measured value of 3.9 × 1026 J/s. This

corresponds to an opacity of 2.4 × 103.
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10.2.2 Opacity

The Opacity is a measure of the absorptivity in the stellar matter and therefore

essential for energy transport.

It is composed of several components, which will be treated briefly.

Electron Scattering Once an electromagnetic wave passes an electron, the electron

begins to oscillate and radiates. So the original radiation is attenuated, energy is transferred

to the oscillating electron, and there is → Absorption.

The equation of motion of an electron subjected to an electric field E is:

me

(

d2x

dt2
+ γ

dx

dt
+ ω0x2

)

= −eE (10.48)

γ is the damping constant. Electric field → excites electrons to oscillate.

Two limiting cases are obtained as solutions:

• ω ≫ ω0, γ → Electron moves like a free electron, Thomson effective cross section σT

σT =
8π

3

(

e2

4πǫ0mec2

)2

(10.49)

• ω0 ≫ ω, γ : Rayleigh scattering

σR = σT

(

ω

ω0

)4

(10.50)

so scattering ∝ ω4 or ∝ λ−4. In the Earth’s atmosphere blue light is scattered more than

red light. When starlight passes through an interstellar cloud, it becomes reddened.

The Thomson effective cross section is obtained as σT = 6.65×10−29 m2, and when there

are ne electrons in the unit volume, then the absorption coefficient is:

neσT (10.51)

It is found:

κν = 0.20(1 + X) (10.52)
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This Thomson scattering is independent of frequency, X is the fraction of hydrogen. This

treatment neglects the momentum exchange between electrons and radiation, but this only

becomes effective at very high temperatures. The momentum of the photons is hν/c, this

is then partially transferred to the electrons after scattering mev ≈ hν/c. The relativistic

correction (Compton scattering) is effective when ve ≈ 0.1c.

Free-Free Transitions The electron are in thermal motion due to the temperatures. If

such an electron now passes an ion, then the two charged particles can absorb radiation.

The thermal velocity of the free electrons is v ≈ T 1/2, and the time during which they

absorb or emit, ∝ 1/v ≈ T −1/2. Kramers derived the following relation:

κν ∝ Z2ρT −1/2ν−3 (10.53)

Using Rosseland’s mean, one obtains:

κff = ρT −7/2 (10.54)

If one has a fully ionized gas (stellar center), then it holds (Kramers):

κff = 3.8 × 1022(1 + X)[(X + Y ) + B]ρT −7/2 cm2 g−1, (10.55)

where B =
∑

i XiZ
2
i /Ai and Ai the atomic Mass numbers are.

Bound-Free Transitions Let us first consider bound-free transitions of a neutral hydro-

gen atom. In the ground state, the ionization energy is χ0 ; it is ionized by a photon of

energy hν > χ0. It follows, then:

hν = χ0 +
1

2
mev

2, (10.56)

where v is the velocity of the released electron. If aν is the absorption coefficient per ion,

aν = κνρ/nion then aν = 0, ν < χ0/h and aν > 0, ν ≥ χ0/h. One obtains aν ∝ ν−3

for ν ≥ χ0/h. The so-called Gaunt factor is a quantum mechanical correction and occurs

when the problem is treated exactly. Analogously, the matter continues for the first excited

state, aν = 0, hν < χ1 and aν ∝ ν−3 for hv ≥ χ1 where χ1 is the energy required to

ionize a hydrogen atom from the first excited state. This is why the jagged shape of the

absorption coefficient occurs.

Heat Conduction Like all particles, electrons can also transport energy by thermal

conduction. Normally, their contribution to the total energy transport is negligible. The

thermal conduction is proportional to the mean free path length l and in the non-degenerate

case lphoton ≫ lparticle.
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Heat conduction becomes important for degenerate stellar material, i.e. in the interiors

of far evolved stars as well as in white dwarfs. Here all quantum cells below the Fermi

momentum pF are occupied.

10.3 Energy Sources

Our sun has been radiating with almost unchanged luminosity for about 4.5 billion years.

The question arose where this energy comes from. We will first cover classical sources of

energy, such as the gravitational energy released during contraction, then nuclear fusion,

which is the source of energy for most of a star’s evolution.

A star continuously radiates energy. Therefore, stellar models are not static in the strict

sense. Stars evolve. Let ǫ(r) be the rate of energy production related to the unit mass (J/s

kg). In a strict sense ǫ also depends on T, P and the density, but for simplicity we write

ǫ(r). For stellar structure, we assume : ǫ = 0, except in the central regions where the

energy is produced by thermonuclear fusion.

For the Sun, we obtain:

ǫ⊙ ≈ L⊙/M⊙ = 2.0 × 10−7 J/s kg (10.57)

Inside a shell dr changes the luminosity by:

dL = 4πr2ρ(r)ǫ(r)dr (10.58)

In the following, we consider the various ways in which energy is generated.

Energy is released when the star contracts. Analogy: consider a rock falling to earth →
Gravitational energy is converted into kinetic energy.

Virial Theorem

When a star slowly contracts, gravitational energy is released

• half of which heats the star,

• the other half is radiated.

Suppose we add the fraction dM(r) to a mass M(r), then the change in gravitational

energy is:

dU = −
GM(r)dM(r)

r
(10.59)
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Let us integrate over all mass shells:

U = −
∫ M

0

G
M(r)dM(r)

r
= −q(GM2/R) (10.60)

Here q depends on the mass distribution in the sphere. If one has a uniform density, then

q = 3/5. For most main sequence stars we can use q = 1.5.

Let us do an exercise. How long can the sun shine by contraction?

We calculate with

E ≈
GM2

R
=

6.67 × 10−11(2 × 1030)2

7 × 108
= 4 × 1041 J

By comparison with Eq. 10.57: The Sun can only radiate at present luminosity for about

30 million years by releasing gravitational energy.

10.3.1 Thermonuclear Energy Production

Physical Preconditions

Prior to nuclear fusion process, the mass of the i nuclei involved would be
∑

Mi . After

fusion the resulting nucleus has a total mass
∑

Mp. The mass of the fused nuclei is less

than the mass of the original nuclei, and the missing amount, Mass defect, �M , is

�M =
∑

i

Mi − Mp (10.61)

This missing mass is converted into energy according to Einstein’s well-known formula:

E = �Mc2. (10.62)

If we consider as an example the Hydrogen burning. Here a helium nucleus is produced

from four hydrogen nuclei:

4 1H → 4He (10.63)

• The total mass of 4 1H amounts to: 4 × 1.0081mu.

• The total mass of a 4He-Kerns amounts to: 4.0029 mu.
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Therefore �m = 2.85 × 10−2 mu or 0.7 % of the total mass is converted, which

corresponds to an energy of 26.5 MeV. The following conversions are practical:

1 keV ≈ 1.16 × 107 K (10.64)

931.1 MeV ≈ 1 mu (10.65)

Let us apply this to the Sun. The Mass loss rate is L⊙/c2 = 4.25 × 1012 g s−1. So the

sun loses 4 million tons per second. Let’s assume that 1 M⊙ is converted into He, then

0.7 % corresponds to 1.4 × 1031 g that is converted into energy and → the sun could life

3 × 1018 s ≈ 1011 a.

Consider an atomic nucleus of mass Mnuc, mass number A, which contains Z protons

of mass mp and contains (A − Z) neutrons of mass mn. The binding energy EB is then:

EB = [(A − Z)mn + Zmp − Mnuc]c2 (10.66)

And the mean binding energy per nucleon f :

f =
EB

A
(10.67)

If one plots f vs. A, then one sees the following curve behavior:

• steep slope at the fusion of light elements,

• then flat slope up to the element 56Fe,

• flat decrease from the element 56Fe.

Accordingly, there are two ways to gain energy. Both have in common that the final product

after fusion has a higher binding energy per nucleon than the initial products:

• up to the element iron: by fusion,

• elements heavier than Fe: by fission.

In the fusion of hydrogen to helium, only 0.7% of the initial mass is converted to

energy.
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Let’s take a closer look at fusion. Between two particles, which are charged with the same

sign with the charges Z1e, Z2e (Z denotes the Nuclear charge number, the number of

protons in the nucleus) there is a Coulomb repulsion:

ECoul =
1

4πǫ0

Z1Z2e
2

r
(10.68)

One must bring the particles so close to each other that the short-range strong Nuclear

Forces dominate over the long-range but weaker Coulomb repulsion forces. In this case,

the interaction radius is:

r0 ≈ A1/31.44 × 10−15 m (10.69)

And the Coulomb barrier then results to

E(Coul) ≈ Z1Z2 MeV (10.70)

Inside the Sun, the temperature near the center is 107 K which corresponds to an energy of

about one keV. Classically, nuclear fusion would thus be impossible in the stellar interior

because of the too low temperatures. However, due to the Tunnelling effect1 particles of

lower energy can tunnel through the Coulomb barrier → fusion.

Nuclear fusion in the stellar interior can only be explained by the quantum

mechanical tunnel effect.

The probability that a particle tunnels through the Coulomb barrier is:

P(v) = e−2πη η =
1

4πǫ0

Z1Z2e
2

h̄v
(10.71)

→ strong temperature dependence of thermonuclear reactions!

The thermonuclear reaction rates depend on: Number of particles nj , nk , cross section

σ . The number of reactions per second is then nkσv and if there are nj particles are in the

volume, it is :

rjk = njnkσv (10.72)

1 G. Gamow, 1928.
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The Cross section depends on v . Under normal conditions, particle velocities are

distributed according to Maxwell-Boltzmann. Let the energy be

E =
1

2
mv2 (10.73)

and m = mjmk/(mj + mk) . . . reduced mass. In the interval [E,E + dE] we have thus:

f (E)dE =
2

√
π

E1/2

(kT )3/2
exp−E/kT dE (10.74)

The averaged reaction probability is:

< σv >=
∫ ∞

0

σ(E)vf (E)dE (10.75)

Let Xi is the fractional mass of the particles, i.e.

Xiρ = nimi

and Q is the energy released per reaction, then the energy generation rate:

ǫjk = 1

1 + δjk

Q

mjmk

ρXjXk < σv > (10.76)

where δjk = 0 if j �= k and δjk = 1 if j = k.

Another effect is shielding by free electrons. Beyond a certain distance, the incoming

particle senses a neutral conglomerate of a positively charged nucleus surrounded by a

cloud of free electrons. A nucleus of charge Ze causes polarization in its environment:

electrons of charge −e are attracted, and their density ne in the vicinity of the nucleus

is greater. The other ions are repelled, and their density ni is lower. We have therefore

deviations of the ne, ni from the mean values n̄e, n̄i . For the potential � we find:

� =
Ze

r
e−r/rD (10.77)

Here rD the Debye radius, which indicates the point at which the electrons start to shield

the potential of the core. If r → 0 then this potential changes to Ze/r. This also leads to

a reduction of the Coulomb interaction and increases the probability of tunneling through

the Coulomb barrier.

We now discuss the most important reactions. The superscript for the elements indicates

the mass number, i.e., the number of protons and neutrons in the nucleus. 2H is deuterium,

i.e. a nucleus with one proton and one neutron, an isotope of hydrogen.
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Hydrogen Burning The two hydrogen burning basic reactions are:

1H + 1H →2H + e+ + ν (10.78)

2H + 1H →3He + γ (10.79)

From here on, there are branching reactions:

• pp1:

3He + 3He → 4He + 2 1H (10.80)

• Further:

3He + 4He → 7Be + γ (10.81)

And from here, the branches:

• pp2:

7Be + e− →7Li + ν (10.82)

7Li + 1H →4He + 4He (10.83)

• pp3:

7Be + 1H →8B + γ (10.84)

8B →8Be + e+ + ν (10.85)

8Be →4He + 4He (10.86)

The Energy Production Rate ǫ of the pp process Is strongly temperature dependent and

given by :

ǫ ∝ ρT 5 (10.87)

Hydrogen burning dominates at temperatures between 5 and 15 × 106 K.
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CNO Cycle

Here, the carbon serves only as a catalyst. One has the following six reaction steps:

12C + 1H →13N + γ (10.88)

13N →13C + e+ + ν (10.89)

13C + 1H →14N + γ (10.90)

14N + 1H →15O + γ (10.91)

15O →15N + e+ + ν (10.92)

15N + 1H →12C + 4He (10.93)

Here the energy production rate is even more dependent on the temperature:

ǫCNO ∝ ρT 12...18 (10.94)

At lower temperatures, the pp chain predominates, and at higher temperatures, the

CNO cycle predominates (Fig. 10.5).

The nascent Positron e+ immediately annihilate with the electrons and radiate forming

γ quanta. The neutrinos ν have a very small interaction cross section and can pass the

star practically unhindered after their formation. In the process, they dissipate energy. In

the interior of the sun, the fusion of a 4He nucleus produces two Neutrinos, and a solar

neutrino flux on Earth results. One measures a neutrino flux of 1015 neutrinos per m2 per

second.

Fig. 10.5 Energy production

rates of pp and CNO reactions.

The energy production by the

CNO cycle predominates from

about 18 Million K onwards
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Helium Burning As soon as in the central region of the sun all hydrogen has fused into

helium, the thermonuclear reactions cease. The temperature is still too low for further

reactions to ignite. Only when it reaches 108, K by contraction (cf. virial theorem), helium

burning begins:

4He + 4He ⇋8Be (10.95)

8Be + 4He →12C + γ (10.96)

12C + 4He →16O + γ (10.97)

The first reaction produces a 8Be nucleus, which is unstable and decays after 10−1s . Only

if it reacts with a third 4He nucleus within this short lifetime, a stable nucleus 12C nucleus

is formed. High densities are necessary for this. Some 16O nuclei still react with 4He and

form 20Ne.

The energy production rate is:

ǫHe ∝ ρ2T ν (10.98)

with ν = 20 . . . 30.

Carbon Burning Once He is burned and the temperature has increased high enough,

carbon burning sets in at 5 × 108 . . . 109 K and the following reactions occur:

12C + 12C →24Mg + γ (10.99)

→23Mg + n (10.100)

→23Na + 1H (10.101)

→20Ne + 4He (10.102)

Oxygen Burning This starts at T = 1.4 × 109 K:

16O + 16O →32S + γ (10.103)

→31S + n (10.104)

→31P + 1H (10.105)

→28Si + 4He (10.106)

There are further reactions due to the capture of 1H and 4He.
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Silicon Burning From T ≈ 2 × 109 K many reactions occur, the most important being

the buildup of iron:

28Si + 28Si → 56Fe (10.107)

This brings us to the end of the nuclear fusion chain. Further fusions no longer release

energy, but consume it.

We can explain the formation of all elements up to Fe by thermonuclear fusion

processes in stellar interiors.

10.3.2 Neutrinos

As already mentioned, the cross section of neutrinos σν with matter is very small. With an

energy of Eν one has

σν = (Eν/mec
2)2 × 10−44 cm2

For neutrinos in the MeV range σν ≈ 10−44 cm2. This is by a factor 1018 smaller than the

cross section for interactions between photons and matter. For a density of ρ = nµmu
2

(let mean molecular weight be equal to 1), the mean free path length is:

lν =
1

nσν

≈
2 × 1020 cm

ρ
(10.108)

It follows:

• Normal stars: ρ ≈ 1 g cm−3 and lν = 100 pc. Even if the density ρ = 106 g cm−3

would be lν = 3000 R⊙.

• However, in a stellar collapse at the end of stellar evolution, the density can reach

nuclear values, ρ = 1014 gcm−3 and lν = 20 km. Some of the neutrinos are then

reabsorbed in the star, and one must take into account the energy transport of the

neutrinos.

2 mu = 1.67 × 10−24 g.
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Table 10.1 Thermonuclear

processes in which neutrinos

are released

1H + 1H → 2H + e+ + ν pp 0.263 MeV
7Be + e− → 7Li + ν pp2 0.80 MeV
8B → 8Be + e+ + ν pp3 7.2 MeV
13N → 13C + e+ + ν CNO 0.71 MeV
15O → 15N + e+ + ν CNO 1.0 MeV

Neutrinos can occur in different flavours (electron-, muon- and tau-neutrinos), in nuclear

fusion only the electron neutrinos are are important. A list of thermonuclear processes in

which neutrinos are released is given in Table 10.1.

Furthermore, there are other processes that lead to the production of neutrinos:

1. Capture of electrons by protons − this happens at extremely high densities; let Z is the

atomic number and A the atomic weight, then you have:

e− + (Z,A) → (Z − 1, A) + ν

(Z, A) means an atom with charge number Z and the atomic weight A.

2. Urca process: electron capture and beta decay occur:

(Z,A) + e− →(Z − 1, A) + ν

(Z − 1, A) →(Z,A) + e− + ν̄

3. Neutrinos by pair annihilation:

e− + e+ → ν + ν̄

This requires temperatures above 109 K.

4. Photoneutrinos:

γ + e− → e− + ν + ν̄

The analogue would be the scattering of a photon by an electron (Compton scattering).

5. Plasma neutrinos:

γplasm → ν + ν̄

Decay of a plasmon into a neutrino-antineutrino pair. The frequency of a plasma

depends on whether it is degenerate or not. For non-degenerate plasma one has:

ω2
0

me

4πe2ne

= 1 (10.109)
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and for degenerate plasma:

ω2
0

me

4πe2ne

=
[

1 +
(

h̄

mec

)2

(3π2ne)
2/3

]−1/2

(10.110)

If an electromagnetic wave of frequency ω passes through a plasma and K is the

wavenumber, then one has the following dispersion relation:

ω2 = K2c2 + ω2
0 (10.111)

The wave is thus coupled to the collective motions of the electrons, and only waves

with ω < ω0 can propagate. Multiplying the above equation by h/2π then you have

the square energy of a quantum, which behaves like a relativistic particle of rest energy

h/2πω0 called a Plasmon.

6. Neutrinos due to Bremsstrahlung. When an electron is decelerated in the Coulomb field

of a nucleus, there occurs emission of a photon, which in turn can decay into a neutrino-

antineutrino pair.

Nuclear fusion provides energy up to the element iron. These elements were formed

inside the stars. All elements heavier than iron were formed by other processes, such

as a supernova explosion.

10.4 Special Stellar Models

We consider two examples of simple stellar models, which help to simplify the extensive

numerical calculations help.

10.4.1 Polytropic Models

In these models we set the following relation between pressure P and density ρ:

P = Kργ (10.112)

K is the polytropic constant and γ the polytropic exponent. Often one uses the Polytropic

index n:

n =
1

γ − 1
(10.113)
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For a completely degenerate gas, this condition is satisfied by γ = 5/3, n = 3/2. Here

one can calculate K, in other cases this is a free parameter.

Another special case would be a star with constant temperature (isothermal star):

ρ = µP/(RT0)

Further special case: completely convective star. Here ∇ = ∇ad = 2/5(∇ stands for

temperature gradient), if one can neglect the radiation pressure and the star is completely

ionized. Thus

T ≈ P 2/5

and for an ideal gas with constant molecular weight T ≈ P/ρ. Thus one has γ = 5/3,

and K is also fixed again.

The first basic equation of the stellar structure can also be written as:

dP

dr
= −

d�

dr
ρ (10.114)

where � is the gravitational potential. Furthermore one has Poisson’s equation:

1

r2

d

dr

(

r2 dφ

dr

)

= 4πGρ (10.115)

If we use our relation for polytropic stars, then the basic equation is:

d�

dr
= −γKργ−2 dρ

dr
(10.116)

If γ �= 1then one can integrate this equation:

ρ =
(

−�

(n + 1)K

)n

(10.117)

At the surface � = 0, ρ = 0. Substituting this into the Poisson equation, we have:

d2�

dr2
+ 2

r

d�

dr
= 4πG

(

−�

(n + 1)K

)n

(10.118)
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Now define:

z = Ar A2 =
4πG

(n + 1)nKn
(−�c)

n−1

w =
�

�c

=
(

ρ

ρc

1/n
)

The Poisson equation then goes into the Lane-Emden equations:

d2w

dz2
+

2

z

dw

dz
+ wn = 0 (10.119)

1

z2

d

dz

(

z2 dw

dz

)

+ wn = 0 (10.120)

From this we find the radial distribution of density:

ρ(r) = ρcw
n ρc =

[

−�c

(n + 1)K

]n

(10.121)

For pressure we find:

P(r) = Pcw
n+1 Pc = Kρ

γ
c (10.122)

One can find a power series for w(z) and finds:

w(z) = 1 −
1

6
z2 +

n

120
z4 + . . . (10.123)

For the following cases there is an analytical solution:

• n = 0

w(z) = 1 −
1

6
z2 (10.124)

• n = 1

w(z) =
sin z

z
(10.125)
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• n = 5

w(z) =
1

(1 + z2/3)1/2
(10.126)

Otherwise, one has to solve the Lane-Emden equation numerically.

We consider a polytropic model with index 3 for the Sun, M = 1.98 × 1033 g, R =
6.96 × 1010 cm. From a table one takes for n = 3: z3 = 6.897 and ρc/ρ̄ = 54.18.

With ρ̄ = 1.41 g cm−3 it follows for the central density ρc = 76.39 g cm−3. Further more

A = z3/R = 9.91 × 10−11. From the relation

A2 =
4πG

(n + 1)K
ρ

(n−1)/n
c

follows K = 3.85 × 1014. Then from

Pc = Kρ
γ
c

the central pressure to Pc = 1.24 × 1017 dyn/cm2. We assume the following chemical

composition: X ≈ 0.7, Y ≈ 0.3. This gives an average molecular weight of µ = 0.62.

The central temperature follows from the ideal gas equation with Tc = 1.2 × 107 K. The

mass distribution is calculated from :

m(r) =
∫ r

0

4πρr2dr = 4πρc

∫ r

0

wnr2dr (10.127)

10.4.2 Homologous Equations

Very often one can solve problems in physics by starting from a known solution and

then performing a transformation. Here we compare different stellar models with masses

M,M ′, radii R,R′ and consider so-called homologous points at which holds:

r/R = r ′/R′ (10.128)

One speaks of homologous stars if holds m/M = m′/M ′ = ξ . The condition is then:

r(ξ)

r ′(ξ)
=

R

R′ (10.129)
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One introduces the following parameters: x = M/M ′; y = µ/µ′; z = r/r ′ = R/R′; p =
P/P ′ = Pc/P

′
c; t = T/T ′ = Tc/T ′

c ; s = l/ l′ = L/L′. Now one can construct

homologous main sequence stars:

dr

dξ
=c1

M

r2ρ

c1 =
1

4π

dP

dξ
=c2

ξM2

r4

c2 = −
g

4π

dl

dξ
=ǫM

dT

dξ
=c4

κlM

r4T 3

c4 = −
3

64π2ac

and:

dr ′

dξ
=c1

M ′

r ′2ρ′

[

x

z3d

]

dP ′

dξ
=c2

ξM ′2

r ′4

[

x2

z4p

]

dl′

dξ
=ǫ′M ′

[ex

s

]

dT ′

dξ
=c4

κ ′l′M ′

r ′4T ′3

[

ksx

z4t4

]

where ρ/ρ′ = d; ǫ/ǫ′ = e; κ/κ ′ = k. Thus, solving these equations yields multiple stellar

models at once.

10.5 Further Literature

We give a small selection of recommended further literature.

Stellar Structure and Evolution, R. Kippenhahn, A. Weigert, Springer, 1996

Stars and Stellar Processes, M. Guidry, Cambridge Univ. Press, 2019
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Stellar Interiors, V. Trimble, Springer, 2004

Introduction to Stellar Structure, W. J. Marciel, Springer, 2015

Tasks

10.1 At which point in the HRD are stars in hydrostatic equilibrium the longest?

Solution

Main sequence

10.2 Discuss why simplifications in stellar models are justified or what a consideration of

rotation, magnetic field would change in the models!

Solution

Stars evolve very slowly, so stat. Model; Rotation → Flattening, magnetic field →
Anisotropy, . . .

10.3 Derive the classical condition for hydrostatic equilibrium from the TOV equation!

Solution

The solution is very simple: c2 → ∞.

10.4 Calculate the escape velocity of a white dwarf of 0.5 solar masses!

Solution

The radius of the object is 1.5 Earth radii. The escape velocity is defined as ve =√
2GM/R and inserting the values yields ve = 3.7 × 106 m/s, i.e. about 1/100 of the

speed of light!

10.5 At what temperature does Compton scattering reduce opacity?

Solution

We first consider Wien’s law: hν = 4.965 kT , and as soon as T > 0.1mec
2/(4.965k), i.e.

for T > 108 K the Compton scattering becomes important.
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In principle, there are the following stages in stellar evolution:

• Protostar,

• pre-main sequence evolution,

• main sequence,

• post-main-sequence existence.

The most important physical quantity that characterizes stellar evolution is the mass. In

addition, the chemical composition plays a role. We have already mentioned the difference

between stars of populations I and II. Population II stars contain significantly fewer metals

(all elements heavier than He) than Population I stars.

11.1 Star Formation and Evolution

In this section we investigate the conditions under which a gas-dust cloud collapses. The

evolution towards a protostar is then shown. Furthermore, we discuss the evolution of our

Sun.

11.1.1 Protostars

Stars are formed by contraction from interstellar clouds consisting of gas and dust.

© Springer-Verlag GmbH Germany, part of Springer Nature 2023

A. Hanslmeier, Introduction to Astronomy and Astrophysics,

https://doi.org/10.1007/978-3-662-64637-3_11

413



414 11 Stellar Evolution

Based on the virial theorem mentioned above, we know that half of the potential energy

released during contraction is converted into thermal energy, i.e. it heats up the star, and

the other half is radiated.

Let us consider the collapse of such a gas cloud. Let the mass of the cloud be M, the

radius R, the total number of particles N, the mean particle mass m and the temperature T.

The gravitational potential energy is thus:

U = −const
GMNm

R
(11.1)

The value of the constant depends on the internal matter distribution in the cloud. The

kinetic energy per particle is on average:

Ekin =
3

2
kT (11.2)

and per unit mass

Ekin =
3

2

kT

µmu

. (11.3)

For a cloud of mass M is the kinetic energy thus given by Eq. 11.3, multiplied by the mass

M or Eq. 11.2, multiplied by the number of particles N; this cloud will then contract when

U > Ekin. (11.4)

This is called the Jeans criterion. The Jeans mass is:

MJ =
3

2

kT

Gm
R (11.5)

and from that the jeans density is obtained.

So only large masses can become gravitationally unstable.

We also see that especially cool regions of interstellar matter are relevant for star

formation, otherwise the kinetic energy becomes too large.

In Fig. 11.1 protoplanetary disks in the Orion Nebula are shown.

One can also estimate how long it takes for a gas envelope that is not in hydrostatic

equilibrium to collapse. Let us assume �Ekin = �U (Virial theorem) and

1/2(dr/dt)2 = Gm0/r − Gm0/r0,
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Fig. 11.1 Formation of protoplanetary disks in the Orion Nebula

then we find for free fall time:

tff =
∫ 0

r0

(dt/dr)dr = −
∫ 0

r0

dr
√

Gm0/r − Gm0/r0

x =r/r0

tff =[r3
0/(2Gm0)]1/2

∫ 1

0

[x/(1 − x)]1/2dx

x = sin2 


tff =

√

3π

32 Gρ

(11.6)

Before the temperature in the interior of a star is great enough to ignite nuclear reactions,

one speaks of a Protostar or pre-main sequence evolution. The evolutionary paths for

protostars in the HRD depend on their mass. There are four stages:

1. Collapse in free fall—particles do not collide with each other during free fall, internal

pressure is zero.

2. The core regions collapse faster than the outer parts.

3. Once the core is formed, accretion from the shell occurs.

4. Only when the material surrounding the core is gone (due to radiation pressure) does

the star become visible.
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Fig. 11.2 Evolution of two

protostars with (a) 1 M⊙ and

(b) 10 M⊙ (dashed) to the main

sequence. For case (a) the

evolution takes 50 million

years, for case (b) only 200,000

years M
ain sequence, Z

A
M

S

Helmholtz Kelvin

Contraction Free fall

Hayashi Limit

11.1.2 Collapse of a Sun-Like Star

We assume an interstellar cloud of sufficiently high mass. Collisions occur between the

molecules during the collapse phase, and the dust radiates in the IR. This radiation can

escape, and the cloud initially remains cool. But when the density of the core exceeds a

critical value, then it becomes opaque (optical depth greater than 1)—the collapse of the

core slows down, you have hydrostatic equilibrium, and a pre-main sequence star evolves.

It takes a million years to get to this point. The luminosity of a star is given by:

L = 4πR2σT 4 (11.7)

In Fig. 11.2 the evolution is shown: Until the so-called Hayashi limit is reached, the star

is fully convective, but gains luminosity by collapsing in free fall. Above a temperature

of 2000 K dissociates H2, so energy is consumed for this process, the luminosity of

the star decreases. Above 104 K, hydrogen is ionized and the star becomes optically

thick. Temperature and gas pressure increase, and after crossing the Hayashi limit, the

contraction enters a Helmholtz-Kelvin phase (conversion of released gravitational energy

into heat).

The Hayashi limit separates the region of fully convective stars from no longer fully

convective ones in the HRD.

In general: the luminosity is high because the radius R is still large. A Pre main sequence

star glows due to contraction and accretion, the temperature hardly increases at first, and

the luminosity decreases. Subsequently, the nucleus heats up and the opacity increases. A
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zone of radiative transfer develops, slowly moving from the inside to the outside. Then the

evolution turns to the left in the HRD. If the temperature is high enough, the thermonuclear

reactions ignite, one speaks of a Zero Age Main Sequence Star, ZAMS. Here only the outer

envelope is still convective.

How long can a star stay on the main sequence? In principle, about 80% of its total

lifetime. If the hydrogen content decreases in the interior due to nuclear fusion, then the

temperature and density increase, and the star expands. Thus, the luminosity of the star

also increases, and it evolves upward away from the main sequence. This can be estimated

as follows: For luminosity, we have the mass-luminosity relation:1

L∗/L⊙ = (M∗/M⊙)3.3 (11.8)

The lifetime2 of a star is given by:

t∗/t⊙ = (M∗/M⊙)/(L∗/L⊙) = (M∗/M⊙)−2.3 (11.9)

where t⊙ = 1010, the main sequence lifetime of the Sun. Compare the main sequence

lifetime of our Sun to that of a star of ten solar masses!

11.1.3 The Age of Stars

Stars in a cluster form at about the same time. Since massive stars evolve faster than low-

mass stars (cf. Eq. 11.9), the main sequence of older star clusters clusters will no longer be

fully occupied.

• In the HRD, the hot, massive, luminous stars are in the upper left.

• Hot, luminous massive stars have already moved away from the main sequence in older

clusters.

Therefore, one can infer the age of a cluster, and thus of the stars in it, from the

location of the turn off point from the main sequence.

In Fig. 11.3 one can see an HRD of two star clusters. It is clear that the star cluster M 67

must be somewhat younger,3 because here are hotter stars still on the main sequence than

1 Valid only for stars of the main sequence!
2 Actually, the main sequence lifetime.
3 Its age is given as about four billion years.
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Fig. 11.3 Comparison of the HRD of two star clusters. From the position of the turn off point the

age follows

in NGC 188. The star cluster NGC 188 is older than M 67 by a billion years and is one of

the oldest open star clusters.

11.1.4 Evolution of a Star with One Solar Mass

As already mentioned above, a star with one solar mass reaches the zero-age main

sequence, ZAMS, as soon as the pp chain ignites. After about ten billion years, its main-

sequence existence ends, almost all the hydrogen in the core has been converted to helium,

and the star expands slightly, increasing energy production as its temperature increases

in the interior, and also increasing luminosity as its surface area increases. The nuclear

reactions in the center eventually die out, but the fusion of hydrogen to helium continues

in a shell around the core (shell burning). The radius of the star now increases considerably:

the core contracts, so heat is produced (cf. virial theorem), and the hydrogen-burning shell

heats up—more energy is produced, and the star expands. But this lowers the surface

temperature, and thus the opacity increases, which leads to an increase in convection,

which in turn is important for the mixing of the elements. The star evolves into a red giant

and moves obliquely upward to the right in the HRD.

A red giant has the following structure: small dense core with T ∼ 50 × 106 K,

degenerate electron gas in the core. So the gas pressure depends only on the density and not

on T, the nucleus can thus resist the gravitational force even though there is no more fusion

there. The contraction raises the temperature to 108 K and the triple-alpha process ignites.
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Fig. 11.4 Evolution of a

Sun-like star in the HRD from

main sequence star to red giant

and white dwarf. The main

sequence stage (1) takes about

9 billion years, stages 2 to 4 are

passed in a few 100 million

years
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If this happens, then the heat spreads out through the very effective thermal conduction of

the degenerate electrons. The entire nucleus then ignites, but since the matter is degenerate,

only the temperature increases, the pressure remains constant, and the nucleus does not

expand. This is called a helium flash. Only when the core temperature has reached 350

million K, the electrons are not degenerate and the core can expand and cool down. After

this He flash, the stellar radius and thus its luminosity decreases slightly, and the star moves

down and to the left in the HRD. When the He is consumed by the triple alpha process,

its fusion occurs in a shell, and the star expands again. The electrons are degenerate again,

and this time the core is enriched in carbon (Fig. 11.4).

The triple-alpha process is very strongly dependent on temperature, and thermal pulses

occur that are in fact giant thermonuclear explosions. Such explosions happen every

approx. 103 years and lead to luminosity changes of the star by up to 50% during some

years. The star is located at the asymptotic giant branch in the HRD (asymptotic giant

branch, AGB). During these phases there are also very strong stellar winds, and in a few

1000 years the envelope is completely blown away; an expanding envelope forms around

the star, heated by the hot core and excited to glow; this is called a planetary nebula. A

very well-known example is the Ring Nebula, M57 (Fig. 11.5). The Ring Nebula is about

2000 light-years away and about 20,000 years old. The central star is a white dwarf, the

luminosity is 15 .m8.

If the mass of a star is less than about 1 M⊙, then the core temperature is not enough to

start carbon burning. Within about 100,000 years, a White Dwarf evolves.
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Fig. 11.5 The ring nebula

M57. The central star, a white

dwarf, can be seen in the center

(HST/NASA)

So the fate of our sun is as follows:

Evolution of our sun:

Main sequence star (about 10 billion years total) → Red giant (approx. 108

years)→ White dwarf.

11.2 Comparison of Stellar Evolution

An O5 star can reach a total age of about 5 million years, whereas an M0 star can reach

about 30 billion years if its mass is only 1/2 solar masses.

There are the following final stages in stellar evolution:

• White dwarfs,

• neutron stars, pulsars,

• black holes.

A detailed description of the final stages follows in the next sections.
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Fig. 11.6 Sketch of the evolution of low-mass stars from main sequence star (lower left) to

planetary nebula (upper right). (ESO/Steinhöfel)

11.2.1 Low-Mass Stars

The evolution of low-mass stars is sketched in Fig. 11.6. At the end of the main sequence

existence, the stars evolve into red giants and finally into a white dwarf. As they do so,

the outer envelopes are slowly ejected; these envelopes can be seen glowing as planetary

nebulae for a few thousand years.

11.2.2 Massive Stars

Massive stars burn elements down to iron. At the end of its evolution, the star has a shell-

like structure (Fig. 11.7) with an iron core in the middle, followed by a shell of silicon

burning, and so on. Once the mass of the iron core exceeds the Chandrasekhar limit mass

(1.4 M⊙), there is an implosion of the core combined with the repulsion of the outer layers,

which greatly enlarges the surface of the exploding star and therefore makes it very bright;

a Supernova lights up.
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Fig. 11.7 Structure of a

massive star at the end of its

evolution. As soon as the iron

core exceeds the

Chandrasekhar mass, a

supernova lights up

11.3 White Dwarfs

11.3.1 General Properties

They develop from Red Giants. As we have seen, in the final stages of stellar evolution

pulsations occur in which parts of the outer envelope are ejected. This results in the

formation of a planetary nebula (e.g. M57, Fig. 11.5).

Depending on the initial mass (the final mass leading to the formation of white dwarfs

is always below 1.4 solar masses) a distinction is made:

• Stars with ≤0.5 M⊙ form He-white dwarfs, because the core temperature too low to

ignite the helium.

• Stars with masses between 0.5–5.0M⊙ leave C-O stars behind.

• Stars with masses between 5–7 M⊙ form O-Ne-Mg-rich white dwarfs.

The mass values given here refer to the initial mass of the star!

In the case of white dwarfs (WD, white dwarfs) the matter is so densely packed that the

electrons can no longer move freely, but form a degenerate electron gas.

Equilibrium state (hydrostatic equilibrium): The gravity of a white dwarf is compen-

sated by the pressure of the degenerate electrons.

→ However, this only goes up to 1.4 M⊙ → Chandrasekhar limiting mass.
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Chandrasekhar limiting mass: the final evolutionary stages of stars up to a mass of

about 1.4 solar masses are white dwarfs.

One can easily establish a relationship between the Chandrasekhar limit mass, the radius

and the mass of white dwarfs. In the case of complete non-relativistic degeneracy is:

P = Kρ5/3 (11.10)

The condition for hydrostatic equilibrium gives:

P ≈ M2/R4 (11.11)

the density ρ ≈ M/R3 and therefore P ≈ M5/3R5. One obtains:

R =
4πK

G(4/3π)5/3M1/3
RWD ≈

1

M1/3
(11.12)

→ Therefore, the larger the mass of a white dwarf, the smaller its radius R.

White dwarfs glow by cooling, the thermal energy is given by:

Eth =
3

2

kT

µmu

M. (11.13)

Consider a star with 0.8 M⊙ and a temperature of 107 K then the thermal energy is 4 ×
1040 J and we assume a luminosity of 10−3 L⊙,4 then the cooling time is τc:

τc = Eth/L ≈ 4 × 1040J/[(10−3)(3.8 × 1026 J/s)] ≈ 3 × 109 a

The first white dwarf was found in 1862 by A. Clark: Sirius B, a hot but inconspicuous

companion of Sirius (Fig. 11.8).

White dwarfs are divided into:

• DA: D stands for Dwarf, and A means a spectrum similar to that of an A star, i.e.,

hydrogen-rich.

• DB: spectrum with nebular lines.

• DC: predominantly continuous spectrum.

4 Solar luminosity: L⊙ ≈ 3.86 × 1026 J/s.
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Fig. 11.8 Sirius with companion

The most reliable data are for DA stars, they lie shifted to the left parallel to the main

sequence. The mean radius is 0.013 R⊙, the mean mass 0.7 M⊙ and density 109 kg/m3.

11.3.2 General Relativity and White Dwarfs

In the case of white dwarfs, the contribution of gravitational red shift becomes important,

and the spectral lines appear shifted to the red. Photons of energy E have an equivalent

mass of E = mc2, and the gravitational field acts on this mass, leading to a decrease

in its energy, or red shift, since photons of higher energy have a shorter wavelength than

photons of lower energy. Let us first consider the classical case: The change of energy in

the gravitational field is according to Newton:

�(hν) = −GmM/R (11.14)

Since the mass of the photon m = E/c2 with E = hν, we obtain by substitution:

�ν/ν0 = −GM/c2R (11.15)
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Let us briefly consider the relativistic Doppler effect:

�ν

ν
= 1 −

1
√

1 − RS/R
≈ −

GM

Rc2
RS =

2GM

c2
(11.16)

Where RS is the Schwarzschild radius.

Thus, the relativistic Doppler effect depends on the ratio of the Schwarzschild radius

RS to the radius of the star R, and the effect increases for

• large masses,

• small compact objects (small value for R).

11.3.3 Magnetic Fields

In the formation of a white dwarf, the conservation of magnetic flux must be considered.

This is the number of magnetic field lines multiplied by the area they penetrate. If now

the star is compressed in the course of its evolution, the number of field lines remains the

same, of course, but the surface area decreases, and therefore the magnetic field strength

increases. One can show that the magnetic field strength of a White dwarf compared to the

field strength of the Sun is:

BWD/B⊙ = (R⊙/RWD)2 (11.17)

→ Extreme amplification of the magnetic field by compression of the star!

11.3.4 Brown Dwarfs

Unlike white dwarfs, brown dwarfs are not at the end of stellar evolution, but in their case

hydrogen burning never ignited because the central temperatures were too low. The limits

are not exactly definable, but one speaks of:

• Planets when M < 0.002 M⊙;

• Brown dwarfs, if 0.002 M⊙ < M < 0.08 M⊙.

For brown dwarfs near the 0.08 solar mass limit, there is a phase of deuterium burning

(some 10,000 years).
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The Hubble Space Telescope has been used to search for brown dwarfs. In this context,

the object Gliese 229 should be mentioned. The star is a double system, the main star a red

dwarf and Gliese 229B a brown dwarf with more than 20 Jupiter masses. The companion

is located at a distance of 40 AU from the main star.

11.4 Neutron Stars

11.4.1 Formation of Neutron Stars

For a contracting star at the end of stellar evolution whose mass is larger than the

Chandrasekhar limit mass of 1.4 solar masses, the pressure of the degenerate electrons

is no longer sufficient to resist the strong gravity. Matter is compressed to extremely high

densities, and the inverse beta decay starts:

p+ + e− → n + ν (11.18)

The protons and electrons combine to form neutrons; neutron gas is produced whose

density reaches about 1017 kg/m3. The neutrons form a degenerate gas, and a neutron

star develops with a diameter of a few 10 km. In the interior there is a neutron liquid,

in the outer regions there is a neutron superfluid and a crystalline surface (neutron lattice

gas). In the outermost meters there exists an atmosphere of atoms, electrons, and protons,

the atoms being mostly iron atoms.

Consider the gravitational red shift of a neutron star of 7 km radius (SI units used

throughout):

�λ/λ ≈ GM/Rc2 =
6.67 × 10−11 × 2 × 1030

9 × 1016 × 7 × 103
≈ 0.2 (11.19)

The structure of a neutron star is imagined as follows (Fig. 11.9):

• 15−16 km: The top layer consists of degenerate matter as in the white dwarf with an

increase in density, from 107 to 4×1014 kg/m3, above, of iron nuclei, and further down

also of neutron-rich nuclei (e.g., gold, lead, uranium, . . .).

• 11−15 km: Inner crust, the neutron-rich nuclei dissolve, and free neutrons appear

in greater numbers, unable to decay in the relativistically degenerate electron gas

surrounding them.

• At a distance of 11 km from the center there is a density of 200 × 1015 kg/m3, the state

of a strongly incompressible neutron liquid.

• Central region: density up to 400 × 1015 kg/m3. Possibly the neutrons dissolve, and

subnuclear particles such as free quarks could occur.
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Fig. 11.9 Structure of a neutron star

As with the white dwarf, the diameter decreases with increasing mass, and there is a

limiting mass for neutron stars analogous to the Chandrasekhar limiting mass, called the

Oppenheimer-Volkoff limit.

Calculations give a limiting mass for neutron stars in the range of three to four solar

masses. Thus, even more massive stars evolve into black holes.

11.4.2 Pulsars

In 1967 the Hewish group wanted to study scintillation of radio sources on the sky with

the help of a newly constructed radio telescope in Cambridge, England. Scintillation is

the flashing of a radio source due to density fluctuations in the interplanetary plasma

(caused by the solar wind) and in the interstellar medium. Very big surprise was then

when extremely periodic radio signals were found. The Hewish group found a signal with

the exact period of 1.33730113 s. This phenomenon was called Pulsar, although it will be

shown below that the brightness change has nothing to do with pulsations of the star. In

the meantime, more than 150 pulsars have been studied.

The regularity of the pulses is better than 1:108. The energy of a pulse can vary strongly.

Sometimes pulses fail. Typical pulsation durations range from a few 10 s to milliseconds.
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Fig. 11.10 The Pulsar in the

Crab Nebula

The primary pulses can still be decomposed into sub millisecond pulses. The first pulsars

were found at a frequency of 81.5 MHz. The pulsation times change in the long term, one

measures an increase of the periods around 10−8 s/a (seconds per year). This can only be

determined with atomic clocks, which have an accuracy of 10−10 s/a. The age of a pulsar

follows from its period divided by the rate of change of that period:

tpulsar ≈ P

(

dP

dt

)−1

(11.20)

A very well known pulsar is the Crab pulsar (Fig. 11.10): P = 0.03 s, dP/dt = 1.2 ×
10−13 s/s, it therefore has age:

tPulsar ≈ 1011 s (11.21)

indicating the approximate correctness of the formula. The supernova explosion that led

to the formation of the Crab pulsar occurred in 1054 AD.

Important in observation is the effect of Dispersion: if one examines a given pulsar at

lower frequencies, then the photons are slowed down by the electrons that are in the line

of sight of the pulsar. Longer wavelengths are slowed down more, and the electron density

in the line of sight is estimated from the observations. Conversely, if we know the average

electron density, we can determine the distance of the pulsar. Let us assume pulses of two

different frequencies f1, f2 are emitted at the time t0 and arrive here at the times t1, t2. We

then receive:

t1 − t0 = d/v1 t2 − t0 = d/v2

Of course, we don’t know t0 but this is omitted in the case of:

t2 − t1 = (1/v2 − 1/v1)d (11.22)



11.4 Neutron Stars 429

The velocities depend on the electron density, and if we know this, we can calculate the

distance d. Interstellar matter, i.e., the matter between stars, does not have a constant

density, a Dispersion measure DM has been introduced:

DM =
∫ d

0

nedl (11.23)

and:

t2 − t1 = 2πe2/mec(1/f 2
2 − 1/f 2

1 )DM (11.24)

D = (t2 − t1)/(1/f 2
2 − 1/f 2

1 ) (11.25)

DM = 2πmcD/e2 DM = 2.41 × 10−16D (11.26)

Most pulsars are found at low galactic latitudes.

Furthermore the Faraday rotation has to be considered. The plane of polarization of

linearly polarized radiation is rotated when it passes through a magnetic plasma. The

Faraday rotation depends on:

• average electron density,

• mean magnetic field strength,

• λ2 of radiation,

• Distance through the medium.

So one can measure the angle through which the plane of polarization is rotated at different

wavelengths and then say something about above quantities.

How Do Pulses Occur?

To explain them, one needs:

• a rapidly rotating neutron star, which has a high rotational energy Erot and

• a dipolar magnetic field, which transforms rotational energy into electromagnetic

energy. In Fig. 11.11 a model of an oblique rotator is shown.

Pulsars are rapidly rotating neutron stars.
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Fig. 11.11 The oblique

rotator model of a pulsar;

charges are accelerated in the

strong magnetic field, and

focused synchrotron radiation

is produced

Rotation axis Accelerated charges

Magnetic field

Crust

Suppose our Sun collapses into a neutron star with radius R. Let us examine the expected

magnetic field strengths! Let Rns = 73 km, it holds:

Bns = B⊙(R⊙/Rns)
2 ≈ 106 T

This is purely hypothetical, since our Sun will evolve into a white dwarf.

The magnetic axis is inclined with respect to the axis of rotation. The rotation creates

an electric field by induction, and this accelerates particles of the crust. The particles thus

accelerated (mainly electrons) emit Synchrotron radiation. The torque of the accelerated

particles slows down the rotation, and therefore the slower pulsars rotate, the older they

are.

Let us consider rotation for a moment:

v2

R
=

GM

R2
(11.27)

This is the stability condition (centrifugal force must be less than or at most equal to

gravity). The rotation period is:

P = 2πR/v

From the above equations we obtain a typical density for neutron stars of. ρ = 4 ×
1016 kg/m3.

As we have seen, there are very many binary stars and multiple systems. In 1974 Hulse

and Taylor analyzed a pulsar already known by then and found a period of 7.75 h, which
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can be explained by the orbital motion of two components. Therefore it is a double pulsar.

This object (PSR 1913+16) is 5 kpc from us, and the semi-axis of the double system is

only as large as the radius of the Sun. The masses are 1.4 M⊙ and 1.3 M⊙.

Pulsars and neutron stars are formed in supernova outbursts. The pulsar in the Crab

Nebula emits pulses with an energy of 1028 W from the optical to the X-ray range. Here a

deceleration of its rotation by 4×10−13 s/s or 10−5 s/a has been measured. The rotational

energy provides the energy budget for the nebula surrounding the pulsar. There is a

conversion of rotational energy into kinetic energy and finally into radiation energy of

the nebula. The rotational energy is (I is the moment of inertia):

Ered =
1

2
Iω2 (11.28)

ω =2π/P (11.29)

I =
2

5
MR2 (11.30)

Let us assume that all the rotational energy is converted into radiant energy:

dErad

dt
+

dErot

dt
= 0 (11.31)

Now we put in:

dErot

dt
=

1

2

d

dt
(Iω2)

=
1

2

d

dt

[

2

5
MR2

(

2π

P

)2
]

= . . . = −
8

5
π2MR2P−3 dP

dt

and since L = dErad/dt = −dErot/dt , we get:

L =
8

5
π2MR2P−3 dP

dt

dP

dt
=

5

8π2

LP 3

MR2

We determine the rate of pulse changes for the Crab pulsar. We use to estimate M = 1 M⊙,

R = 10 km and L = 1031 W and P = 1 s:

dP

dt
=

5

8π2

1031

2 × 1030(104)2
= 10−8s/s
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For the Crab pulsar: P ≈ 0.03 s, therefore one has:

dP/dt = 10−13 s/s

This agrees with the observations.

11.5 Supernovae

11.5.1 Classification

In a supernova, the star explodes and the outer shell is ejected.

Supernovae (SN) reach absolute magnitudes of −16M to −20M and can thereby increase

the brightness of an entire galaxy. From historical records is known, for example, the SN

from the year 1054, which was observed by Chinese astronomers. It was so bright that the

star could be seen in the daytime sky. The brightness progression of a SN shows a rapid

rise to maximum and then a drop of two to three magnitudes within a month, before a

slower decline in brightness. The radiant energy released during an SN explosion is 1044 J.

The neutrinos carry off much more energy still. The first neutrinos originating from a SN

to be recorded were those from SN 1987A. The collapse of a star leads to the release of

gravitational energy (be R = 15 km):

Egrav =
GM2

R
≈

(6.67 × 10−11)(2 × 1030)2

1.5 × 104
≈ 2 × 1046 J (11.32)

There are two types of supernovae:

• Type I: They occur in elliptical and in spiral galaxies, it is a white dwarf that

explodes due to sudden onset of carbon fusion. The white dwarf accretes matter from

a companion. Once the Chandrasekhar limit is reached, the star collapses and a type I

supernova is formed.

Another form of a type I supernova is possible in a compact binary star system

where both components have evolved into a white dwarf. The masses move around the

common center of mass, this is an accelerated motion, and accelerated masses radiate

gravitational waves according to general relativity (cf. Electrodynamics: Accelerated

charges radiate electromagnetic waves). As a result, the orbital angular momentum

decreases, and the two components approach each other until they merge. A type Ia

supernova is formed, and the onset of carbon detonation is likely to rupture the star
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completely, leaving no remnant star (e.g., neutron star). The light curves of SN Ia are

very similar.

Type I is divided into type Ia, b, c. In general, type I lacks hydrogen lines. Spectra

of SN Ib resemble those of SN Ia near the maximum, but later those of SN II.

• Type II: occur exclusively in spiral galaxies; massive (10 to 100 solar masses) stars at

the end of their evolution. The detonation is caused by gravitational collapse. Inside, an

iron core is formed in a highly evolved star, which collapses into a neutron star.

At the end of the evolution of a massive star, an inert Fe core remains, which produces

no energy; neutrinos escape and dissipate energy. Density increases, protons and electrons

form neutrons and neutrinos. Matter around the nucleus impacting the nucleus at 15% of

the speed of light causes the nuclear mass to increase. The nucleus collapses as soon as

the Chandrasekhar mass is reached. There is no counterforce to gravity at this moment, as

the pressure of the degenerate electrons is released ;

The neutron densities become so high that the nucleus becomes incompressible, a

repulsive matter wave is formed, which propagates outward as a shock wave . This shock

wave causes the actual explosion, the inner region compresses further and forms a neutron

star or a black hole (Table 11.1).

The spectra of both types show emission lines that are often accompanied by short-

wavelength absorption components, so-called P-Cygni lines → expanding gas shell

(absorption lines are produced in the shell that moves toward the observer). One measures

ejection velocities of up to 2 × 104 km/s, higher for SN I than for SN II. In SN II

one observes similar lines as in novae, Balmer lines, He, metals (Ca II, Fe II) and later

forbidden lines like [OI] and [OIII].

Brightnesses:

• SN Ia: MB,max = –19m; in the first 20 to 30 days after maximum the brightness decreases

by two to three magnitudes; light curves are very similar → Standard candles for

distance determination!

Table 11.1 Comparison of type Ia and type II supernovae

Ia II

Cause White dwarf Massive star

in double star

Spectrum No H H

Max. bright. brightness 1 .m5 > type II

Light curve Sharp maximum Broader maximum

All have the same brightness Diverse brightness

Occur in All galaxies Only spiral galaxies

Expansion 10,000 km/s 5000 km/s

Radio emission – Available
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• SN Ib/c: Brightness at maximum 1 .m5 lower than SN Ia.

• SN II: stronger dispersion of maximum brightness; MB,max = −17 . . . − 18m.

11.5.2 Nuclear Synthesis During a SN

Towards the end of its evolution a star with a mass between 10 and 20 solar masses

has a shell-like structure: C, He, and H shells. The Fe core contracts and its temperature

increases. At 109 K occurs Photodisintegration of Fe:

56Fe + γ → 13 4He + 4n (11.33)

This reaction is endothermic and requires about 100 MeV. The nucleus loses energy and

contracts more rapidly. The following reactions lead to the formation of a degenerate

neutron gas:

4He →2p + 2n (11.34)

p + e− →n + ν̄ (11.35)

The upper layers also fall inward, heat up, and nuclear fusion begins. This happens

explosively, and the outer layers are repelled. So many energetic neutrons are formed,

which can be absorbed by the heavy nuclei. There is an r-process (rapid) and an s-process

(slow), where the terms “rapid” and “slow” refer to beta decay, respectively:

n → p + e− + ν̄ (11.36)

This takes about 15 min. In the r process, neutron capture occurs faster than beta decay.

For example, the r-process leads to 56Fe + n . . . the 61Fe. This is only stable for about 6

min, and if during this time the s process neutrons are captured, then emerges:

56Fe → 56Co + e− + ν (11.37)

For type II supernovae only the r process plays a role. In red giants, nucleosynthesis after

the s-process plays an important role.

For both type I and type II supernovae, the major source of energy in emission is

radioactive decay: 56Ni decays with a half-life of 6.1 days to 56Co, and this decays with a

half-life of 77.3 days to the stable 56Fe.
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Fig. 11.12 Crab Nebula M1.

A supernova remnant, distance

6300 Ly. (Credit: NASA, ESA,

S. Beckwith (STScI), and The

Hubble Heritage Team

STScI/AURA)

11.5.3 Observed Supernovae

Several hundred supernova outbursts have been observed to date, and several dozen per

year through surveys. Because of their high luminosity, these outbursts are observable

not only in our Galaxy, but even in distant galaxies; at the time of greatest brightness,

a supernova even outshines an entire galaxy. In our Milky Way only three supernova

outbursts have been registered in the last 900 years:

• 1054 (Remnant = Crab Nebula, see Fig. 11.12) ,

• In 1572 Tycho Brahe saw a supernova,

• In 1604, Kepler observed a supernova in the constellation Ophiuchus.

Let us do some calculation. Kepler observed a supernova whose brightness was about

the same as Jupiter’s during its opposition. How far away was this supernova from us?

Assuming it was a type I SN, then M = −19; the apparent brightness of Jupiter is

−2 .m5. Therefore, it follows from the distance modulus:

d ≈ 20,000 pc = 65,000 light years.

In 1987 a supernovae was observed in the large Magellanic cloud5 , Supernova1987A

(the “A” stands for the first supernova of 1987). It could be seen with the naked eye in the

southern sky (light curve, Fig. 11.13). Before the outburst was detected, neutrinos were

5 A dwarf galaxy, belongs to our galaxy.
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Fig. 11.13 Light curve of

supernova 1987 A. The time is

given in Julian day count

found with a neutrino detector in Kamioka, Japan, which must have been emitted from

SN 1987 A. The neutrinos are produced at the enormous nuclear densities of 1014 kg m−3

the neutrinos are still scattered in the core region and therefore leave the star with a delay.

The neutrino signals were received a few hours before the first optical observation of the

outburst. The neutrino burst corresponds to a total energy of 1045–1046 J. Only 1% of the

gravitational binding energy is released as optical radiation and as kinetic energy of the

ejected envelope. Such observations are also essential for the question of the neutrino rest

mass. The observations suggest an upper limit for the neutrino rest mass of 10 to 30 eV

c−2 .

The discovery was made on February 24, 1987, and in July light echoes from small

matter rings 140 and 400 pc before the supernova were detected. From July to November

the brightness decreased exponentially, which is related to the mean decay time of the
56Co agrees.

On average, one supernova outburst can be expected in 50 years per galaxy.

The evolution of light echoes around object V838 is shown in Fig. 11.14. This

originated from a nova outburst (early 2002) of an object in the constellation Monoceros

(Unicorn) at a distance of 6.1 kpc.

11.6 Black Holes

The existence of objects whose gravity is so strong that not even light can escape was

already suspected by Newton. In principle, all objects could become a black hole if they

were suitably compressed. Quantum physics shows that even black holes evaporate over

very long periods of time.
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Fig. 11.14 Evolution of the light echo around V838 (Source: Hubble Space Telescope)

11.6.1 General

We consider an object whose escape velocity

vesc =
√

2GM

R
(11.38)

equal to the speed of light c; so we get for the radius of a black hole:

R =
2GM

c2
(11.39)

For such an object, nothing can escape, not even light particles, hence the name black hole.

The radius of a black hole therefore depends on its mass M and is called Schwarzschild

radius. Matter falls into a black hole on a spiral path.

From the above formula, the hypothetical Schwarzschild radius for our Sun is 3 km.
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A hypothetical trip into a black hole yields that if the black hole has a mass of ten solar

masses, at 3000 km from the singularity, you will be torn apart by the enormous tidal

forces. 10−5 s after passing the Schwarzschild radius, one arrives in the singularity. For an

outside observer, the spacecraft suffers an ever-increasing red shift as it flies in, and time

passes slower and slower. The light is red shifted until you can no longer detect the signals.

As we have seen, above a mass larger than the Chandrasekhar limit mass, the pressure

of the degenerate electrons is not sufficient to stop the gravitational collapse at the end

of the star’s evolution. As the mass increases, a neutron star is still possible. As the star

contracts, the gravitational field at its surface becomes stronger and stronger, and with

it relativistic effects, which roughly depend on the ratio of the Schwarzschild radius to

the actual radius of an object. Finally when the mass is big enough, light can no longer

escape, the escape velocity is equal to the speed of light, and thus everything is trapped

by the gravitational field, you have a set of events from which no escape is possible, and

this is called a black hole. The limit from which no escape is possible is called the Event

horizon.

At the center of a black hole, there is a singularity. No known laws of physics exist there

anymore, and nothing can be predicted. Such singularities are beyond our knowledge,

since they are separated from us by the event horizon. But there are also solutions

according to general relativity, which would allow an astronaut to avoid a collision

with this singularity, he could instead fall into a Wormhole which would mean that he

would come out at a completely different location in the universe. Such journeys through

space and time have a disadvantage: the solutions are extremely unstable, the slightest

disturbance would lead to a fall into the singularity.

The mathematical description using the Schwarzschild metric yields three solutions:

• Black holes;

• White holes: opposite of black holes, only matter, energy flows out; violate 2nd law of

thermodynamics;

• Wormholes: also called Einstein-Rosen-Bridges connect different parts of the universe.

Rotating black holes are described by a Kerr metric. In addition to the event horizon, there

is a so-called ergosphere, which envelops the event horizon; within the ergosphere, matter

cannot be kept stationary.

The formation of a black hole results in the emission of gravitational waves. These

extract energy from the system. Gravitational waves emitted when two black holes collide

were directly detected for the first time in 2015.

Gravitational waves are emitted by all accelerating moving masses.
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Gravitational waves (ripples in space-time) are also produced by the motion of the Earth

around the Sun, energy is thus extracted from the system, but very little, and the effect here

is extremely small. This is different, for example, with the pulsar PSR 1913+16, where we

have two neutron stars orbiting each other. They lose energy by emitting gravitational

waves and thus spiral towards each other.

The size and shape of a black hole depend only on its mass and rotation, but not on

other parameters such as chemical composition, etc.

11.6.2 Candidates for Black Holes

There are many candidates for black holes: e.g. the system Cyg X-1 (Fig. 11.15). This is a

powerful X-ray source in the sky (brightness in the range 2–11 keV: 2 × 1030 W, distance:

2.5 kpc). It is a binary star system in which matter is blown away from one component

and spirals in an accretion disk towards an unseen companion (which is likely to be a

black hole due to its large mass, 16 solar masses), heating it enough to emit X-rays. The

mass of the other star is 33 solar masses. The blue supergiant shows periodic Doppler

shifts in the absorption lines (period five days), which is interpreted as motion around the

system’s center of mass. The X-ray intensity varies in the range of 0.001 s, indicating a

very compact X-ray source.

Black hole with accretion disk Blue supergiant

Cygnus X-1

Fig. 11.15 Cygnus-X1: blue supergiant with black hole companion (Adapted from Chan-

dra/Harvard)
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11.6.3 Quantum Theory of Black Holes

The Area of a black hole cannot decrease, similar to that Entropy of a closed system.

Classically, black holes cannot emit radiation, yet there is so-called Hawking radiation.

The emission is smaller, the larger the mass of the black hole is. According to quantum

theory, there are quantum fluctuations even in vacuum, and particle/antiparticle pairs are

created. One speaks of virtual particles.

Heisenberg’s uncertainty principle states:

�t�E ≧
h

4π
E = hf (11.40)

A virtual particle of the energy range �E therefore has a lifetime of range �t . The energy

of a photon pair is 2�E.

Calculate the lifetime of a virtual photon pair of orange light (f = 5 × 1014 Hz).

�t =
1

8πf
= 8 × 10−17 s

Energy cannot be created out of nothing, one of the partners of a particle/antiparticle

pair has positive energy, the other negative energy. The energy of real particles is always

positive. A real particle that is close to a mass has less energy than one that is far away

from that mass, because energy must be expended to keep it away from the mass. The

gravitational field inside a black hole is so strong that even a real particle can get negative

energy there. In this way, a virtual particle with negative energy can also fall into a black

hole and become a real particle or antiparticle—it does not need to annihilate with its

partner. Its partner can also fall into the black hole or escape from the vicinity of the

black hole as a real particle or antiparticle. We as observers from outside then have the

impression that a particle is emitted from the black hole. The smaller the black hole is,

the shorter is the distance for a particle with negative energy to become a real particle.

Small black holes therefore radiate more intensely. Therefore, the smaller the mass of a

black hole, the higher the temperature. If the mass becomes extremely small, there is a

final evaporation and a violent burst of radiation (Table 11.2).

Bekenstein, Hawking et al. showed that a black hole has a non-vanishing temperature

which is calculated from:

T =
hc3

16π2kGM
≈ 10−7 M⊙

M
[K] (11.41)
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Table 11.2 Various astrophysical objects; escape velocity, ve , Schwarzschild radius, RS (hypothet-

ical for Earth, Sun and white dwarf)

Object M[M⊙] Radius [km] ve RS

Earth 1/3 × 10−5 6357 11.3 9 mm

Sun 1 7 × 105 617 2.9 km

White dwarf 0.8 104 5000 2.4

Neutron star 2 8 2.5 × 105 5.9

Galact. Core 5 × 106 ? ? 15 × 106

and the energy of the radiation is:

E =
hc3

16πGM
(11.42)

Hawking temperature: the larger the mass, the slower the black hole evaporates.

Suppose an Earth mass (5.3 × 1026 kg) be a black hole. What would be the energy of its

radiation and at what frequency could it be observed?

Solution:

E = hc3/(16πGM) = 8.9 × 10−25 J

and because of

E = hf

follows a frequency of f = 1.35 GHz.

The temperature of a black hole with a solar mass is only 10−7 K. This is much less

than the temperature of the background radiation (see section Cosmology) which is 2.7 K.

At present, such black holes “warm up”. However, as the universe continues to expand,

at some point the temperature of the background radiation would drop below that of the

black holes, and they may cool down. For a black hole with a solar mass, it takes 1066 yr

for it to evaporate. However, could be very small black holes that were formed during the

Big Bang and are now evaporating.
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11.6.4 Accretion

As we have seen, there are different phases of stellar evolution in which accretion plays an

important role. According to Zel’dovich the luminosity of a star due to accretion of matter:

L ≈ �
dM

dt
≈ 2 × 1031

(

�

0.1c2

) (

M

M⊙

)2 (

104

T

)3/2

N erg/s (11.43)

Here � is the gravitational potential near the surface of the star, T and N are temperature

and particle density of the gas, respectively.

Let us consider two cases:

• White dwarf with M ≈ M⊙ and R = 109 cm, � = 10−4 c2. One finds L ≈ 1028N

erg/s. For corresponding values of N is then given by L, and from this we can deduce

the temperature of T =500–2000 K.

• Neutron star: Also let M ≈ M⊙, R ≈ 106 cm; the radiation occurs mainly in the UV

(15...900 nm).

11.7 Gamma Ray Bursts

Gamma Ray Bursts (GRB), were first observed around 1970. The discovery was made by

chance with the Vela satellites, which were supposed to monitor the ban on nuclear testing.

Since then, well over 2000 GRBs have been recorded.

11.7.1 Properties of GRB

The bursts come from random celestial directions (Fig. 11.16). There is no concentration

to the galactic plane → GRBs could be from the Galactic halo or even from the Oort cloud.

The duration of the bursts ranges from fractions of a second to minutes. In order

to reveal the origin of the bursts we need distances but distance determination was not

possible until radio or optical sources could be identified.

Energy release: within seconds as strong as some 104 Supernova explosions.

With the Burst and Transient Source Experiment Burst (BATSE6) aboard the Compton

Ray Observatory, it was possible to register this gamma ray radiation and determine its

position within seconds. On January 23, 1999, only 22 s after observing a GRB with a

robotic telescope in New Mexico, an optical image was obtained of the region of the sky

6 Removed from Earth orbit by NASA in 2000.
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Fig. 11.16 Distribution of GRBs in the sky (galactic coordinates, the galactic equator runs in the

middle). (Source: M. Briggs)

where the GRB was observed. Within 25 s a dramatic increase in brightness was observed.

Spectra were then taken using the Keck telescope, and the object had a red shift of z = 1.6,

which corresponds to a distance of 3000 Mpc.

GRBs have also been associated with mass extinctions of animal and plant species in

Earth’s history (mass extinction).

11.7.2 Explanation of GRB

There are several theories:

• Collapse of a massive star → a black hole with an extreme magnetic field arises, one

also speaks of a Hypernova.

• Merging of two neutron stars or neutron star + black hole.

• Bursts are directed like in a pulsar. This would lead to an overestimation of the released

energy.

• Gravitational lensing effect enhances a less intense burst. Between GRB source and

observer is a massive object which acts as a lens .



444 11 Stellar Evolution

• Magnetar: Neutron star with extremely strong magnetic field. Starquakes occur from

time to time by interaction of the magnetic field with the crust → Gamma rays. During

the outburst of object SGR 1900 +14 on August 27, 1998, gamma rays striking the

Earth’s atmosphere raised the number of ions in the ionosphere at night to daytime

levels.

11.8 Variable Stars

Variable stars are interesting for several reasons. On the one hand, they are usually at the

end of stellar evolution, and often, in addition to pulsations, envelope expulsion occurs.

On the other hand, some groups of variable stars are important standard candles by which

distances can be determined. One knows their actual luminosity, and by comparison with

the easily measurable apparent brightness follows the distance.

11.8.1 General

The term “variable star” in astrophysics always refers to stars whose brightness changes.

As we saw in the section on the Sun, it too is strictly speaking a variable star, but the types

of stars discussed here are variable to a much greater extent. If we examine the light curve

of a variable, we can derive two parameters:

• Period of the change in brightness P;

• Amplitude of the brightness change A.

The designation is made within a constellation with large Latin letters R, S,. . .Z and then

continuing with RR, RS,. . .ZZ and AA, respectively,. . .QZ as well as simply with V and

a number. The first star found to be variable is the star Mira (o Ceti) (1596 by Fabricius

discovered). In general, a distinction is made between:

• Pulsating Variables : giants or supergiants of all spectral classes; the cause of the change

in brightness is more or less periodic pulsations of the atmosphere.

• Eruptive Variables: often stars of low luminosity; there are random eruptions of gas.

• Eclipsing Variables: The cause here is the mutual eclipsing; some representatives of

these groups are very close binary stars, so that there is also an exchange of matter.
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Pulsation Mechanism

Stars pulsate when they are not in hydrostatic equilibrium.

If a star expands due to increased gas pressure, the matter density decreases until the point

of hydrostatic equilibrium is reached, gravity dominates again and the star contracts. In

both cases, you have overshooting, above the corresponding equilibrium points. In this

process, energy dissipation occurs, and normally pulsations therefore come to a rapid halt.

Thus, as in the case of pulsating stars, in order to sustain pulsations over long periods

of time, one needs a mechanism that can compensate the dissipation. Opacity plays a

significant role in energy transport. If the opacity is large, the radiation cannot escape

and the star appears faint. If the star is compressed at the time of greatest opacity, then

the excess radiation (cf. virial theorem) is stored and exerts an additional pressure →
Mechanism to maintain the pulsations (κ-mechanism).

Pulsation variability: Increase in opacity upon compression as singly ionized helium

absorbs UV radiation, becoming doubly ionized. The He+-Ionization zone is cooler than

surrounding regions because energy is consumed to ionize. Thus, one has a region of

instability.

There is a simple relation between the density of the star and its pulsation period.

Assume that the matter falls freely onto the star after expansion; then Kepler’s law applies

to this gas:

P 2

R3
=

4π2

GM
(11.44)

Thereby P the period of the pulsation, R the radius of the star. Because of

P 2 ≈ R3/M M ≈ ρ̄R3 (11.45)

one gets:

P 2 ≈ R3/(ρ̄3R3) ≈ 1/ρ̄ (11.46)

If a star radiates like a black body, then:

L ∝ R2T 4
eff (11.47)
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Fig. 11.17 Location of the

different types of variable stars

in the HRD
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If we observe a pulsating star at two different times 1 and 2, then the ratio of the

luminosities is given by L1 and L2 at these times:

L1

L2
=

(

R1

R2

)2 (

T1

T2

)4

(11.48)

Luminosity changes are therefore associated with temperature and radius changes (pulsa-

tions).

In addition to regularly variable stars, there are also stars whose variability is not strictly

periodic; these irregularly variable stars include ZZ-Ceti stars (hydrogen-rich white dwarfs

with periods between 3 and 30 min), BY-Draconis stars (late-type dwarf stars), and L-type

variable stars (slowly variable, amplitudes up to 2m, giants and supergiants). The location

of different types of variable stars in the HRD is outlined in Fig. 11.17.

11.8.2 Pulsation Variable

Cepheids

The light variation of Cepheids occurs strictly regularly with a period between 1 and 50

days (Fig. 11.18). They are very bright supergiants of types F to K. That is why they can

still be observed at great distances (more than 300 have been found, for example, in our

neighboring galaxy about 2.5 million light-years away, the Andromeda galaxy.
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Fig. 11.18 Light curve of the star δ Cephei

Fig. 11.19 Shock front around δ Cephei (Spitzer Telescope)

The star δ Cephei has a period of 5.37 days and changes its diameter by 2 million km

during this time. Using the Spitzer IR telescope, a shock front has been detected resulting

from the star’s motion through the interstellar medium. Furthermore, strong stellar winds

have been observed (Fig. 11.19).
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Around 1950, it was found that there were two groups of Cepheids:

• δ-Cephei stars: They occur in the galactic plane, called Cepheids of the population I.

• W-Virginis Cepheids: They occur in the halo of the Galaxy or in the Galactic center,

called Cepheids of population II.

The amplitudes are less than 2m, larger in the blue than in the red. The cause of the

change in brightness is pulsation, the radius changes being about 10% for the δ-Cepheids,

for the W-Virginis-Cepheids about 50%. The largest diameter occurs during the descent

phase of brightness, and the temperature is greatest when the brightness is highest. By

measuring the Doppler shift of the spectral lines, one can determine the velocities; from

the integration of the radial velocity curve, the change in radius follows.

When this group of variables was detected in the Magellanic Clouds , it was found that

there is a relationship between their apparent brightness and period. Since all the stars in

this dwarf galaxy neighboring us are about the same distance away, this means that there is

a relationship between the periods and luminosities of these objects, the period-luminosity

relation. The luminosity and absolute magnitude are related and follow from the period P:

δCeph Pop I : M = − 1.80 − 1.74 logP (11.49)

W Vir Pop II : M = − 0.35 − 1.75 logP (11.50)

So once you have determined the period of these objects, you know their absolute

brightness and thus the distance.

This is a very important method of distance determination for nearby Galaxies.

RR Lyrae Stars

They often occur in globular clusters. Globular clusters are spherically arranged collections

of some 104 Stars distributed in a halo around a galaxy. In them one finds the oldest stars.

The periods are <1d, spectral types B8. . .F2, amplitudes around 1m. Sometimes several

periods overlap. The absolute magnitudes are fairly constant → Standard candles

Mvis = +0.5 ± 0.4. (11.51)

In the HRD they are located at the gap in the horizontal branch where there can be no

stable stars.
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δ-Scuti Stars

This group is also called dwarf Cepheids. They are pulsating giants (F) with very short

periods 0.d5 . . . 0.d2 and small amplitudes.

β-Canis-Majoris Stars

Spectral type: B1. . . B2, III. . .IV. Periods between 3 and 6 h. Multiple periods always

occur. The amplitudes are only a few hundredths of a magnitude.

Mira-Variables

Periods between 80 and 1000 days; striking are the very large amplitudes between two

and more than four magnitudes. In terms of light curve shapes, the following types are

distinguished:

• α: ascent steeper than descent, minima wider than maxima.

• β: almost symmetrical.

• γ : irregularities in light curves, humps, etc.

Mira stars belong to spectral classes M, S, or C. The enormous changes in brightness result

from the strong variation in absorption bands and not from changes in temperature directly.

From the measurements of the radial velocities of emission and absorption lines, it

follows that the envelopes are expanding at about 10 km/s.

In addition, these stars lose about 10−8–10−6 M⊙/year in mass (Fig. 11.20). Some Mira

stars show maser emission in the radio region at a wavelength of 18 cm from OH.

Let us consider the prototype Mira (oCeti) The maximum radius occurs at the minimum

luminosity and is about 320 R⊙, and the minimum radius occurs at the brightness

maximum and is about 220 R⊙, the brightness varies between 2 .m0 and 10 .m1. The

pulsation period is 331 days. The star itself has a white dwarf as its companion.

11.8.3 Semi-regular Variables

Periods range from 30 to 1000 days, amplitudes are usually less than one to two

magnitudes. There is either a good mean period, or the period is disturbed by irregularities.

The following subgroups are distinguished:

• SRa: Red giants, M, C, S; smaller amplitude than Mira stars, otherwise the same.

• SRb: Also M, C or S. The periodicity is interrupted by completely irregular phases;

example: AF Cyg.

• SRc: Supergiants of intermediate type (G8. . .M6); example: µ Cep.

• SRd: yellow giants and supergiants (F. . .K).
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Fig. 11.20 HST image of the variable star Mira. Mira is seen to be losing mass in UV light (GALEX

(Galaxy Evolution Explorer))

RV Tauri Stars

Type F. . .K, I, II. regular alternation of shallow and deep minima. Periods between 30 and

150 days. The amplitudes are up to three magnitudes.

α2-Canum Venaticorum Stars, Ap Stars

These stars have the following features: (a) strong magnetic fields (measured by Zeeman

effect, 0.1 to 1 T), (b) abnormally strong lines of rare elements like Si, Mn, Cr, Sr,

Eu. Individual line groups change their intensity, which leads to variations in brightness

of about 0.m1. Periods range from 1 to 25 days, magnetic fields are variable, which is

explained by:

• Oblique rotator: Magnetic axis does not coincide with axis of rotation of star.

• Activity cycle similar to Sun, but orders of magnitude stronger.

• Huge magnetic spots on surface, change by rotation.
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About 10−15% of late B and A stars belong to this group. The elemental anomalies (e.g.

Os I, Pt II, Pm) can be explained by neutron irradiation or by complex diffusion processes.

Metal Line Stars, Am Stars

Cooler than the Ap stars; mostly members of binary systems, rotational velocity

<100 km/s; strong lines of the Fe group; about 10% of the A stars belong to this group.

11.8.4 Eruptive Variables

Novae and Nova-Like Variable Stars

These objects are sometimes called cataclysmic variables. They are hot dwarf stars whose

brightness increases by seven to 20 magnitudes within a short time (hours to months).

After a short maximum the brightness returns to the original value in the course of years to

decades. About the Praenovae is only known that they are A-subdwarfs. Sometimes there

is a slight increase in brightness up to 1.5 magnitudes before the outburst. One divides the

novae into:

• Na: rapid nova, very steep rise. Decline by 3m in less than 100 days.

• Nb: slow nova, descent around 3m in more than 100 days.

• Nc: extremely slow nova, many years at maximum.

• Nr (Nd): recurrent nova, recurrent bursts of brightness. Example: TCrB; outburst 1866,

1946 at �m = 8.6.

• Nl (Ne): Nova-like variable.

The spectra for Na and Nb are also divided into Q0 to Q9. The typical progression of these

two types looks like this:

• steep slope: 7–10m within one day;

• short standstill, possibly even decline before the maximum;

• steep final rise to maximum, Q0;

• main maximum, Q1;

• first descent around 3.m0; first spectrum similar to an F supergiant (Q2), then broad,

vigorous emission of H and ionized metals (Q3). Later H, OII, NII, NIII (Q4, Q5);

• Transitional stage, nebular spectrum, NII, forbidden line [OIII] (Q7);

• Postnovae.

Knowing the time of brightness decline by three magnitude classes in days (t3), then one

can determine the absolute maximum brightness from the following empirical formula:

Mmax = −11M + 2.5 log t3 (11.52)
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Fig. 11.21 The symbiotic star SS Leporis (17Lep). The image was taken with the VLT interfer-

ometer. A red giant orbits a hotter companion. The stellar images were coloured according to the

temperatures (VLTI/ESO)

Novae are close binary stars with a hot, blue component (white dwarf). The cooler red

component, which has less mass, gives off matter to the white dwarf. For the white dwarf

its temperature and density at the bottom of the atmosphere increases, a hot spot forms,

and thermonuclear reactions can begin. During the eruption, about 1038 J is released.

In Fig. 11.21 the symbiotic double star SS Lep is shown. There is an exchange of matter

between the components. The object is about 270 pc from us, and the orbital period is

260 days. The size of the orbit is about 0.005”. Such observations are only possible with

the VLT-PIONIER (Precision Integrated Optics Near-infrared Imaging ExpeRiment). The

light from the four VLT telescopes is made to interfere with each other; this results in a

greater baselength, which in turn increases the telescope resolution.

About 200 novae have been observed in our Galaxy. It is estimated that there are about

50 novae per year in our Galaxy. Postnovae are often surrounded by expanding nebulae.

In August 1975 a nova was observed in the constellation Cygnus (maximum brightness

1 .m8).

Among the Nl stars are the S Doradus stars, the γ -Cassiopeiae stars, Z-Andromedae

stars, P-Cygni stars and others. Among the dwarf novae (DN) one counts the U-

Geminorum stars. They all have weak fluctuations in brightness in common, and then

suddenly there are outbursts between two and six magnitudes within a few days. The longer

the pause between the eruptions, the more violent they are (pent-up energy).
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R Coronae Borealis Stars

These are supergiants; the brightness remains constant for months or even years. Then

within days the brightness decreases by several magnitudes, amplitudes up to 7m. Almost

all of them are located in regions of interstellar matter, nebular patches. Based on the blue

shift of the spectral lines, we know that matter is ejected from the Star, carbon condenses,

and soot clouds eclipse the star. The expansion velocity is about 60 km/s and the mass loss

rate Ṁ ≈ 10−5M⊙/year.

T Tauri Stars

These are pre-main sequence stars with masses between 0.2 and two solar masses. They

have an extended convection zone. Some are thought to have large spots on their surfaces

(based on brightness changes when the spots move due to stellar rotation). Emission lines

of H and ionized Ca indicate an active chromosphere. Forbidden lines similar to nebulae

are also found in some T Tauri stars. This indicates circumstellar material. Observations

in X-rays show very strong variations (up to factor 10) within one day. These are probably

huge flare outbursts in their photospheres. The observed excess of IR radiation can be

explained simply: The dust/gas cloud surrounding it absorbs the star’s shortwave radiation

and re-emits in the IR. One observes strong stellar winds (10−7–10−8 M⊙/year).

Our Sun also went through a T Tauri stage, which had a significant impact on the

formation of the planets’ primordial atmospheres. During this stage, it emitted an amount

of X-ray radiation equal to a factor of 103 stronger than today.

Flare Stars

In dwarf M stars, flares are observed with released energies between 1021 and 1027 J. The

increase in brightness by up to six magnitudes occurs within a few seconds to minutes; they

are also called UV Ceti Stars. Such stars are probably very common, but the probability of

detection is low because of their low luminosity.

RS Canum Venaticorum Stars

Are found in binary star systems. Orbital periods are around seven days. The stars

exert strong tidal interactions on each other. The radio flares observed in these types

are 105–106times stronger than for the Sun. The radio spectra are polarized and non-

thermal, suggesting synchrotron radiation. One also detects a brightness modulation with

the rotation period, suggesting giant stars pots.
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11.8.5 Peculiar Stars

The suffix p in the spectral type indicates a special feature, e.g. anomalous metal

abundance.

Wolf-Rayet Stars

Stars of very high luminosity, expanding atmosphere, extremely broad emission lines.

Temperature about 30,000 K, radii between 3 and 25 R⊙, masses 10–20 M⊙. The

emissions come from the expanding envelope. One distinguishes the following types:

• WC: strong C lines,

• WN: strong N lines.

Be and Shell Stars

Shells can form around Be stars due to the high rotational velocities that characterize these

stars.

11.8.6 Planetary Nebulae

Due to their nebular appearance, which resembles that of a planet in the telescope, this

misleading name was introduced for white dwarfs that have ejected a luminous gas

envelope. Again, there is an expanding atmosphere, and H-lines as well as He-lines are

observed. The strongest lines are the forbidden lines of the elements O and Ne. Such

forbidden lines arise as a result of the low gas density. Atoms can be excited at metastable

levels, since collision, which would contribute to depopulation of the level, is very unlikely.

The forbidden lines of [O III] are at 500.7 and 495.5 nm, respectively. The forbidden

nitrogen line [NII] is at 658.4 nm.

The hot star at the center heats the gases to about 10,000 K. The gas temperature

increases as one moves away from the center. High-energy photons are absorbed less

often than low-energy photons. In the outer nebular regions, the low-energy photons have

already been absorbed, and the remaining high-energy photons cause the temperature

increase.

In general, Mira stars are thought to be the precursors of planetary nebulae.

A prominent example of a planetary nebula is the Cat’s Eye Nebula, NGC 6543

(Fig. 11.22). It is located at a distance of 1500 light-years in the constellation Dragon. The

inner part of the nebula has only 20′′ extension, the outer part extends over 6.4 arcminutes

and was formerly ejected by the very old central stare. The inner part has a temperature of

8000 K and a particle density of 5000 particles per cm3, the outer part is much thinner and

has a temperature of about 15,000 K. The 80,000 K hot central star loses about 20 trillion

tons per second due to stellar winds, which is about 3 × 10−7 M⊙/year.
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Fig. 11.22 The Cat’s Eye Nebula, NGC 6543, an example of a planetary nebula. The image was

taken with three filters: Red (Hα, 6563 nm), blue (neutral oxygen, 630 nm), and green (ionized

nitrogen, 658 nm). (HST image)

Other well-known examples of planetary nebulae are the Dumbbell Nebula (M27,

distance about 1400 light-years, diameter 3 light-years) and the Ring Nebula (M57,

distance about 2300 light-years, diameter about 0.9 light-years, age about 20,000 years).

In total, more than 1500 planetary nebulae are known in the Milky Way. Compared to the

several 100 billion stars in the Milky Way, this is not much, but these nebulae only shine

for a few 10,000 years. .

11.9 Stellar Activity

In addition to the stars with very strong variabilities discussed above, it is now possible to

determine activity cycles, spots, etc. for “normal” stars.
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11.9.1 Stellar Activity and Convection

The activity of the Sun can be explained by a dynamo process, where

• rotation,

• magnetic fields,

• convection zone

interacts. Magnetoacoustic waves are generated in the region of the convection zone, which

heat up the chromosphere and the corona, among others.

From the theory of stellar structure we know: Stars of later spectral type than F0

(T ≈ 6500 K) have a convection zone that extends to the surface. The convection zone

extends deeper into the stellar interior the later the spectral type. This can be explained

simply. Convection occurs when the adiabatic temperature gradient of an element moving

upwards due to a random perturbation is smaller than the radiation gradient of the

surroundings. If there is ionization of hydrogen H+ or helium (in this case He+, is singly

ionized He, and He++, i.e., doubly ionized He), then the radiative gradient increases and

the adiabatic gradient decreases, respectively, which favors convection. For cooler stars the

surface temperature is lower, the zone above which hydrogen is ionized extends deeper into

the stellar interior than for hotter stars.

The chromospheric activity of a star can be determined by measuring the Ca-II H and

K emission lines. Long series of measurements then allow the stellar activity cycle to

be determined. In 1957 Wilson and Bappu found that the width of the Ca-II emission

lines is a function of the absolute luminosity, Wilson-Bappu effect → Method of distance

determination. The width of a line can have various causes (rotation of the star, magnetic

fields, turbulence)—turbulence is the most important here.

Skumanich found that rotational velocity and chromospheric activity of the Stars

decrease with age.

The decrease in stellar rotation can be given as follows:

�eq ≈ t−1/2 (11.53)

�eq is the angular velocity at the star’s equator, t is the age of the star. One can only

determine the equatorial velocity if the inclination of the rotation axis is also known

(Fig. 11.23). Gyrochronology is the method of determining the age of a star from its

rotation rate. This is calibrated at the sun.
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Fig. 11.23 When determining the rotation rate of a star, the mostly unknown inclination of the

rotation axis must be taken into account. Thus, apparently slowly rotating stars may nevertheless

rotate rapidly if their axis is only slightly inclined

Table 11.3 Summary young

stars/old stars
Young stars Old stars

Activity Large amplitudes Low amplitudes

Activity cycle Irregular Regular

Rotation Rapid Slow

Chrome. activity High Low

From the rotation rate of stars one can infer their age.

In young, rapidly rotating stars, for example, huge flare outbursts are observed in the X-ray

region. A summary is given in Table 11.3

Out flowing stellar winds with magnetic fields dissipate angular momentum to the

interstellar medium, leading to the slower rotation rates observed in old stars.

Mass losses can be explained by blue-shifted star absorption components of strong lines

(Ca II H and K lines, Fig. 11.24). Mass-loss rates can be extracted from (after Reimers,

1975):

Ṁ = 4 × 10−13 L

gR
(11.54)

Where Ṁ in solar masses/year, L, g and R in units of the sun.
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blue

red

Fig. 11.24 P-Cygni profile. The component shifted to blue is from an envelope moving towards the

observer (stellar wind)

Example

cool super giants: Ṁ ≈ 10−7–10−5, Sun Ṁ ≈ 2 × 10−14.

The X-ray luminosity also depends on the age and rotation of the star.

Another interesting observation is that of coronae in O and B stars. In their spectra one

observes highly excited atoms (N V, O VI) as well as strong X-ray emissions. To explain

the existence of these coronae, a mechanism other than the hydrogen convection zone is

needed, since these stars show no convection near the surface. Here, compressions in the

stellar wind are assumed to be heated by shock waves.

11.9.2 Mass Loss of Stars

It is very easy to show that outer layers of stars (coronae) are not stable. We give here the

derivation already developed by Parker in 1958. Let us replace in the hydrostatic equation

the density ρ by

ρ =
µmH

k

P

T

then The hydrostatic equation:

dP

dr
= −

GM

r2

µmH

k

P

T
(11.55)

At the lower boundary of the corona let r = r0 and T = T0. The heat flux through a

surface 4πr2 be

4πr2K
dT

dr
(11.56)

The thermal conductivity K of a Plasma is

K ∝ T 5/2 (11.57)
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and one obtains

r2T 5/2 dT

dr
= const (11.58)

or the solution:

T = T0

( r0

r

)2/7
(11.59)

Thus

dP

P
= −

GMµmH

kT
2/7
0

dr

r12/7 (11.60)

and with P = P0 at the position r = r0

P = P0 exp

[

7GMµmH

5kT0r0

[

( r0

r

)5/7

− 1

]]

(11.61)

→ If r → ∞, the pressure remains finite and does not vanish. The asymptotic value of P

is larger than the typical pressure of the interstellar medium.

How are stellar winds driven? A distinction is made between:

• Thermally driven stellar winds: high temperature drives the wind; example: corona of

the Sun.

• Radiation pressure: Its magnitude can become as large as gravity. This mechanism

works for massive stars. A star remains stable as long as:

GM

R2
ρ >

L

4πR2

ρκ

c
(11.62)

It follows the Eddington Limit:

L <
4πcGM

κ
(11.63)

• Stars that are rotating rapidly loose mass as well.

Currently, the Sun’s mass loss is: 10−14 M⊙/year.

Red Giants: Low surface gravity, therefore stronger stellar winds.

Mass loss at late stages of stellar evolution leads to the formation of planetary nebulae.



460 11 Stellar Evolution

11.10 Further Literature

We give a small selection of recommended further reading.

The Life of Stars, G. Shaviv, Springer, 2010

Theory of Stellar Structure and Evolution, D. Prialnik, Cambridge Univ. Press, 2009

Stars and Stellar Evolution, K. de Boer, W. Seggewiss, EDP, 2008

Stellar Evolution Physics, I. Iben, Cambridge Univ. Press, 2013

Solar and Stellar Magnetic Activity, C. Schrijver, C. Zwaan, Cambridge Univ. Press, 2000

Solar and Stellar Activity Cycles, P. Wilson, Cambridge Univ. Press, 2005

Tasks

11.1 Calculate the free fall time for the above cloud with R = 1015 m to a radius with

R = 1011 m.

Solution

20,000 years.

11.2 Estimate the Jeans mass for an interstellar cloud 100 light-years in diameter, its

temperature 30 K. R = 100 × 1016 m

Solution

M > 3
2

1.38×10−23×100×1016×30
6.67×10−11×1.6×10−27 ≈ 1034 kg ≈ 104M⊙

11.3 Calculate the relativistic Doppler effect (a) for the Sun, (b) for a white dwarf with

0,8 M⊙, R = 0.01 R⊙.

Solution

Substituting the values for the Sun gives c�
ν

= 2.117 × 10−6...and this corresponds to a

Doppler effect of... c�ν
ν

= 635 m/s.

The values for the white dwarf are: �ν
ν

= 1.7 × 10−4...and this corresponds to a Doppler

effect... c�ν
ν

= 58.8 km/s.

11.4 Calculate the magnetic field strength of a white dwarf with R = 7000 km.

Solution

Assume the values for the Sun: B⊙ = 10−4 T, R⊙ = 7×105 km. Then you get BWD = 1 T.

11.5 How can brown dwarfs be found? Why are they so difficult to observe?
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Solution

If companion in a binary system, due to motion of the primary; low luminosity.

11.6 At what wavelength do you observe light emitted at 600 nm from a neutron star of

about 1 solar mass and radius 7 km?

Solution

One observes the radiation at 720 nm.

11.7 What is the apparent brightness of a type Ia supernova in the Andromeda Galaxy?

Solution

The Andromeda Galaxy is 2.5 million light-years away from us, this corresponds to

2.5×106/3.26 pc. If one substitutes into the formula for the distance modulus M = −19:

m = −19 + 5 log d − 5 → 5 .m3. So you could just see a supernova exploding in the

Andromeda Galaxy with the naked eye under very good conditions.

11.8 At what distance would a SN Ia have to explode so that it surpasses the full moon in

brightness?

Solution

A little less than 250 pc = 815 Ly.

11.9 Show that the energy released in a nova outburst is equivalent to the thermal energy

content of a thin shell of 5 × 106 K the mass 10−3 M⊙ is equal to.

Solution

E = 3/2[kT M/mu] = 3/2[1.38 × 10−16 × 2 × 1033 × 10−3 × 5 × 106/1.66 × 10−24]

11.10 Show that the mass of a black hole is approx. 2 × 1019 kg must amount to in order

to glow deep red. Could you actually see this radiation?

Solution

No, you calculate the energy!

11.11 Show the mass at which black holes could annihilate today.

Solution

Solution: If a black hole had a mass of 10−9 M⊙, then it would explode today (T > 2.7

K).
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11.12 Visually, the luminosity variation of a Mira stars is, say, 1:100 (how many

magnitudes would that correspond to?). Bolometrically, the variation is only 1:2, which

corresponds to a �T ∼ 500 ◦C corresponds. Verify that.

Solution

Approach: compare the Planck curves.


