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This is an international series that meets the need for up-to-date texts in this rapidly 
 developing field. Books in the series range in level from introductory graduate textbooks 
and practical handbooks to more advanced expositions of current research.

The Series in Medical Physics and Biomedical Engineering is the official book series of 
the International Organization for Medical Physics (IOMP).

THE INTERNATIONAL ORGANIZATION FOR MEDICAL PHYSICS
IOMP represents more than 18,000 medical physicists worldwide and has a membership of 
80 national and 6 regional organizations, together with a number of corporate members. 
Individual medical physicists of all national member organizations are also automatically 
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The mission of IOMP is to advance medical physics practice worldwide by disseminat-
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opment of medical physics, and promoting highest-quality medical physics services for 
patients.

A World Congress on Medical Physics and Biomedical Engineering is held every 
three years in cooperation with the International Federation for Medical and Biological 
Engineering (IFMBE) and the International Union for Physics and Engineering Sciences 
in Medicine (IUPESM). A regionally based international conference, the International 
Congress of Medical Physics (ICMP), is held between world congresses. IOMP also spon-
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The IOMP has several programs to assist medical physicists in developing countries. 
The joint IOMP Library Program supports 75 active libraries in 43 developing countries, 
and the Used Equipment Program coordinates equipment donations. The Travel Assistance 
Program provides a limited number of grants to enable physicists to attend the world 
congresses.

IOMP cosponsors the Journal of Applied Clinical Medical Physics. The IOMP publishes  
an electronic bulletin twice a year, Medical Physics World. IOMP also publishes e-Zine, an 
electronic newsletter, about six times a year. IOMP has an agreement with Taylor & Francis 
Group for the publication of the Medical Physics and Biomedical Engineering series 
of  textbooks. IOMP members receive a discount.

IOMP collaborates with international organizations, such as the World Health 
Organization (WHO), the International Atomic Energy Agency (IAEA), and other 
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international professional bodies, such as the International Radiation Protection 
Association (IRPA) and the International Commission on Radiological Protection 
(ICRP), to promote the development of medical physics and the safe use of radiation and 
medical devices.

Guidance on education, training, and professional development of medical physicists 
is issued by IOMP, which is collaborating with other professional organizations in the 
development of a professional certification system for medical physicists that can be imple-
mented on a global basis.

The IOMP website (www.iomp.org) contains information on all its activities policy 
 statements 1 and 2, and the “IOMP: Review and Way Forward,” which outlines all activities 
and future plans of IOMP.
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Preface

This textbook is a based on the book the physics of medical x-ray imaging by 
Bruce Hasegawa, Ph.D. There are two editions of this book: the first was published in 

July 1990 as a ring-bound soft copy and the second in November 1991 as a soft cover book, 
both by Medical Physics Publishing. Both have been out of print for over a decade. I used 
materials from Bruce’s book for over 20 years in my advanced diagnostic imaging course 
in the Radiological Sciences Graduate Program at the University of Texas Health Science 
Center at San Antonio, TX. During this time, I substantially added to and improved the 
original content, which ultimately led to the new textbook Fundamental Mathematics 
and Physics of Medical Imaging. Mathematics was added to the title since many imaging 
and related concepts are formulated using calculus-based mathematics. “Medical X-Ray 
Imaging” in Bruce’s book title was broadened to “Medical Imaging” since additional imag-
ing modalities are now included (e.g., x-ray CT, MRI, and SPECT). The only common medi-
cal imaging modality not included is ultrasound, but many of the textbook’s mathematical 
concepts apply. “Physics” was kept in the title because of its fundamental role in medical 
imaging, though many basic physics concepts are assumed to be covered in other courses 
(x-ray  production, radioactive decay, interactions of radiation with matter, nuclear mag-
netic resonance, etc.). Basic physics concepts are extended in the textbook where needed to 
better describe the physical characteristics of imaging systems.
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Introduction

While this textbook is appropriate for a graduate level medical physics 
course, we believe that it can also be used for an upper level undergraduate physics 

or engineering course. A reasonable prerequisite would be an introductory course cover-
ing basic medical imaging systems; however, experience has indicated that many students 
perform well without this prerequisite. Unlike Bruce’s earlier book, this textbook includes 
a teacher’s guide containing detailed answers to all homework problems. Also, example 
images from each imaging modality are provided for use with lectures and homework 
assignments. Display and analysis of example images are provided by the freely download-
able image processing application ‘Mango’ (http://ric.uthscsa.edu/mango/download.html 
or the publisher’s website http://www.crcpress.com/product/isbn/9781498751612).

The textbook provides a structured approach for teaching advanced imaging concepts 
derived from basic concepts such as contrast, spatial and temporal resolution, and noise. 
As such, the book begins by introducing basic concepts (Chapters 1 through 3), moves to 
intermediate concepts (Chapters 4 through 8), and then to advanced concepts (Chapters 9 
through 11). Following these sections, specific imaging methods (Chapters 12 through 13, 
dynamic x-ray imaging) and tomographic imaging modalities (Chapters 14 through 16, 
x-ray CT, MRI, and SPECT) are detailed. Homework problems keyed to each chapter are 
provided to monitor students’ progress. The cover art for the textbook provides a wide 
assortment of terms that students will encounter. Though entering students may not 
be acquainted with many of these terms, they should be familiar with all of them after 
completing a course using the textbook.

http://ric.uthscsa.edu/
http://www.crcpress.com/
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I
Basic Concepts
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3

C h a p t e r  1

Overview

1.1 INTRODUCTION
This book is written assuming that you have a reasonable grasp of the physical mechanisms 
underlying the formation of medical images. Many of the basic physical concepts asso-
ciated with medical imaging are fundamental to x-ray imaging, so numerous examples 
using x-ray imaging are provided. As such, students should have a basic understanding 
of the interaction of electrons with matter (bremsstrahlung) and the formation of x-rays, 
the interaction of x-rays with matter (photoelectric and Compton interactions), how the 
medical x-ray image is formed with radiographic film and intensifying screens, how (and 
in what units) the quantity of radiation is measured, and finally an appreciation of the 
principles of radiation protection. Additionally, since this book includes examples on 
nuclear medicine and magnetic resonance imaging, the student should have a basic under-
standing of associated physical concepts. There are several excellent texts that cover these 
topics, including those by Johns and Cunningham, Hendee, Ter Pogossian, Currey et al. 
(Christensen’s Physics of Diagnostic Radiology), and Bushberg et al. (The Essential Physics 
of Medical Imaging). You are requested to consult these references if the aforementioned 
topics are not familiar to you.

1.2 IMAGING SYSTEM PERFORMANCE
The most basic features used to assess imaging system performance are resolution (spatial), 
contrast, and noise. Measurements of these basic features provide a foundation for studying 
and comparing medical imaging systems. Measures derived from pairs of these basic fea-
tures provide further insight and include signal-to-noise ratio (SNR), modulation transfer 
function (MTF), and the Wiener spectrum. The most comprehensive measures of system 
performance incorporate all three basic features and include the Rose model equation (and 
related contrast detail analysis), and receiver operating characteristic (ROC) analysis.

Figure 1.1 illustrates the relationships between features and measures used to assess 
imaging system performance. Basic features (noise, spatial resolution, and contrast) are 
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indicated in boxes, and intermediate measures (SNR, Wiener spectrum, and MTF) 
are indicated in the regions bridging pairs of features. Finally, unifying measures (Rose 
model, contrast detail analysis, and ROC analysis) lie at the center of the diagram since 
they incorporate elements of all three basic features, implicitly if not explicitly. The 
diagram is not intended to suggest a hierarchy that one feature or measure is somehow 
more important than another. The student who contemplates Figure 1.1 should appre-
ciate the unity of the science of medical imaging and understand these fundamental 
concepts as part of the whole, rather than as unrelated and independent pieces. To help 
understand this diagram, we provide both conceptual examples and basic quantitative 
methods.

1.3 BASIC PERFORMANCE FEATURES
1.3.1 Spatial Resolution

The spatial resolution of an imaging system can be intuitively defined in terms of the 
smallest spacing between two objects that can be clearly imaged. Spatial resolution varies 
widely between imaging modalities such that the spatial resolution of a conventional x-ray 
system with direct film exposure is approximately 0.01 mm while that of a CT scanner 
is approximately 1 mm. A satellite orbiting the earth’s surface can record an object that 
is approximately 1 ft across. In each case, the smallest distance between separate objects 
that a device can record is a measure of its spatial resolution. This conceptual definition of 
 spatial resolution is widely used in medical imaging. A more quantitative definition speci-
fies spatial resolution of an imaging system in terms of its “point spread function” (PSF), 
which is the image of an “ideal” point object.

Rose model

ROC analysis

Modulation transfer

Sig
na

l-t
o-

no
ise

rat
io

Autocorrelation and

wiener spectra

Contrast detail

ResolutionContrast

Noise

FIGURE 1.1 Schematic of medical imaging performance features ranging from basic (signal, noise, 
and contrast) to comprehensive (contrast-detail analysis, the Rose model, and receiver operating 
characteristic analysis).
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Figure 1.2 illustrates how the spatial resolution of an x-ray imaging system can be quan-
tified using its PSF. In this example, the x-ray system images a “point” object, a small hole 
in an otherwise radio-opaque sheet of lead. X-rays pass through the small hole, forming an 
image of the point object. We can determine the 2-D PSF(x, y) of the system by recording 
the optical density (OD) values across the point image using a scanning optical microden-
sitometer if the image is recorded on a sheet of film, or by extracting digital values if the 
image is recorded digitally. These values are then converted to relative exposure values. 
A graph of the relative exposure is the PSF(x, y) (Figure 1.2d).

Ideally, one would see an exact representation of the object in the image, in that the width 
of the image would exactly match the width of the object. However, the image of a point 
object is always blurred by the imaging system. An index often used to indicate the extent 
of this blurring is the full width at half maximum (FWHM) of the PSF (Figure 1.2d). 
In Chapter 6, we describe how the PSF of an imaging system can be determined experimentally 
and describe additional approaches to characterize an imaging system’s spatial resolution.

1.3.2 Image Contrast

Image contrast is broadly defined as the difference between adjacent regions in an image. 
In medical images, contrast refers to differences between neighboring tissues. For x-ray 
imaging, contrast between bone and soft tissue is high and contrast between fat and 

X-ray tube

X-ray beam

Lead plate

Hole in plate

Sampling line

(b)(a)

(c)

Image receptor

Position on film

(d)

Position on film

Relative
exposure

a

a/2

FWHM

Imaged pointIdeal point
(10 μm width for film)

Relative
exposure

FIGURE 1.2 X-ray spatial resolution. (a) Schematic of x-ray image acquisition using a lead plate 
with a small hole, (b) developed x-ray image, (c) expected response for ideal imaging system, and 
(d) actual point spread function with the full width at half maximum width.
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muscle is low. Radiographic contrast depends on several factors including the chemical 
composition of the object, the type of device used to record the image (whether it is film 
or an electronic detector), the energy spectrum of the x-ray beam, whether or not scatter 
radiation is present in the x-ray beam, and whether fog or some other baseline signal is 
present in the imaging device.

Image contrast is defined mathematically as “relative” contrast (Figure 1.3), here the 
fractional difference in x-ray exposure between the object and its surrounding background. 
In this figure, a small plastic disk is radiographed. Because of the nonlinear response of 
the film, we calculate image contrast using x-ray exposure (X). The background material 
(e.g., plastic platform) attenuates the x-rays passing through the background, while both 
the disk and the background material attenuate x-rays within the disk region. Thus, the 
x-ray fluence (photons/area) is higher outside of the plastic disk than it is beneath it, so 
the x-ray exposure is higher in the background than beneath the disk. If x-ray exposure 

X-ray tube

Radiographic contrast =

where ΔΦ = Φ1 – Φ2

Brackground fluence = Φ1

Object fluence = Φ2

ΔΦ
Φ1

X-ray beam

Plastic disk

Image
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(a)

(b) (c)

ΔX = X1–X2

ΔX
X1

Radiographic image

Sampling
line

Re
la
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e e
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e

Position on image

X1 X2 Image contrast =

FIGURE 1.3 Image contrast. (a) Schematic of x-ray image acquisition for a low-contrast phantom 
(plastic disk), (b) developed x-ray image, and (c) graph of relative exposure levels for phantom and 
background.
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in the “background” is X1 and that for the disk is X2, then the contrast of the disk relative 
to the background is

 
C

X X

X
= -2 1

1

 (1.1)

This contrast is unitless and can be positive or negative, though we often ignore the sign 
since it is understood from the context of the measurement. In the image given in Figure 1.3, 
x-ray exposure contrast is negative; however, film contrast is positive (Figure 1.3b). This 
contrast reversal is a property of x-ray films that produce negative images. We will discuss 
factors contributing to image contrast more thoroughly in Chapter 4.

1.3.3 Random Noise

Random noise relates to the uncertainty or imprecision with which a signal is recorded. In 
impressionist paintings, the artist would often create an image by painting a large number 
of small dots on the canvas. There is a great deal of uncertainty in the image being created 
when only a small number of dots have been placed on the canvas. As the number of dots 
increases, the precision or certainty with which the image is being represented increases. 
A similar thing happens in x-ray and nuclear medicine imaging. An image that is recorded 
with a small number of photons/area generally has a high degree of uncertainty or is noisy, 
while an image recorded with a large number of photons/area is more precise and less 
noisy. Grains in radiographic film, grains in intensifying screens, or electronic noise pres-
ent in an electronic circuit or electronic detector can also contribute to x-ray imaging sys-
tem noise. These factors contribute to the uncertainty or imprecision with which a signal is 
recorded, that is, to random noise.

An example of how random noise measured for x-ray imaging is given in Figure 1.4. 
Here, an image is acquired of a large plastic plate with a hole in it. The plate is suspended 
above the image receptor. A scanning microdensitometer is used to measure the den-
sity across the exposed radiograph and density converted to relative exposure. Ideally, 
we could repeat this experiment and obtain exactly the same densitometer readings 
each time. However, due to the random nature of emission of x-rays, attenuation within 
the plastic plate, and exposure of the film, this does not occur. Therefore, each density 
recorded has some level of uncertainty. This uncertainty is referred to as random noise. 
While there are several ways to quantify image noise, the most common noise measure 
is the standard deviation of image values in a uniform region of the image. In Figure 1.4, 
the standard deviation was assessed within the image region associated with the hole 
in the plate, but it could also be assessed in the uniform region outside of the hole. The 
concept of noise, how it is quantified, and its impact on images will be discussed in 
greater detail in Chapter 8.

Imaging science would be simple if an imaging technique could be described, and its 
performance quantified, in terms of only one of the three basic features: noise, spatial 
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resolution, or contrast. In such a simple world, one could say that a screen/film combination 
has better spatial resolution than a CT or MR image and therefore is better for all medical 
imaging applications, that a CT scanner is better than a film/screen system because it pro-
vides higher bone-to-soft tissue contrast, or that MRI is better than CT because of its high 
within soft tissue contrast. These simple statements obviously are not true for all cases and 
the imaging modality of choice depends on specific medical imaging needs (i.e., broken 
bone vs. brain tumor). To continue this line of thought, a nuclear medicine bone scan can 
reveal metastases to bone before radiographic or MRI changes are detectable. To evalu-
ate the suitability of a specific system for a given imaging task, scientists must under-
stand the tradeoffs in the design of the instrumentation used to image the human body as 
well as the needs of the imaging task. Several intermediate measures based on pairs of the 
basic features (noise, spatial resolution, and contrast) help in evaluating imaging system 
performance.
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X-ray beam

Image receptor

Plastic plate
with hole

Density
measurements

Exposure
graph

(a)

(b) (c)

Noise = signal standard
deviation = σ

Position on filmSampling lineRadiographic image

Re
la

tiv
e e

xp
os

ur
e

FIGURE 1.4 Concept of noise. (a) Schematic of x-ray image acquisition using plastic plate with 
hole, (b) cartoon of x-ray image, and (c) graph of relative exposure illustrating method to measure 
noise as a standard deviation of exposure.
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1.4 INTERMEDIATE PERFORMANCE MEASURES
1.4.1 Modulation Transfer Function
1.4.1.1 Spatial Resolution and Contrast
It is not sufficient to specify the capability of an imaging system only in terms of the 
smallest size of objects that can be distinguished. Detectability is also affected by the rela-
tive contrast of objects. In fact, for all medical imaging systems, the contrast with which 
an object is imaged decreases as the object size diminishes due to blurring. The relative 
contrast between objects literally disappears when their spacing diminishes toward the 
FWHM of the system PSF. A measure that incorporates both contrast and resolution is the 
MTF. The MTF provides contrast information as a function of diminishing object size, not 
just a limiting size. The MTF(  f  ) is sometimes assessed using periodic objects that appear 
sinusoidal to the imaging system, as in Figure 1.5. Higher frequencies relate to smaller 
distances between the light and dark regions in this pattern, and the diminished contrast 
at higher frequencies (Figure 1.5c) leads to diminished spatial resolution. The scientific 
and mathematical basis of the MTF(  f  ) will be covered in Chapter 6, with examples from 
several medical imaging systems.
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FIGURE 1.5 Modulation transfer function (MTF) concept. (a) Schematic of x-ray exposure, the 
sinusoidal phantom, and resulting relative exposure. (b) Graphic illustrating how the MTF could 
be measured using phantoms representing different spatial frequencies. (c) Example of a continu-
ous MTF curve and equation for modulation.



10   ◾   Fundmental Mathematics and Physics of Medical Imaging

1.4.2 Signal-to-Noise Ratio
1.4.2.1 Noise and Contrast
Another important measure concerning imaging system performance is SNR, a famil-
iar term to electronic engineers or scientists working with low-level signals in electronic 
circuits. As the terminology implies, SNR is the ratio obtained when the image’s signal is 
divided by the image’s noise, both measured using the same units (Figure 1.6). The SNR 
is therefore a unitless index. For imaging systems, the signal of interest is the difference 
between the object of interest and its surrounding background (ΔX in Figure 1.6), and the 
noise is the uncertainty with which the object is recorded (the standard deviation = σ). For 
example, if one were imaging a tumor that was found in the liver, the signal would be the 
difference between the tumor and the surrounding tissue. In this example, the noise could 
be assessed as the standard deviation in the nearby surrounding tissue. The ratio of these 
two numbers would be SNR. The SNR in medical images will be further investigated in 
Chapter 8.
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FIGURE 1.6 Signal-to-noise ratio (SNR). (a) Schematic of a setup for x-ray exposure to assess the 
SNR. (b) Graphic of resulting exposure with line for assessing responses. (c) Graph of relative expo-
sure vs. position used to assess the signal, the noise, and the SNR.
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1.4.3 Wiener Spectrum
1.4.3.1 Noise and Spatial Resolution
Another intermediate measure that combines noise with spatial resolution is the Wiener 
spectrum (Figure 1.7). Just as the response of an imaging system decreases as the object’s 
spatial dimension becomes smaller and smaller, the response of the system to noise fluc-
tuations decreases as the spatial extent of noise becomes smaller and smaller. The theoreti-
cal frequency spectrum of random noise is uniform across a wide range of frequencies, so 
the system frequency response to random noise will be similar to the system MTF(f). The 
Wiener spectrum describes noise power as a function of spatial frequency and equals the 
Fourier transform of the autocorrelation function in a uniformly exposed radiographic 
image. This topic will be explored further in Chapter 9.

Finally, there are image quality measures that attempt to incorporate all three basic 
image features (spatial resolution, contrast, and noise) as well as the performance of 
the observer in the evaluation of an imaging system. These methods include the Rose 
model, related contrast-detail analysis, and receiver operating characteristic (ROC) 
analysis.
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FIGURE 1.7 Concept of Wiener spectrum. (a) Schematic of x-ray image acquisition for used in 
determining the Wiener spectrum. (b) Shows how delta signal value data are to be calculated. 
(c) The intermediate calculation of the autocorrelation function. (d) The calculation of the Wiener 
spectrum as the Fourier transform of the autocorrelation function.
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1.5 ADVANCED PERFORMANCE MEASURES
1.5.1 Rose Model

The Rose model is a mathematical relationship (Equation 1.2) between the SNR (k) at the 
threshold of detectability, object size (A), and contrast (C):

 k2 = C2N = C2ΦA (1.2)

where
k is the SNR needed to just see an object in an image
C is the contrast of the object with respect to surrounding background
N is the number of photons used to image the object of area A (usually in background)
Φ is the photon fluence (N/A) used to form the image
A is the area of the object

The Rose model relates the three fundamental features using “size or A” for spatial 
resolution, Φ for noise, and C for contrast. The equation can be used to predict whether 
an object with a given set of characteristics (size and contrast) can be visually detected in 
an image created at a certain noise level. A value of k (SNR) in the range of 5–7 has been 
reported to be adequate for many imaging tasks. Using Equation 1.2, with an assigned 
value for k, we can estimate the size of the smallest object (A) that we might be able to 
see at contrast level (C) and photon fluence (Φ). The Rose model is a key element in our 
assessment of the ability to perceive low-contrast objects in a noisy image, conditions 
often found in radiology. We will further describe and expand on the Rose model in 
Chapter 9.

1.5.2 Contrast Detail Analysis

A Rose model phantom can be used for contrast detail analysis (Figure 1.8a). An observer 
views an image of the phantom with object size changing in one direction and contrast 
changing in the other. The observer reports the size of the smallest object they per-
ceive at each contrast level. The result of such an analysis is a contrast detail curve in 
which the size (i.e., detail) of smallest observable objects is plotted against their con-
trast. A different curve can be plotted for each noise level (Figure 1.8c). These curves 
illustrate the constraints on signal detection implied by the Rose model equation. For 
example, smaller objects must have higher contrast to be seen in the image, approaching 
the resolution-limited region of the graphs. Imaging with low photon fluence (low SNR) 
requires higher contrast than using high photon fluence (high SNR). Finally, the dispar-
ity between low and high SNR tends to increase with increasing object size toward the 
noise-limited region of the graphs. Such a set of curves, one for each noise level, can be 
used to provide a relationship between the contrast and object size needed under differ-
ing noise conditions.
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1.5.3 Receiver Operating Characteristic Analysis

Receiver operating characteristic curve (ROC) analysis is considered the definitive test of 
a diagnostic imaging system (Figure 1.9) since it can include observers. It can be used to 
evaluate imaging systems, imaging techniques, and even image analysis methods. In ROC 
analysis, the true-positive fraction (e.g., the fraction of patients correctly stated as having 
the disorder) of a diagnostic test is plotted against the false-positive fraction (fraction of 
patients incorrectly stated as having the disorder). The true-positive fraction is also called 
the “sensitivity” of a test and relates to how well a test performs in detecting a disorder.

Unlike other performance measures, ROC analysis does not explicitly use noise, contrast, 
or resolution as dependent or independent variables, but outcomes are dependent on these 
factors. This makes it easier to compare different imaging systems to determine which might 
be best for a particular diagnostic imaging task. An ideal system would give no false positives 
unless the observer insisted upon calling everything positive, and its ROC curve therefore 
would pass through the upper left corner of the graph. On the other hand, if the image con-
veyed no information and the observer was forced to guess whether or not the object was 
present, the ROC curve would be a diagonal line from the lower left to the upper right corner. 
Therefore, the amount by which the ROC curve bows away from the diagonal and toward the 
upper left-hand corner is a measure of the usefulness of the imaging technique. More details 
concerning ROC analysis methods will be presented in Chapter 11.
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FIGURE 1.8 Contrast detail curves. (a) Schematics of the x-ray image acquisition and the 
Rose model phantom. (b) Graphic of the x-ray image acquired using the Rose model phantom. 
(c) Contrast detail curves derived using the Rose model phantom for high and low SNR imaging.
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1.6 ORGANIZATION OF THE BOOK
The book is organized into five sections with 16 chapters: Sections I through III (Chapters 1 
through 11) cover basic, intermediate, and advanced math and physics concepts, while 
Sections IV through V (Chapters 12 through 16) cover several specific medical imaging 
modalities (X-ray CT, SPECT, and MRI).

HOMEWORK PROBLEMS
P1.1 Assume that we have taken a radiograph of a small circular plastic object from which we 

have made the following relative exposure measurements along a line including the object:
 359, 376, 421, 424, 394, 371, 423, 349, 399, 346, 482, 476, 498, 501, 528, 449, 501, 530, 
525, 439, 502, 467, 521, 520, 523, 479, 528, 529, 476, 523, 430, 392, 439, 390, 429, 439, 
387, 380, 420, 429

 (a) Make a graph of these values as a function of position.

 (b) Calculate contrast, noise, and the signal-to-noise ratio.

  In each case, define any ambiguous terms and describe how you determined each value.
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FIGURE 1.9 Receiver operating characteristics (ROC) analysis. (a) Graphic of radiograph of 
patient with or without lesion to be evaluated by multiple observers. (b) Four possible outcomes 
(true positive, false positive, true negative, and false negative). (c) Example of graphing the ROC 
curve as a true-positive fraction of responses (TPF) vs. false-positive fraction of responses (FPF). 
(d) Graph of ROCs indicating excellent, good, and useless diagnostic capabilities.
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P1.2 Assume that a PSF is described by the following Gaussian function:
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 (a) If f(x) represents a probability density function on the domain (−∞ to +∞), 
show that μ is the mean value and σ is the standard deviation.

 (b) Show algebraically that the FWHM for a Gaussian PSF is

 FWHM = 2 2 2ln( )s

P1.3 The following are image signal measurements taken at equal intervals across the 
image of a point object:

Position 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Value 0 1 3 7 14 25 41 61 80 95 100 95 80 61 41 25 14 7 3 1 0

 (a) Calculate the standard deviation of the profile, and then use the result from (2b) 
to estimate the FWHM of the PSF.

 (b) Graph the signal measurements given in the table and use this graph to estimate 
the FWHM. Compare the result with that in (a).

P1.4 Given film density values for a PSF, explain how you would convert these values to 
relative x-ray exposure.

P1.5 Conceptually, what does the MTF represent?
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C h a p t e r  2

Medical Imaging Technology 
and Terminology

The reader should have an understanding of the basic principles of conventional 
radiography in which photographic methods capture radiographic images. Typically, 

for planar x-ray imaging, a patient is positioned between an x-ray source and a film/
screen cassette. The cassette contains an intensifying screen that, when exposed to radia-
tion, emits light that exposes the film. The film is developed and viewed by a radiologist. 
A film is a multipurpose component used for image acquisition, viewing, and archiving. 
Increasingly planar radiographs are captured, processed, displayed, and stored digitally 
rather than using film.

Medical images are acquired using both digital planar and tomographic imaging sys-
tems, and this chapter briefly summarizes methods used for both (Figure 2.1). Additional 
details regarding these imaging systems will be covered in later chapters, with focus on 
imaging performance.

2.1 DETECTORS
2.1.1 Image Intensifier

Planar radiographs provide high-resolution images of stationary objects that are used in 
many clinical studies, but “dynamic” images of moving body parts are needed for many 
studies. This is seen in the circulatory system where a series of x-ray images must be 
acquired to monitor cardiac motion, image or measure the flow of a contrast agent through 
the circulatory system, or map temporal changes associated with other organs.

In the “olden days,” radiologists used fluorescent screens to observe the motion of body 
parts under x-ray examination (Figure 2.2). An x-ray fluorescent screen is one that emits 
light when exposed to x-rays. The patient’s body was positioned between the screen and the 
x-ray tube. X-rays passed through the patient’s body and struck the screen, allowing the 
radiologist to view the image from the fluorescent screen.
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There were three basic problems with this technique. First, the resulting image was very 
dim. The radiologist had to view the image in a darkened room. In fact, the radiologist had 
to stay in the darkened room, or wear dark red glasses, so that their eyes remained dark-
adapted. Second, the radiologist usually looked directly at the fluorescent screen, so his or 
her head was in the path of the x-ray beam. This problem could be overcome by viewing 
the image through one or more mirrors, but this was an annoying complication. Finally, the 
image was so dim that it could not be properly recorded using a movie or video camera.

In the late 1940s and early 1950s, the x-ray image intensifier was introduced as a way to 
eliminate both the dim fluorescent image and the requirement for direct viewing. The image 
intensifier provided a means to both image and record dynamic processes in the body. 

2.1. Detectors
 2.1.1. Image Intensifiers
 2.1.2. Scintillators
 2.1.3. Gas Filled
 2.1.4. Solid State

2.2. Digital Planar Imaging
 2.2.1. Film Digitization
 2.2.2. Photostimulable Phosphors (PSP) Systems
 2.2.3. Scanning Detector Arrays
 2.2.4. Digital Radiographic (DR) Systems

2.3. Computed Tomographic Imaging
 2.3.1. Positron Emission Tomography (PET)
 2.3.2. Single-Photon Emission Computer Tomography (SPECT)
 2.3.3. X-Ray Computed Tomography (CT)
 2.3.4. Magnetic Resonance Imaging (MRI)

FIGURE 2.1 Detectors, digital planar imaging methods, and computed tomographic imaging 
methods used in diagnostic medical imaging.
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FIGURE 2.2 Key components of a conventional x-ray fluorography system.
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In practice, the radiologist moved the image intensifier to position it over the body part of 
interest. For example, an abdominal radiologist might use an image intensifier system 
to examine the gastrointestinal tract of a patient suffering from an ulcer. The patient was 
given a barium contrast agent either taken orally (or introduced into the GI tract by some 
other route). The radiologist viewed the lining of the GI tract after it was coated with the 
contrast agent to find areas where an ulcer might be located.

As its name suggests, the purpose of the image intensifier was to amplify the light image 
produced by the fluorescent screen to generate a much brighter image for viewing. The image 
formation process begins when x-rays strike the input screen of the image intensifier or II 
(Figure 2.3). The II’s fluorescent screen converts the x-ray image into a dim light image, 
similar to a conventional fluoroscopy screen. Signal amplification begins at the photocathode 
that converts the light image into a 2-D pattern of electrons. The electrons are accelerated 
toward the anode end by a high voltage in a way that preserves the geometry of the image. 
The electrons are focused onto a smaller output phosphor screen where their energy is 
converted back into light. The combination of electron acceleration and geometric mini-
fication produces a light image at the output phosphor that is 1000–5000 times brighter 
(photons/area) than the light image produced by the input fluorescent screen. As a result, 
the image intensifier increases the brightness of the x-ray image (called the fluoro image) 
to a level that can be readily monitored by a video camera.

The fluoro image is viewed on a video monitor by the radiologist, and a video recorder 
similar to those used in homes to record football games and our favorite television 
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FIGURE 2.3 Added components of an image intensifier–based x-ray fluorography system with 
image intensifier detailed.
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programs can be used to record the study for later review. Alternatively, the fluoro image 
can be recorded with a movie or cine camera on film with better spatial resolution and 
better contrast than video, but which must be chemically processed.

Most importantly, the image intensifier produces a “live” fluoro image where the radi-
ologist can, for example, watch dynamic changes such as ventricular contraction in the 
heart. The image intensifier can also be moved across the patient to survey a large region of 
anatomy. This is useful in abdominal radiography where radiologists must locate a specific 
region of the patient’s internal anatomy prior to recording high-resolution static planar 
images (called spot films).

2.1.2 Scintillator

The scintillation detector (Figure 2.4) has been used in positron emission tomography 
(PET) systems, nuclear medicine gamma cameras, single-photon emission computed 
tomography (SPECT) systems, and older x-ray computed tomographic (CT) imaging sys-
tems. A scintillator is a material such as NaI(Tl) or cadmium tungstate that emits light 
when exposed to radiation, where the brightness of the emitted light is proportional to 
the energy absorbed. The light signal from the scintillator is converted into an electrical 
signal by mounting the scintillator on a photomultiplier tube or a sensitive photodiode. 
Scintillation crystals have a high average atomic number and high density, making them 
excellent absorbers of x-rays. The thickness of the crystal can be increased to ensure nearly 
100% absorption of x-rays and gammas. These detectors generate an analog electronic sig-
nal proportional to the brightness of the light generated by the scintillator. The resulting 
signal is delivered through an electronic amplifier to an analog-to-digital converter (ADC) 
that converts the voltage signal to a digital value that is processed and stored for later use.

Unlike an image intensifier that produces an image over a large area, a scintillation 
detector captures the radiation intensity only at the location of the scintillation crystal. The 
gamma camera used in nuclear medicine departments is an exception to this rule. It uses 
a large single crystal with an array of photomultiplier tubes attached to determine where 
in the crystal gamma radiations are absorbed. Scanning a small scintillation detector with 
a focused collimator to record the intensity at each point has also been used to generate an 
image, similar to older nuclear medicine rectilinear scanners. Medical x-ray CT imaging 
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FIGURE 2.4 Scintillation detector with collimator, NaI(Tl) crystal, and photomultiplier tube.
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systems use an array of detectors arranged in a circular arc (Figure 2.5). This detector array 
is rotated about and translated along the patient to collect sufficient data to reconstruct 
tomographic images of the patient volume within the scanned range.

2.1.3 Gas Filled

Another detector used in digital radiographic (DR) systems is the gas ionization detector 
(Figure 2.6). It was used in older CT scanners as an alternative to scintillation detectors. 
A gas ionization detector can be thought of as a volume of special gas contained in an enclo-
sure having one face that is transparent to x-rays that serves as the radiation window. The 
detector contains two electrodes, one at a negative electrical potential and one at a positive 
electrical potential. An x-ray enters the detector through its radiation window and dislodges 
electrons from the gas molecules forming pairs of ions. The resulting charges are collected by 
the electrodes and form an electrical current in the detector electronics that is proportional 
to the total number of ion pairs produced. Like scintillation detectors, this device measures 
radiation exposure at the location of the detectors. Therefore, these detectors were arranged 
in a circular arc and rotated about the patient for CT scanning (Figure 2.5).

The advantage of the gas ionization detector is that it is inexpensive and can be made 
relatively compact. The disadvantage is that gases are poor x-ray absorbers compared to 
solid crystalline scintillators. Xenon is used in gas ionization detectors since it has excel-
lent x-ray absorption in comparison to other gases due to its relatively high atomic number 
(high-z). Additionally, to further increase x-ray absorption, the xenon gas is pressurized to 
several atmospheres (increasing density).

X-ray tube

X-ray 
beam

Detector array

Reconstruction
circle

FIGURE 2.5 Third-generation x-ray CT system showing rotational movement of x-ray tube, the 
array of detectors, and the limits of the reconstructed image (scan circle).
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2.1.4 Solid State

The most extensive use of solid-state detectors in medical imaging is with DR imaging 
panels. These panels consist of a large array of closely packed detectors, with each detec-
tor assigned a row–column address and corresponding physical location. The detectors 
are classified as either “indirect” or “direct” based on how they convert absorbed x-ray 
energy into an electrical signal. Indirect-conversion detectors are hybrids as they contain 
both scintillators and semiconductors, and conversion is a two-step process. In the first 
step, absorbed x-ray energy is converted to light by the scintillator(s), and in the second 
step, the light is converted to an electrical signal by a photodiode and stored on a capaci-
tor. Direct-conversion detectors both absorb x-ray energy and convert it to an electrical 
signal that is stored in a capacitor. Row–column readout electronics for the digital 
panels encodes locations of each detector and converts stored electrical signals into 
digital signals.

The efficiency of x-ray absorption is generally higher for indirect-conversion detec-
tors since its CsI:Tl scintillators have a higher average atomic number than the detection 
component in direct-conversion detectors (amorphous selenium [a-Se]). The dynamic 
range of solid-state detectors is high (~104), necessitating a 16-bit integer to cover the 
range. Unlike film-screen systems, solid-state detectors have a linear response across 
their dynamic range so that they are useful across a wider range of x-ray exposures, 
supporting lower or higher exposures without overexposing or underexposing as seen in 
film/screen systems.

2.2 DIGITAL PLANAR IMAGING
Film–screen imaging has been the mainstay for planar x-ray imaging for many decades, 
and similarly image intensifiers have been the mainstay for dynamic imaging. Various 
digital imaging technologies including (1) photostimulable phosphor systems, (2) scanned 
detector arrays, and (3) digital flat panels are replacing these older technologies. A picture 
archiving and communicating system (PACS) can provide rapid access to and viewing of 
the digital images. X-ray films can be entered into a PACS using film digitizers to convert 
them to a digital format.
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FIGURE 2.6 Gas-filled ionization detector with collimator, gas chamber, and associated electrical 
components.
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2.2.1 Film Digitizer

X-ray film digitization is a technique in which the radiographic film is placed in an instru-
ment that scans the film to generate an electronic signal proportional to its optical density 
as a function of position. A typical system is shown in Figure 2.7. In this instrument, a 
narrow-beam light source (usually a laser) is projected through the film, and the intensity 
recorded with a photomultiplier tube. The optical density (OD) of the film is defined as

 OD = −log(transmittance) = log I

I
oæ

è
ç

ö
ø
÷  (2.1)

where
Io is the incident light intensity (w/o film)
I is the transmitted light intensity

This relative measure corrects for differences in light source intensities between scanners 
and within-scanner changes over time. The laser film scanner produces an electronic signal 
that is proportional to film density that is digitized and stored using 10–12 bits of a 16-bit 
integer, with images that are formatted into a 1024 × 1024 or finer pixel matrix.
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FIGURE 2.7 Laser film scanner used for film digitization.
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2.2.2 Computed Radiographic (CR) Systems

A digital imaging alternative to the film-screen system, based on a photostimulable phos-
phor screen, was introduced in the 1980s (Figure 2.8). A photostimulable phosphor screen 
emits light when stimulated by a light of a different wavelength (hence photostimulable). 
When exposed to x-rays, about half of the energy in the x-ray beam is trapped in the pho-
tostimulable screen as a “latent image” that decays slowly over time. This energy is released 
by scanning a red laser beam across the plate, generating blue light (the luminescence). 
The brightness of the luminescence is proportional to the intensity of the x-rays originally 
striking the screen. The red light is filtered out, and the blue light is amplified and con-
verted by a photomultiplier system to an electrical signal representing x-ray intensity. The 
electrical signals are digitized and using digitally encoded scanner positions converted to 
a 2D digital image.

Photostimulable phosphor screens have several advantages over film/screen systems. 
First, similar to solid-state detectors, photostimulable phosphors are less prone to under-
exposure or overexposure, because of their wide dynamic range of radiation exposure 
(104–105) compared to film (~102). This is important for portable or emergency chest 
radiography where the detector must record high exposures behind the lung simultane-
ously with low exposures through the abdomen. Second, the response of photostimula-
ble phosphors is linear, a property that simplifies relating pixel values to x-ray exposure 
(Homework Problem P2.4). Finally, the image is obtained electronically, without chemical 
processing, and the photostimulable screens are reusable. Importantly, photostimulable 
phosphor screens are designed for mounting in conventional size cassettes and served as 
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FIGURE 2.8 Photostimulable phosphor system general layout (a), formation and stimulation of the 
latent image (b), and scanning used during stimulation by laser and readout (c, d).
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a DR replacement for film/screen cassettes prior to updating to DR plate–based systems. 
Among the disadvantages of photostimulable phosphor systems are their cost ($500,000 
or more) and the slight degradation in spatial resolution in comparison to film-screen sys-
tems, which may be critical in diseases such as the detection of pneumothorax or diffuse 
interstitial disease.

Similar to indirect DR detectors, the photostimulable phosphor systems use a two-step 
process to formulate a digital image. However, since the digital image in these systems 
is not read out at the time of exposure, it is not categorized as a DR system but rather 
as a CR system. Regardless of the categorization, both DR and CR systems only produce 
 digital images.

2.2.3 Scanning Detector Array

Arrays of scintillation, gas ionization, or solid-state detectors can be used in scanned pro-
jection systems. In these systems, the radiation beam is collimated using fan-beam or 
pencil-beam geometry (Figure 2.9). The x-ray beam passes through the patient and onto 
the detectors that are arranged in a linear array or circular arc. Scanning the x-ray beam 
and the detector array across the patient forms an image. The detectors accommodate a 
wide range of x-ray exposures making them less prone to overexposure or underexposure 
than film/screen systems. In comparison with broad beam geometries, the narrow x-ray 
beam greatly reduces scatter, thereby improving the detection of subtle differences in x-ray 
absorption by soft tissues in the patient. Scanned detector array systems have not been 

Scanning detector 
arrayfan beamtube
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FIGURE 2.9 Fan beam x-ray scanning system with vertically aligned array of detectors.
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widely adopted for routine clinical studies because they have poorer spatial resolution than 
film/screen and photostimulable phosphor systems, are susceptible to motion artifacts, 
and are expensive to purchase and maintain in comparison to conventional film/screen 
systems. Finally, x-ray CT can be used as a scanned detector array system, as exemplified 
by the scout scan used to select scan range along the body.

2.2.4 Digital Radiographic Systems

DR systems have emerged as a key component of picture archiving and communications 
systems (PACSs) in radiology departments. DR systems are based on digital flat panels 
containing a large array of small solid-state detectors. Unlike PSP systems, DR systems do 
not require physical scanning since pixel locations are directly linked to detector locations 
within their flat panels. Exposure times are similar to film/screen and photostimulable 
phosphor systems, but digital images are available immediately following the x-ray expo-
sure. Various interfaces to a PACS are available for DR imaging systems including optical 
fiber, Ethernet, and Wi-Fi.

Digital flat panels were developed in the mid-1990s as replacements for film/screen sys-
tems. Initially, the panels were restricted to static imaging due to readout times. However, 
their use in dynamic imaging, where images must be acquired rapidly, soon followed as 
panel readout time was reduced to acceptable limits. Further advancements in DR sys-
tem design have led to replacement of image-intensifier systems in special procedures 
and cardiac catheterization labs, supporting both dynamic and static planar imaging 
needs. Advantages of DR systems over image intensifiers for dynamic imaging include 
(1) absence of geometric distortion, (2) uniform response across the image, and (3) direct 
conversion to a digital image.

2.3 MULTIPLANAR IMAGING: COMPUTED TOMOGRAPHY
The older terminology for computed axial tomography (CAT) was shortened to CT. Any 
approach that computes tomographic section images (tomo means cut) can be classified 
as CT. CT therefore includes several modern radiological imaging methods: x-ray CT, 
SPECT, PET, magnetic resonance imaging (MRI), and even some forms of ultrasound 
imaging. As implied by their computing nature, all CT images are digital.

The basic math describing formulation of a 2D section image from projections taken 
about an object has been known since the early 1900s. However, technological limitations 
(mostly computer) hampered the development of CT systems until the 1960s. There are two 
major categories of CT systems: (1) emission computed tomographic (ECT) systems that 
form images from radiations emitted from the body, and (2) transmission computed tomo-
graphic (TCT) systems that form images from radiations transmitted through the body.

2.3.1 Positron Emission Tomography

The earliest ECT imagers are PET systems based on the annihilation radiation originating 
from the site of positron interactions. The detection of the pair of annihilation photons deter-
mines the line along which the photons passed through the body and serves as the basis for 
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forming projections. Research PET imagers were developed in the 1960s and commercial 
units soon followed. Positron-emitting radioisotopes of elements commonly found in biologi-
cal molecules, particularly O-15 and C-11, were key to the acceptance of PET. Of major impor-
tance was the use of O-15 water for cerebral blood flow, the basis of functional brain research 
since the late 1970s. Finally, the formulation of F-18 as fluorodeoxy-d-glucose (FDG) provided 
a means to assess glucose metabolism in the brain and glucose metabolic activity of cancers 
within the body (Figure 2.10). The FDA approved the use of FDG for cancer imaging, and 
many cancer centers use PET/CT systems for treatment planning and monitoring of results.

2.3.2 Single-Photon Emission Tomography

The term SPECT was chosen to clearly distinguish this ECT system from PET since it 
does not use two photons. The most popular SPECT approach, using a rotating gamma 
camera, was introduced in the 1970s followed by many improvements in the embedded 
software and hardware. A problem with SPECT is attenuation correction, which depends 
on the distribution of the radiotracer within the body, and this is not well known until the 
SPECT image is determined. Modern SPECT systems therefore deal with this problem 
using iterative reconstruction methods. An advantage of SPECT over PET systems is the 
use of long-established radiotracers based on Tc-99(m) and cost. An example of this is 
the use of Tc-99(m) ethyl cysteinate dimer (ECD) to localize the difference in activity dur-
ing (ictal) and between (interictal) seizures (Figure 2.11).

2.3.3 X-Ray Computed Tomography

X-ray CT was introduced in the 1970s and rapidly became the method of choice for imag-
ing of the brain and spinal cord where the surrounding bony structures confounded view-
ing of the brain’s soft tissues using planar methods. X-ray CT is classified as a TCT system 
as it is based on the x-rays that pass through the body. Early x-ray CT systems were lim-
ited by spatial resolution and speed, but each decade has seen rapid improvements, and 
sub-mm resolutions and multislice detector systems with high scan speeds have emerged. 

(a) (b)

FIGURE 2.10 PET F-18 FDG image of brain (a) and corresponding anatomical MRI of the head (b). 
The FDG is a functional image with pixel values representing glucose consumption, while the high-
resolution MRI provides anatomical detail.
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The  high-quality bone imaging and exceptional bone/soft tissue contrast with x-ray CT 
 provide a means to render highly accurate geometrical models of the body (Figure 2.12). 
The advent of MRI in the 1980s, with its exceptional soft tissue contrast, reduced the need for 
x-ray CT. However, x-ray CT continues to be an exceptional imaging system due to its geo-
metrically accurate images and its standardization of tissue signals based on CT numbers.

2.3.4 Magnetic Resonance Imaging

The nuclear magnetic resonance phenomenon was discovered in the 1930s but was 
not applied to imaging until the 1970s. MRI systems became available for clinical use 
in the 1980s. MRI systems are the imaging system of choice for studies of the brain 

(a) (b) (c)

FIGURE 2.11 SPECT Tc-99(m) ECD imaging of interictal (a), ictal (b), and ictal minus interictal 
(c) overlaid onto MRI to highlight focal seizure activity. Adapted from Lewis, P.J. et al., J. Nucl. 
Med., 41, 1619, 2000, Figure 4. With permission.

(a) (b)

FIGURE 2.12 Midsagittal x-ray CT section image (a) provides high contrast between bone and soft 
tissue but little contrast within the soft tissues within the brain and surrounding the skull. The sur-
face image of bone and skin (b) made from CT sections is geometrically accurate and can be used 
for measurements about the head or bones.
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and spinal cord due to their high contrast in soft tissues and lack of interference from 
bone (Figure 2.13).

The introduction of functional MRI (fMRI) in the mid-1990s led to its use in 
brain studies, previously only possible using PET. Overlays of an fMRI study onto a 
patient’s high-resolution anatomical MRI images are often used to illustrate both the 
functional and anatomical spatial relationships. The developments of arterial spin 
labeling (ASL) for absolute blood flow and diffusion tensor imaging (DTI) for the 
assessment of white matter have expanded the usage of MRI for research and clini-
cal purposes. MRI has become the most popular form of CT imaging in radiology 
departments supporting anatomical and functional studies for all major organ sys-
tems in the body.

HOMEWORK PROBLEMS
P2.1 The optical density difference between two regions of an x-ray film is 0.7. What is 

the ratio of the intensity of transmitted light between these two regions? Assuming 
that the film-screen has a gamma of 0.76, what is the ratio of the radiation exposure 
between these two regions?

P2.2 Describe the process of latent image generation for a photostimulable phosphor plate 
digital radiographic system. Why is the dynamic range of these image receptors 
much higher than that of film-screen systems?

P2.3 Estimate the reduction in scatter produced by a 1 mm collimated x-ray scanning sys-
tem (like in Figure 2.9) compared with a conventional x-ray beam. Assume that the 
object is 100 × 100 × 100 cm phantom that is placed on the image detector and that 
the entire phantom is imaged. Make your calculation based only on the geometrical 
efficiency at the center of the detector. Report the ratio of scatter using the slit to that 
without it.

(a) (b) (c)

FIGURE 2.13 Coronal section of T1-weighted MRI of a head (a) illustrating the high soft tissue 
contrast possible, with little signal from the skull. It is common practice to use special processing 
to remove nonbrain tissues from head MRI (b). Brain surface model made from the resulting brain-
only image (c) allows users to visualize the brain’s surface anatomy.
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P2.4 The relationship between pixel value and exposure for a photostimulable phosphor or 
flat panel detector can be determined using the following equation:

 Pixel value = C1 log10(E) + C2

where
E is the exposure in mR
C1 and C2 are constants

You make the following measurements in an attempt to determine the relationship 
between pixel values and exposure:

Pixel value 1019 738 485 260 7
Exposure (mR) 100 10 1 0.1 0.01

While the exposure was measured accurately, the pixel values were a bit noisy.

 (a) Use a least square error fit method to estimate the values of C1 and C2.

 (b) Plot the raw data and the fitted data on a graph of pixel value vs. log10(E).

 (c) What is the R2 value for the fit? What is the standard error in the measurement of 
exposure?
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C h a p t e r  3

Digital Imaging in 
Diagnostic Radiology

3.1 BASIC CONCEPTS OF DIGITAL PLANAR IMAGING
Unlike traditional plane-film radiography that generates images on film through chemical 
processing, digital radiography generates images using electronic processing. The transi-
tion by radiology departments to digital imaging has been gradual, often by adding digital 
components to older imaging technologies. An example of such a hybrid imaging system 
for dynamic planar imaging is illustrated in Figure 3.1. For this system, an image intensi-
fier and a video camera acquire the x-ray images as analog signals that vary continuously 
with the intensity of x-rays detected. The analog video signals are converted into digital sig-
nals, having a well-defined range of discrete values. Analog-to-digital converters (ADCs) 
are used to encode both position and signal intensity. In full digital systems, an array of 
detectors determines the position within the image, and each detector’s analog signal is 
converted to a digital value using an ADC. For both hybrid and full digital systems, the 
images are sent to a digital image processor that can analyze, transform, and display the 
image. Digital images are stored using media such as magnetic tape and magnetic, optical, 
or solid-state drives. The digital image is transformed back into an analog image using a 
digital-to-analog converter (DAC) for display on a video display terminal or on a digital 
monitor (LCD, OLED, etc.).

Mathematically, the digital image is a two-dimensional array of numbers and is “ digital” 
or discrete in two respects: spatially and numerically (Figures 3.2 and 3.3).

3.1.1 Digital Position

The digital image is discrete with respect to position. If you look at a digital image with 
a magnifying glass, you will see it is composed of little gray squares or cells arranged 
in a rectangular or square array (Figure 3.2). These cells are called “pixels,” an abbrevia-
tion for “picture element.” The pixel is the smallest unit in a planar image and its size in 
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medical images must be chosen carefully to retain as much detail as possible. An image 
with M  columns and N rows of pixels is commonly referred to as an M × N (pronounced 
“M by N”) image. A typical x-ray CT image is 512 × 512, although some systems produce 
1024 × 1024 images; many investigators believe that a 2048 × 2048 or greater array of pixels 
is required for chest radiography.

3.1.2 Digital Value

The digital image is also discrete with respect to the value associated with each pixel, pixel 
value. The brightness in a digital image does not change from black to white with continu-
ous shades of gray as it does with x-ray film (Figure 3.2). Rather, the brightness changes 
in small increments from black to white. Each level is represented using an integer value 
with the smallest representing black, the largest representing white, and intermediate val-
ues representing shades of gray, for example, these are called digital gray-scale images. 
Therefore, a digital image is an array of binary numbers where each number is a pixel 
value. As in all digital computers, these integers are processed and stored in a binary for-
mat. Figure 3.3 illustrates this using just 3 bits to store values.

Before continuing with our discussion, we will define the terms “bits,” “bytes,” and 
“kilobytes,” which are commonly used in discussions of digital images and image proces-
sors (Figure 3.4). A “bit” is a “binary digit,” and a binary digit can have just two values, 
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FIGURE 3.1 The components of a hybrid digital imaging system. On the left is a standard image 
intensifier–based fluorographic system. The ADC converts the analog video to digital images that 
are processed using the various registers. Display and storage are also illustrated.
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0 and 1, just as our ordinary decimal (base 10) number system has ten values per digit, 
0 through 9.

Typical medical images require 10–12 bits per pixel; a 10-bit image has 1024 (or 210) 
different levels of gray, while a 12-bit image has 4096 (or 212) possible different gray 
 levels. Often it is more convenient to describe digital data in terms of “bytes,” which 
are 8-bit groupings. You probably have heard the term “kilobyte” and assumed logically 
(but incorrectly) that a kilobyte was 1000 bytes. Actually, a kilobyte (abbreviated kB) is 
1,024 (210) bytes, and 327,680 bytes is exactly 320 kB. Due to their large size, memory 
requirements for medical images usually are stated in terms of megabytes (~106 bytes) or 
 gigabytes (~109 bytes).

3.2 DIGITAL IMAGE STORAGE REQUIREMENTS
It is important to ensure that both position and value are represented digitally with ade-
quate precision. The number of samples across an image determines the “digital spatial 
precision.” Likewise, the number of samples over the signal range determines the “digital 
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FIGURE 3.2 A digital image is an array of numbers referred to as an array of picture elements or 
pixels. Values for each pixel are displayed for the CT section image ranging from black to white 
depending on pixel values.
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intensity precision.” Spatial sampling and data storage requirements are illustrated for 
chest radiography in the following example:

Example 3.1

A chest radiograph is 14″ × 17″ in area (Figure 3.5). Assuming that we digitize the 
chest film with 16  bits (2  bytes) per pixel, with a pixel spacing that preserves the 
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FIGURE 3.3 An example of ADC conversion using 3-bits where the output binary numbers range from 
0 to 5. The upper graph is the analog signal and the lower graph the resulting digital signal. Vertical 
dashed lines are the points where the ADC samples the analog signal. The ADC assigned the closest 
digital value to the analog signal value for each sample, and the digital value is fixed until the next sample.

1 bit = 1 binary digit

1 nibble = 4 bits

1 byte = 8 bits

1 word = 2, 4, or 8 bytes

1 kilobyte (kB) = 210 bytes = 1024 bytes

1 megabyte (MB) = 220 bytes = 1024 kB

1 gigabyte (GB)  = 230 bytes = 1024 MB

1 terabyte (TB) = 240 bytes = 1024 GB

FIGURE 3.4 Elementary definitions used in describing individual the digital numbers at the 
top and for large collections of digital numbers at the bottom (common for specifying storage 
capacity). Note that the most common unit is the byte (bold).
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inherent spatial resolution in the chest film (5 line pairs per millimeter or lp/mm), 
calculate the memory needed to store the digital chest radiograph.

Solution

A line pair consists of a dark line adjacent to a bright line and is analogous to one 
cycle of a square or sine wave. If we want to preserve the 5 lp/mm resolution of the 
chest film, we need 10 samples (or pixels) per millimeter (i.e., 5 samples of a bright 
pixels each next to a sample of dark pixels). This leads to 10 samples/mm and a 
spacing of 0.1 mm/pixel. Converting to metric units, the 14″ × 17″ chest radiograph 
has dimensions of 355.6 × 431.8 mm and therefore requires 3556 × 4318 pixels to 
preserve the fundamental spatial resolution of the radiograph. Each pixel value uses 
16 bits (216= 65,536 gray shades) or 2 bytes, so the number of bytes needed to repre-
sent the chest radiograph is

 Number of bytes = 3,556 × 4,318 [pixels] × 2 [bytes/pixel]
= 30,709,616 bytes, which is ~29.3 MB

Approximately 100 million chest radiographs are taken every year in the United 
States, virtually all of which are retained in radiology file rooms for medical–legal 
reasons. Storage and information retrieval difficulties can arise if chest films are 
stored digitally without some form of file compression.

A digital image is acquired with samples taken using uniform spacing. This supports direct 
encoding of pixel locations as rows and columns of a digital image array. For older analog 
images, an ADC is needed to encode digital positions (column–row addresses). Various 
means are seen for conversion from analog to digital. For example, in the digitization of 
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FIGURE 3.5 Determining the digital spatial sampling requirement for a chest radiograph based on 
the sampling theorem and the limiting resolution of the radiograph.
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a radiograph by a laser scanner, the laser and photodetector are swept across the film at a 
uniform speed with column–row locations encoded using digital position encoders. For 
nuclear medicine Anger-style gamma cameras, analog x-y positions are first determined, 
and then ADCs are used to convert these to column–row locations. Systems using an array 
of detectors (digital radiographic or DR panels) intrinsically encode column–row locations 
based on the positions of the detectors. While column–row location encoding is key to 
formatting digital images, we do not need to explicitly store column–row values in image 
files. Digital image data are generally stored in either column or row order. This order, 
along with data type and the number of rows and columns, is stored in the image header. 
When the image is loaded, the image header is read and the image is formatted into a 
column–row array for manipulation and display.

3.3 DIGITAL SAMPLING REQUIREMENT
3.3.1 Shannon’s Sampling Theorem

It is important in digital imaging that the spatial sampling frequency (samples/distance = 
pixels/distance) be sufficient to preserve important information in the image, that is, the 
range of frequencies in the analog signal. It is important to select pixel spacing (pixels 
per unit distance) such that important spatial information in the analog image is not lost 
(highest frequency perhaps). The highest spatial frequency present in the analog signal 
is based on the spatial resolution of the imaging system. The importance of Shannon’s 
sampling theorem is that it specifies the sampling frequency needed to capture this high-
est frequency for systems using equally spaced samples, as is the case for current medical 
imaging systems.

Shannon’s sampling theorem: If the maximum spatial frequency in an analog signal is 
fmax (cycles/mm), then the signal must be digitized with sampling frequency (fs) of at least 
2fmax (samples/mm).

Note the difference in how we specify frequency of the analog signal as cycles/mm and 
the sampling frequency as samples/mm. In medical imaging, we often use line pairs/mm 
(lp/mm) instead of cycles/mm when referring to the analog image. The analog signal can 
be that of the x-ray pattern impinging on a digital image plate, an x-ray film to be scanned, 
or that in a hybrid system as shown in Figure 3.1.

The rationale for the 2fmax sampling requirement can be investigated by considering 
uniformly spaced sampling of sine waves. Assume we have a sine wave of frequency f0 
that is sampled at several sampling frequencies, ranging up to 2fmax. As can be seen in 
Figure 3.6a, when the sampling frequency equals the frequency of the sampled sine wave 
( f0), values at each sampled point are identical. The resulting sampled digital  signal in 
this case will have a spatial frequency of zero, with a magnitude that depends on the 
phase of the sine wave where the sampling began. Similarly, if the function is sampled 
at higher frequencies where f0 < fs < 2f0, the sampled sine wave will have a  frequency 
greater than zero but lower than f0. Only when fs ≥ 2f0 will the sampled fs sine wave 
match the frequency of the analog sine wave. However, oversampling (4×–10×) is needed 
to accurately capture the amplitude of the sine wave, a common practice with digital 
audio recordings.
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3.3.2 Nyquist Frequency

The highest frequency that can be represented in sampled data is called the “Nyquist” 
 frequency, which is exactly one-half the sampling frequency (fs/2). The logic for this limit 
is that it takes two samples to encode both peak and valley values for each cycle of a sine 
wave. If this sampling requirement (two samples per cycle) is not met, then the digitized 
signal will contain false periodic signals (called aliases), with a frequency less than the 
Nyquist frequency. It will be shown (Chapter 6) that if fs is the sampling frequency and 
f the frequency in the analog signal, then f will alias to a lower frequency falias when fs < 2f. 
The aliased frequency will be determined from the following equation:

 falias = |nfs − f|  (3.1)

Here, n is an integer used to ensure that falias < fs/2 (i.e., less than the Nyquist frequency). For 
example, if an analog signal with a frequency of 60 Hz is sampled at a rate of 70 Hz (Nyquist 
frequency = 35 Hz), then n = 1, and the aliased signal will have a frequency of |70 − 60| = 
10 Hz. In another example with fs = 35 Hz (Nyquist frequency = 17.5 Hz), then n = 2, and 
the aliased signal would also have a frequency of |2*35 − 60| = 10 Hz, identical to the 70 Hz 
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FIGURE 3.6 In digital sampling, the frequency of an analog signal is faithfully reproduced only 
if the sampling rate is at least twice that of the maximum signal frequency. At lower sampling rates, 
the approximated function will contain false signal frequencies. The introduction of these false 
 frequencies is called “aliasing.” In this example, the signal frequency is 3 cycles/mm. Sampling shown 
in this figure are (a) 3 samples/mm; (b) 3–3/7 samples/mm; (c) 4 samples/mm; and (d) 6 samples/mm, 
that is, sampling to preserve the analog signal’s frequency.
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sampling rate. The analog signal must be sampled at twice its frequency (60 Hz × 2 =120 Hz 
in this example) to prevent aliasing, that is, |120 − 60| = 60 Hz. If fs > 2f, then Equation 3.1 does 
not apply, and for this example, the digital sample will have the correct frequency (60 Hz). 
We will return to the issue of digital sampling and aliasing later, after we have developed 
more mathematical tools to model the effect of aliasing in digital medical images.

3.3.3 Compressed Sensing

Many images can be compressed with little (lossy) or no loss (lossless). This is especially 
important for PACS systems where large images must be stored and rapidly transmitted 
between storage devices and viewing areas. The general scheme has been to acquire images 
that capture detail based on the sampling theorem requirements, and use a compression 
scheme to reduce the data size. An alternative approach deals with reducing the amount 
of image data captured using a process called “compressed sensing.” As opposed to clas-
sical sensing or sampling, compressed sensing uses variable spaced sampling. While not 
applicable to many medical imaging technologies, compressed sensing has shown promise 
with MRI where a priori knowledge of the sparse nature of signals allows varying sample 
spacing in the phase encode direction of k-space for compression.

HOMEWORK PROBLEMS
P3.1 The Japanese revere Beethoven’s Ninth Symphony, especially Beethoven’s musical 

rendition of Schiller’s great “Ode to Joy” in the fourth movement, which celebrates the 
potential of humanity living together with love and peace. It is not a coincidence that 
the compact disc (CD) was designed by Sony so that Beethoven’s Ninth Symphony 
would fit on a single side, providing a recording that could be played without inter-
ruption. For purposes of this analysis, we will assume that the CD stores a digital 
record of the amplitude waveform forming the musical sound.

 (a) Technical specifications indicate that most compact disc players are capable of 
a signal-to-noise ratio of 96.3 dB. It is more accurate to state that the dynamic 
range (ratio of loudest possible sound to softest sound) is 96.3 dB, and that this 
dynamic range limitation is provided by the digitization of the signal. Show that 
this dynamic range requires 16 bits assuming that 1 bit is used to record the soft-
est sound and 16 bits to record the loudest sound.

 (b) On a CD the music is digitized at a sampling frequency of 44 kHz. Why is this 
sampling frequency required if the human auditory system is capable of hearing 
sounds only in the range of 20 Hz to 20 kHz?

 (c) How many bytes does it take to record Beethoven’s Ninth Symphony (approxi-
mately 1 h) on a compact disc?

 (d) How much compression would be needed to completely store this symphony 
on a 64 MB USB RAM storage device in MP3 format? How might the quality 
of the sound differ when compared to the uncompressed version?
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P3.2 In the plane of the detector, what is the highest spatial frequency that can be recorded 
by a 512 × 512 pixel digital fluoroscopy system with a 150 mm × 150 mm receptor?

P3.3 Most radiographs are obtained by placing a “grid” between the patient and image 
receptor. The grid is composed of thin strips of lead separated by a material (plastic, 
aluminum, or carbon fiber) that are transparent to x-rays. Therefore, the grid reduces 
scattered radiation emerging from the patient that would degrade the image, while 
allowing the primary photons to be transmitted to the film.

  A 14″ × 17″ chest radiograph is recorded with a grid having 100 lines per inch where 
the width of the lead strips is equal to the width of the material between the lead 
strips.

 (a) If the chest radiograph is digitized with a 2048 × 2048 image matrix, explain why 
aliasing will be produced. What will be the frequency and the appearance of the 
aliased signal?

 (b) What digital sampling spatial frequency would avoid aliasing? What is the digital 
image format and the pixel size (in inches) that corresponds to this digital sam-
pling frequency?

P3.4 In digital subtraction angiography, an analog video signal is converted to a 10-bit 
digitized signal. However, the video signal can have a bandwidth, which exceeds 
7.5 MHz, requiring the use of a low-pass “antialiasing filter” to condition the signal 
before it is digitized to a 512 × 512 format with an ADC. Assume that the video frame 
(one image) consists of 525 lines, with a frame time of 1/30th s, and that each line of 
the frame is digitized with 512 samples.

 (a) If no antialiasing filter is used, calculate the temporal frequency of the aliased 
signal produced in the digitized signal.

 (b) Calculate the bandwidth of the low-pass filter that should be used to prevent 
aliasing in the digital image.
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II
Intermediate Concepts
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C h a p t e r  4

Physical Determinants 
of Contrast

A medical image can be roughly described in terms of the three basic features given 
in Chapter 1: contrast, spatial resolution, and noise. Spatial resolution or clarity refers 

to the spatial detail of small objects within the image. Noise refers to the precision within 
the image; a noisy image will have large fluctuations in the signal across a uniform object, 
while a precise signal will have very small fluctuations. The subject of this chapter, con-
trast, relates to the difference in signals between a structure and its immediate surround-
ings. For example, if circles are displayed against a black background, a white circle will 
have larger contrast relative to the background when compared to gray circles (Figure 4.1). 
One  uses the differences in gray shades to “visually” distinguish different tissue types, 
determine anatomical relationships, and sometimes assess their physiological functions. 
The larger the contrast between different tissue types, the easier it is to make distinctions 
clinically. It is often the objective of an imaging system to maximize the contrast in the 
image for a particular object or tissue of interest, although this is not always true since 
there may be design compromises where noise and spatial resolution are also very impor-
tant. The contrast in an x-ray image depends on both physical characteristics of the object 
and properties of the device(s) used to image the object. The focus of this chapter is x-ray 
image contrast and we discuss the physical determinants of contrast, including material 
properties, x-ray spectra, detector response, and the role of perturbations such as scatter 
radiation and image intensifier veiling glare. We include physical determinants of contrast 
for several other medical imaging modalities, including those used in nuclear medicine, 
magnetic resonance imaging, and computed tomography to round off the discussion.

4.1 COMPONENTS OF X-RAY IMAGE CONTRAST
Contrast can be quantified as the fractional difference in a measurable quantity between 
adjacent regions of an image. Usually, when we say “contrast,” we mean image contrast, 
which is the fractional difference in signals between two adjacent regions of an image. 
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In conventional radiography, contrast can be separated into three components: (1) radio-
graphic contrast, (2) detector contrast, and (3) display contrast (Table 4.1 and Figure 4.2).

4.1.1 Radiographic Contrast

Radiographic contrast (sometimes called subject contrast) refers to the difference in x-ray 
photon fluence emerging from adjacent tissue regions in the object. Radiographic contrast 
depends on differences in atomic number, physical density, electron density, thickness, 
and the energy spectrum of the x-ray beam. Because radiographic contrast depends on 
both subject and nonsubject factors (x-ray energy), we avoid the use of the term “subject 
contrast” though it is commonly seen in many publications. Radiographic contrast is the 
basis of overall contrast, that is, without radiographic contrast, the other components can 
have no effect on the overall contrast.

Low contrast Medium contrast High contrast  

FIGURE 4.1 Contrast relates to the relative difference between an object (circle here) and its 
surrounding background. Here the background gray level is set to black and the object gray level 
increased from a low-contrast image on the left to a high-contrast image on the right.

TABLE 4.1 Sources of Image Contrast

Radiographic Contrast
Material thickness
Physical density
Electron density
Elemental composition (effective Z)
X-ray photon energy

Detector Contrast
Detector type (film vs. electronic)
Film characteristic curve (H&D)
Spatial response of detector

Display Contrast
Window and level settings

Physical perturbations
Scatter radiation
Image intensifier veiling glare
Base and fog of film
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4.1.2 Detector Contrast

All detectors alter radiographic contrast. As we shall see later, for linear system analysis, 
the measurement of the detector’s image signal must be linearly related to the intensity of 
the radiation forming the image for analyses. The H&D curve is used to convert film den-
sities to relative exposure values. Electronic detectors provide a means to convert signals 
to absolute exposure values. Detector contrast depends on the chemical composition of the 
detector material, its thickness, atomic number, electron density, as well as the physical 
process by which the detector converts the radiation signal into an optical, photographic, 
or electronic signal. Detector contrast also depends on the x-ray spectrum exiting the 
object. The detector may increase or decrease contrast relative to the radiographic contrast, 
that is, the detector may produce signals that have a larger or smaller fractional difference 
between adjacent areas of the image in comparison with the difference in exposure.

4.1.3 Display Contrast

An observer can significantly alter the displayed contrast by adjusting monitor’s display 
settings to increase, decrease, or preserve contrast.

4.1.4 Physical Perturbations

X-ray image contrast can also be affected by various perturbations such as scattered radia-
tion, image intensifier veiling glare, and the base and fog density levels of film. These 
perturbations reduce the image contrast.

Physical density Subject
thickness

Incident x-ray
spectrum

Detector
attenuation
coe�cient

Electron
density

Elemental
composition of

subject

Subject mass attenuation
coefficient

Radiographic contrast Detector contrast

Image contrast

Exit x-ray
beam

spectrum

Display contrast

Window and level in
electronic image

display 

Viewing
–Human factors
–Environment

FIGURE 4.2 Image contrast is broadly divided into three components: radiographic contrast, 
detector contrast, and display contrast. There are distinct subcomponents of each.
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4.1.5 Other Confounds

Finally, training, physiological status of the human viewer (e.g., myopia, astigmatism, color 
blindness, fatigue) as well as environmental factors such as ambient light levels in the view-
ing area also affect how one perceives the contrast presented in the image. In this book, 
we will not include these factors with the other components of contrast. Nevertheless, they 
are essential to the diagnostic task and deserve mention.

4.2 IMAGE CONTRAST MATH
The physical determinants of x-ray image contrast can be understood by examining the 
processes by which a radiographic image is formed. We will consider a system in which 
a patient is placed between an x-ray tube and a detector: The detector is usually either a 
film screen or an electronic screen. The x-ray tube is operated at a certain peak kilovoltage 
(kVp), which, along with filtration, determines the energy spectrum of beam. X-ray pho-
tons from the source are attenuated by various materials in the patent (muscle, fat, bone, 
air, and contrast agents) along the path between the source and the detector where the 
image is formed.

The x-ray attenuation of each tissue depends on its elemental composition as well as the 
energy of the x-ray photons. Attenuation is modeled using a linear attenuation coefficient 
(μ), which is the fraction of photons absorbed by a unit thickness of the tissue.

Equation 4.1 relates the photon fluence entering (Φ0) to that exiting (Φ) a volume 
of  tissue. This equation uses the mass attenuation coefficient (μm) rather than the linear 
 attenuation coefficient (μ) since it is more commonly tabulated, and there is a simple 
 relationship between these μm(E) = μ(E)/ρ, where ρ is the density of the attenuator:

 F F F F( , ) ( ) ( ) ( ) ,( ) ( ( )/ ) ( )E x E e E e E eE x E x E x= = =- - -
0 0 0

m m r r m rm  (4.1)

where
Φ0(E) is the photon fluence entering the volume of homogeneous material at energy E
Φ(E, x) is the photon fluence exiting the volume of thickness x
μm(E) is the mass attenuation coefficient of the material at energy E
ρ is the density of the material

The tissue-specific factors that affect radiographic contrast are revealed in the three 
parameters in the exponent of Equation 4.1. The first parameter is the mass attenuation 
coefficient (μm), which depends explicitly on energy (E) and implicitly on the atomic num-
ber of the material and its electron density. The second parameter is the mass density (ρ) 
of the material. The third parameter is the thickness of the material (x). An increase in 
any of the three parameters increases attenuation. However, in x-ray imaging, only energy 
is readily adjustable, and changing the x-ray machine’s kVp setting does this.

If we measure photon fluence at a single energy on the detector-side of the patient, 
we can determine radiographic contrast using Equation 4.2. For example, if behind the 
patient, a photon fluence of Φ1 is measured in the surroundings and a photon fluence of 
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Φ2 is measured behind the object of interest (Figure 4.3), then the radiographic contrast 
would be

 
C = = -DF

F
F F

F1

2 1

1

. (4.2)

For a radiopaque object, one where Φ2 = 0, the radiographic contrast C = –1. Here radio-
graphic contrast would be reported as negative 100%. When Φ1 < Φ2, radiographic con-
trast is positive and can exceed 100%. If Φ1 = Φ2, the object cannot be differentiated from 
its surroundings since radiographic contrast is zero (C = 0). An x-ray beam is emitted with 
a spectrum of energies (Figure 4.6), complicating the use of Equation 4.1 to calculate radio-
graphic contrast; however, Equation 4.2 is helpful when modeling an x-ray beam using a 
single “effective” energy.

The magnitude of mass attenuation coefficients decreases with increasing energy, with 
attenuation also decreasing except at points of discontinuity called absorption edges, mostly 
the K-edge or L-edge (Figure 4.4). At these energies, photoelectric interactions cause 
large increases in absorption as the photon energy slightly exceeds the binding energy of 
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FIGURE 4.3 Planar x-ray imaging done with an x-ray source on one side of the patient’s body and a 
planar detector on the other side. X-ray photons can pass through the patient’s body without inter-
acting (primary photons), be scattered (secondary photons), or completely absorbed. Secondary 
photons reduce contrast, so various methods are illustrated to reduce their impact.
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orbital electrons in the K and L shells. Overall, contrast tends to decrease as photon energy 
increases except when K-edge or L-edge discontinuities cause large increases for the tissue 
of interest. (As we will see, this is a consideration when high-Z contrast agents are utilized.)

4.3 RADIOGRAPHIC CONTRAST OF BIOLOGICAL TISSUES
Radiographic contrast due to differences in attenuation in the body depends somewhat on 
the difference in mass attenuation coefficients of the various tissues. This intrinsic radia-
tion attenuation property for each tissue type is determined by its elemental and chemi-
cal composition, whether a compound or mixture. To simplify dealing with the complex 
nature and variety of tissues, we will consider the body as being composed of three main 
tissues: fat (adipose tissue), soft tissue, and bone. In addition to these tissues, we will con-
sider attenuation properties of air found in the lungs (and in the gastrointestinal tract) as 
well as the properties of contrast agents when introduced into the body.

The elemental compositions of the main tissue types are given in Table 4.2. Physical 
properties relevant to attenuation are given in Table 4.3, where they are ordered in the 
ascending order, from lowest to highest attenuation. Water is included in these tables 
because its attenuation properties are similar to those of soft tissues. Corresponding tissue 
mass attenuation coefficients are plotted in Figure 4.4 as a function of energy.

4.3.1 Soft Tissue

The term “soft tissue,” as used in this text, excludes fat but includes muscle and body 
 fluids. The term lean soft tissue is sometimes used to describe nonfatty soft tissues, but we 
will use the less cumbersome term soft tissue and implicitly exclude fat. There are, of course, 
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FIGURE 4.4 The mass attenuation coefficients for tissues of interest and water (tissue equivalent 
model) decrease rapidly with increasing energy in the diagnostic x-ray imaging range (10–100 keV). 
The exception is at absorption edges as illustrated for cortical bone below 10 keV.
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many different types of soft tissues including liver tissue, collagen, ligaments, blood, cere-
brospinal fluid, and so on. However, the chemical composition of all soft tissues is domi-
nated by elements with low atomic numbers (Table 4.2). We will assume that they are 
radiographically similar to water and have an effective atomic number of 7.4 and an elec-
tron density of 3.34 × 1026 electrons per gram. This assumption is plausible since, as Ter 
Pogossian has pointed out; soft tissues are approximately 75% water by weight, while body 
fluids are 85% to nearly 100% water by weight.

Water-equivalent soft tissues have several important radiologic properties that con-
tribute to their contrast. First, the photoelectric effect dominates photon attenuation up 
to energy of ~30 keV, the region delimited by the steeper slopes of the curves in Figure 4.4. 
The Compton effect becomes increasingly dominant in soft tissues over the remainder 
of the diagnostic energy range. Photoelectric interactions provide better differentia-
tion between tissue types due to the larger differences in mass attenuation coefficients. 
Therefore, it is desirable to use lower-energy photons to maximize contrast in diagnostic 
examinations of soft tissues. Second, because the body is about 70% water-equivalent by 
weight, contrast for these tissues is dictated predominantly by variations in thickness 
or density (i.e., by the ρx product in Equation 4.1). In the diagnostic energy range, the 
half-value layer (HVL) of soft tissue is 3–4 cm so that a thickness difference of 3 cm is 
needed to provide a radiologic contrast of 50%. Finally, the radiographic similarity of a 
majority of soft tissues in the human body complicates our imaging task. For example, it 
is impossible to visualize blood directly or to separate tumors from surrounding normal 

TABLE 4.2 Elemental Composition of Body Materials Ordered by Increasing Atomic Number (Z)

% Composition (by Mass) 
Fat (Adipose 

Tissue) 
Soft Tissue 

(Striated Muscle) Water Bone (Femur) 

Hydrogen (Low Z =1) 11.2 10.2 11.2 8.4
Carbon (Z = 6) 57.3 12.3 27.6
Nitrogen (Z = 7) 1.1 3.5 2.7
Oxygen (Z = 8) 30.3 72.9 88.8 41.0
Sodium (Z = 11) 0.08
Magnesium (Z = 12) 0.02 0.2
Phosphorus (Z = 15) 0.2 7.0
Sulfur (Z = 16) 0.06 0.5 0.2
Potassium (Z = 19) 0.3
Calcium (High Z = 20) 0.007 14.7

TABLE 4.3 Physical Properties of Human Body Constituents

Material Effective Atomic No. Density (g/cm3) 
Electron Density 

(electrons/kg) 

Air 7.6 0.00129 3.01 × 1026 Low attenuation
Water 7.4 1.00 3.34 × 1026

Soft tissue 7.4 1.05 3.36 × 1026

Fat 5.9–6.3 0.91 3.34–3.48 × 1026

Bone 11.6–13.8 1.65–1.85 3.00–3.19 × 1026 High attenuation
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soft tissue without special procedures. This forces radiologists to use “contrast agents” 
(discussed in the following) to provide contrast and enable visualization of these struc-
tures. Without contrast agents, except in the grossest manner, it is impossible to visual-
ize structural details of important structures such as the liver, GI tract, or cardiac blood 
pool, using standard radiographic imaging techniques.

4.3.2 Fat

The energy of the x-ray beam, electron density, physical density, and atomic number 
determine the attenuation capability of any material. Due to its many low atomic number 
elements, fat has a lower physical density and lower effective atomic number (Tables 4.2 
and 4.3) than either soft tissue or bone, and therefore, has a lower photoelectric attenu-
ation coefficient. For this reason, fat has a lower total attenuation coefficient than other 
materials in the body (except air) at low x-ray energies where photoelectric interactions 
are the dominant effect.

Unlike other elements, the nucleus of hydrogen is free of neutrons, giving hydrogen a 
higher electron density (electrons/mass) than other elements. Because hydrogen contrib-
utes a larger proportion of the mass in fat than it does in soft tissue and bone, fat has a higher 
electron density than other tissues. This becomes particularly important at higher energies 
where Compton interactions dominate attenuation (interactions with loosely bound elec-
trons). In fact, inspection of the graph of mass attenuation coefficients (Figure 4.4) shows 
that at higher energies (>100 keV), the mass attenuation coefficient of fat slightly exceeds 
that of bone or soft tissue, due to the higher electron density of fat. However, due to its low 
density, it does not have a higher linear attenuation coefficient.

As shown in Tables 4.2 and 4.3, the differences in atomic number, physical density, 
and electron density between soft tissue and fat are slight. The differences in the linear 
attenuation coefficients and therefore in radiographic contrast between fat and soft tis-
sue can be small. One must use the energy dependence of the photoelectric effect to 
produce radiographic contrast between these two materials. This is particularly true 
in mammography where one uses a low-energy x-ray beam (effective energy ~18 keV). 
Such a low-energy spectrum increases the contrast between glandular tissue, connec-
tive tissue, skin, and fat, all of which have similar attenuation coefficients at higher 
x-ray energies.

4.3.3 Bone

The mineral content of bone results in high contrast relative to other tissues for x-ray 
energies the diagnostic range. This is due to two properties listed in Table 4.3. First, its 
physical density is 60%–80% higher than soft tissues. This increases the linear attenuation 
coefficient of bone by a proportionate fraction over that of soft tissue, greatly increas-
ing attenuation. Second, its effective atomic number (about 11.6) is significantly higher 
than that of soft tissue (about 7.4). The photoelectric mass attenuation coefficient varies 
approximately with the cube of the atomic number, so the photoelectric mass attenuation 
coefficient for bone is about [11.6/7.4)3 = 3.85 times that of soft tissue. The combined effects 
of greater physical density and larger effective atomic number give bone a photoelectric 
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linear attenuation coefficient much greater than that of soft tissue or fat. This differ-
ence decreases at higher energies, where the Compton effect becomes more dominant. 
However, even at higher energies, the higher density of bone still allows it to have good 
contrast with respect to both soft tissue and fat. Therefore, when imaging bone, one can 
resort to higher energies to minimize patient exposure while maintaining reasonable con-
trast instead of resorting to low x-ray beam energies as is needed to differentiate fat from 
soft tissue.

4.3.4 Contrast Agents

Most of the methods we use to improve contrast involve control of variables external 
to the patient, such as detector response, display controls, and choice of x-ray tube kVp. 
The factors that control contrast within the patient, such as the thickness, physical density, 
and elemental composition of the body’s tissues, are difficult if not impossible to control 
while an image is being recorded.

There are times, however, when the composition of the body part can be modified to 
alter radiographic contrast. This is accomplished by introducing a material, called a con-
trast agent, into the body to increase, or sometimes decrease, the attenuation (Table 4.4). 
For example, contrast agents containing iodine are commonly injected into the circulatory 
system when an angiographer is imaging blood vessels. This is necessary because blood 
and soft tissue have attenuation coefficients essentially equal to that of water. Therefore, the 
blood cannot be distinguished from surrounding soft tissue structures using conventional 
x-ray techniques without contrast agents. When an iodinated contrast agent is introduced 
into the circulatory system, it increases the x-ray attenuation of the blood, allowing the 
radiologist to visualize the blood in the vessels (either arteries or veins) or in the cardiac 

TABLE 4.4 Examples of Contrast Agents

Hydopaque (Iodine)
Composition: 0.25 g C18H26I3O9 + 0.50 g C11H3I3N2O4 + 0.6 g water
Physical density: 1.35 g/cm3

K-edge energy: 33.2 keV
Atomic number of iodine: 53
Applications: angiography, genitourinary (GU) studies
Barium sulfate (BaSO4) 
Composition: 450 g barium sulfate + 25 mL water
Physical density: 1.20 g/cm3

K-edge energy: 37.4 keV
Atomic number of barium: 56
Applications: gastrointestinal (GI) studies
Air
Composition: 78% N2 + 21% O2

Physical density: 0.0013 g/cm3

K-edge energy: 0.4 keV
Effective atomic number: 7.4
Applications: GI studies, pneumoencephalography
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chambers. Barium is another element that is commonly used in contrast agents, particu-
larly in the gastrointestinal tract. A thick solution containing barium is introduced into 
the gastrointestinal tract by swallowing or through some other alternate paths. When the 
barium solution is inside the GI tract, the walls of the tract can be visualized so that the 
radiologist can look for ulcerations or ruptures.

Iodine and barium are used as contrast agents for several reasons. First, they can be 
incorporated into chemicals that are not toxic even in large quantities; these are then intro-
duced into the body. Second, to be useful as a contrast agent, the material must have an 
attenuation coefficient that is different from that of other soft tissues in the human body 
(Figure 4.5). When iodinated contrast agents are used in angiography, the iodine must 
provide sufficient x-ray attenuation to provide discernable contrast from surrounding soft 
tissues (represented by water in Figure 4.5).

Both barium (Z = 56) and iodine (Z = 53) meet these requirements. An older com-
mon contrast agent is Hydopaque (Figure 4.4), a cubic centimeter (cm3) of which contains 
C18H26I3O9, C11H3I3N2O4, and water with a density greater than that of water (1.35 g/cm3). 
Most of its attenuation is provided by the iodine component due to its higher atomic num-
ber and the increased physical density of the solution. Importantly, the K-edge of iodine 
is at 33.2 keV near the peak of the energy spectrum used for many diagnostic studies 
(Figure 4.5). Similarly, the barium contrast agent used in abdominal studies contains 450 g 
of barium sulfate (BaSO4) in 25 mL of water; this gives a suspension with a physical density 
of 1.20 g/cm3. The K-edge of barium occurs at 37.4 keV, again lying near the peak of the 
energy spectrum used for abdominal studies.
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FIGURE 4.5 (See color insert.) Both iodine and barium and K-absorption edges in the range of 
diagnostic x-ray imaging. Their mass attenuation coefficients are significantly larger than those 
of water (tissue equivalent) and air, so they are excellent contrast agents to distinguish vessels or 
 gastrointestinal tract bounded by air and/or soft tissues.
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One can maximize the contrast with iodine and barium contrast agents by imaging 
with x-ray photons just above the K-edge of these elements. This can be achieved by 
“shaping” the x-ray spectrum adjusting kVp and using an additional metallic filter with 
a K-edge higher than the K-edge of the contrast agents. In Figure 4.6a, note that the 
120 kVp x-ray beam contains many high-energy x-rays where iodine has a low attenua-
tion coefficient. Also, the 60 kVp spectrum contains many lower-energy photons, below 
the iodine K-edge (Figure 4.6b). Adding a filter with K-edge higher than the K-edge 
of the contrast agent leads to a large proportion of the transmitted photons just above 
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the K-edge of the contrast agent (Figure 4.6c). Since this photon energy range falls in a 
region of maximum attenuation by the contrast agent, it will improve its contrast pro-
ducing ability. Metals with slightly higher atomic numbers than the contrast agents 
are useful as x-ray beam filters in such applications since they also have slightly higher 
K-edges. Rare-earth metals such as samarium (Sm) and cerium (Ce) are commonly 
used to filter the x-ray beam in contrast studies involving iodine or barium. Because 
of the principle of their operation, they are called K-edge filters. A rare-earth filter 
(e.g., samarium; K-edge = 46.8 keV) removes lower- and higher-energy photons and 
shapes the energy spectrum for improved absorption by an iodine-based contrast agent 
(Figure 4.6c).

A third contrast agent, one that reduces rather than increases x-ray attenuation, is air. 
Prior to the advent of computed tomography and MRI, contrast in radiographic images 
of the head was obtained after injecting air into the cerebral ventricles through a cath-
eter inserted into the spinal column. The introduction of air displaced cerebral spinal 
fluid (CSF) in the ventricles, which otherwise have essentially the same x-ray attenua-
tion properties as the surrounding brain tissue. Without the introduction of a contrast 
agent, the ventricles could not be visualized with standard x-ray techniques, nor could 
the various white and gray matter structures. The air in the ventricles displaced the CSF, 
allowing the radiologist to visualize the shape of the ventricles. Distortion in shape sug-
gested the presence of a tumor or other abnormality. X-ray CT and MRI have practically 
eliminated the use of this technique, called pneumoencephalography. X-ray CT and 
MRI provided phenomenal advances for studies of the brain, particularly since pneu-
moencephalography was quite painful and prone to complications; in rare instances, it 
may lead to death. However, it remains an example of how air can be used as a contrast 
agent to visualize structures that normally would be invisible in a radiograph.

Another study where air is used as a contrast is imaging in the gastrointestinal (GI) 
tract. In the so-called double contrast study, a barium contrast agent is introduced fol-
lowed by injecting air into the GI tract to displace the bulk of the barium contrast agent. 
This approach leaves behind a thin coating of barium on the inner wall of the GI tract. 
This allows the radiologist to observe the intricate structure of the GI lining to look for 
ulcerations. The property of air that makes it a useful contrast agent is its low physical den-
sity. The linear attenuation coefficient of a material is directly proportional to its physical 
density, and air has a linear attenuation coefficient several orders of magnitude lower than 
any other body tissues (Figure 4.7). However, it is not possible to introduce air into most 
other parts of the body.

4.4 DETECTOR CONTRAST
In the previous section, we presented methods by which radiographic or subject contrast 
could be maximized. However, a human observer never directly responds to the radio-
graphic contrast since we are not equipped with biological sensors that can detect photons 
with energies in the diagnostic range. Instead the x-ray fluence pattern is converted to an 
intermediate usable form by a film-screen or electronic detector. Image contrast depends 
on the choice of the detector.



Physical Determinants of Contrast   ◾   55

4.4.1 Film-Screen Systems

An x-ray beam transmitted through a patient enters a film-screen cassette and strikes 
the intensifying screen, which gives off light to expose the film’s photographic emulsion. 
The amount of light from the intensifying screen depends on the energy fluence (energy/
area) of the photons as well as the chemical composition of the intensifying screen and 
its thickness. The chemical composition/thickness of the intensifying screen determines 
how much radiation is absorbed and how much light is given off per unit of absorbed 
radiation.

Since different regions of the body contain tissues with different elemental composi-
tions, the energy spectrum of the beam emerging from the body and striking the image 
receptor can vary from one region of the body to another. In a few cases, this can con-
tribute to differences in contrast. For example, if one region of the body contains an 
iodinated contrast agent, then x-ray photons with energy below the iodine K-edge will 
present a small radiographic (or subject) contrast, while those just above the iodine 
K-edge will present a much larger radiographic (or subject) contrast. A screen that is 
more sensitive to the photons above the K-edge, therefore, will generate an image with 
a higher contrast than a screen that is more sensitive to photons below the K-edge. 
In  most cases, this is not an important effect for film-screen radiography. Therefore, 
one typically chooses the screen to be most sensitive to the entire spectrum of the beam 
emerging from the patient to minimize image noise rather than choosing the screen to 
be sensitive to one particular part of the energy spectrum to maximize contrast. Screens 
are selected based on their speed (~1/sensitivity) and resolution (to be covered in a later 
chapter).
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FIGURE 4.7 (See color insert.) The linear attenuation coefficient is the product of the mass attenu-
ation coefficient (cm2/g) and density (g/cm3). This figure shows the tremendous difference between 
air and other body tissues, making it an excellent contrast agent.
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In comparison with the intensifying screen in a film-screen system, the film can 
have a dramatic effect on image contrast. A screen responds linearly by emitting light 
proportional to the x-ray exposure over four to five decades of exposure. However, 
photographic film does not respond linearly to the light emitted by the screen. Rather, 
the characteristic (or H&D) curve relating film exposure to film density is sigmoid 
(“S-shaped”) (Figures 4.8 through 4.10). A certain level of exposure has to be reached 
before the optical density of the film begins to change linearly with exposure. Beyond 
this linear range, which is one to two decades, additional exposure of the film results 
in a smaller increase in its optical density. The photographic film, therefore, has both a 
“toe” (at low exposure levels) and “shoulder” (at high exposure levels) where contrast is 
low compared to the linear range (Figure 4.8). Therefore, film exposure must be chosen 
carefully so that contrast between tissues of interest falls within the film’s linear region 
(Figure 4.9).

An important determinant of contrast with a film-screen system is the film-gamma or 
film-gradient, which is the slope of the H&D curve in its linear region. If presented with 
the same radiographic contrast, a film with a larger gamma will produce a higher contrast 
image than one with a smaller gamma (Figure 4.10). The disadvantage of film with a large 
gamma is usually diminished latitude. Therefore, studies such as chest radiography, with 
a large difference in photon fluence between the lung and the mediastinum or abdomen, 
often utilize films with higher latitude and accordingly with lower contrast. Alternatively, 
studies such as mammography use high-contrast films since the images are obtained 
with compression of the breast to reduce unwanted exposure latitude. When a film-screen 
system is used, the characteristic curve of the film is the most important component in 
detector contrast.
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an H&D curve. Film contrast is related to the slope of this curve, so the “toe” and “shoulder” 
regions lead to low contrast. Highest contrast is, therefore, between the toe and shoulder regions 
of exposure.
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4.4.2 Electronic Detectors

There are numerous materials used in electronic detectors including sodium iodide, bis-
muth germinate, calcium tungstate, cadmium tungstate, calcium fluoride, cesium iodide, 
ultrapure germanium, xenon gas, and arrays of high-Z solid-state detectors. As in the case 
of intensifying screens, each of these materials has an individualized spectral response. 
Depending on its composition and thickness, each material will absorb x-ray photons as a 
function of energy to various degrees. In the case of a scintillation detector, the light output 
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Φ from the scintillator depends on the total amount of energy absorbed by the detector 
material. We can calculate this value using the following equation:

 
F = -{ }- ×òK S E E Em E x( ) ( )1 e m r d , (4.3)

where
S(E) is the fraction of x-ray energy spectrum between E and E + dE
x is the thickness of the detector
K is the fraction of absorbed x-ray energy that is converted to light energy

Equation 4.3 can be used with any electronic detector if K is known for the detector. 
Regardless of the active detector material, electronic detectors differ from film-screen 
detectors, because unlike film their response is linear across a wide range of radiation 
exposure. While film-screen detectors generally have a linear response to radiation expo-
sure that spans 1–2 orders of magnitude (Figure 4.10), an electronic detector will often have 
a linear response spanning 4–5 orders (Figure 4.11). As discussed in the previous section, 
if a radiographic image has a wide range of exposure, some exposure will occur outside of 
the linear range of the film characteristic curve (Figure 4.9). Exposures outside this linear 
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range reduce contrast, which is an inherent limitation of film. In comparison, the wide 
dynamic range of the electronic detector maintains the linearity in the radiographic signal, 
even when imaging an object that has a large range in x-ray attenuation. This property is 
touted as an important advantage of electronic detectors.

4.5 DISPLAY CONTRAST
Digital images support the use of postacquisition enhancement to alter image contrast in 
a way that is not available with film-screen systems. Digital images are stored as arrays of 
numbers (pixels with pixel values for simplicity) rather than as optical density with film/
screen radiographs. With digital image display systems, the translation from a pixel value 
to its displayed brightness is done using a “look-up table” (LUT), which specifies an image 
brightness for each pixel value (Figure 4.12).

The operator controls display contrast by setting the range of image values to display 
(Figure 4.13). This range is mapped from black (minimum) to white (maximum). A wide range 
of pixel values results in low display contrast (Figure 4.13a). Alternatively, a narrow range of pixel 
values provides high display contrast (Figure 4.13b, c). A narrow range can be centered over dif-
ferent image values so that structures of low or high values can be displayed with high  contrast. 
The LUT can be switched from displaying images in a positive sense where high pixel values 
are white (Figure 4.13d) to a negative sense where low pixel values are white (Figure 4.13e).
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FIGURE 4.12 The display of digital images based on mapping the image’s pixel values to values 
used by the display system. This is accomplished using an LUT where the pixel value is used to 
index (look up) the value for the display system.
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Digital controls provide image display flexibility not available with conventional 
 film-screen systems including display using a color LUT. Such colors are referred to as 
“pseudocolors,” since unlike light photographic images medical images do not represent 
color. In most planar x-ray imaging applications, pseudocolor is not used because transi-
tions from one hue to the next can create a false impression of borders. However, color 
displays can be helpful in parametric or functional imaging where pixel values represent 
blood flow, transit time, or some other physiological measurement derived from images. 
Also, color can help to compare regions of the same value in distant parts of an image 
where gray-scale comparison is difficult. Color is often used in tomographic image stud-
ies, especially in radionuclide imaging (SPECT and PET) to help visualize radiotracer 
levels. Color is also used to overlay results from functional imaging (fMRI, PET, SPECT) 
onto an individual’s anatomical image (CT or MRI). Also, color rendering can be used 
with surface model displays derived from CT and MR images in an attempt to provide 
a more realistic appearance or to show deep structures hidden behind superficial ones. 
However, it is important to remember that these electronically generated color images 
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should not be confused with the normal concept of real world colors, rather they are 
pseudocolor images.

4.6 PHYSICAL PERTURBATIONS
There are three related physical perturbations that act to decrease contrast in radiographic 
images, scattered radiation, fog in the film, and veiling glare in the image intensifier. Fog 
in film can be minimized by proper storage and handling, but otherwise cannot be avoided 
and will not be discussed further. We will present scatter radiation and briefly discuss the 
similar effects of veiling glare.

4.6.1 Scattered Radiation

Scattered radiation is present in all radiographic studies and is an important consideration 
especially in diagnostic examinations that use broad area beams, instead of narrow (fan 
or pencil) beam geometry. Measurements by Sorensen show that, in the standard chest 
radiograph, scatter radiation can account for 50% of the radiographic signal behind the 
lungs and up to 90% of the signal behind the mediastinum and diaphragm when no scatter 
rejection techniques are used.

The image formation process in diagnostic radiology essentially captures the radio-
graphic “shadow” cast by the beam of x-rays emitted from the focal spot within the x-ray 
tube. This assumes that the direction of x-ray photons is not altered when interacting within 
the body, and such x-ray photons are called primary photons. X-ray photons that scatter 
within the body are called secondary or scattered photons and appear to arise from the 
position in the body where the scattering occurred rather than the focal spot (Figure 4.14). 
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ducing a nearly uniform image. Contrast without scatter (b) is reduced due to such scatter (c).
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Each small volume within the body is potentially a new source of x-rays, each casting a 
different shadow. As such, scattered x-rays strike the image receptor from various direc-
tions and carry little useful information about the object, unlike primary x-ray photons. 
A useful way to describe the amount of scatter in a radiographic signal is the scatter fraction 
F defined as

 
F =

Number of scattered x-ray photons

Number of primary plus scattereed photons
. (4.4)

Sorenson has shown that the contrast reduction due to scatter radiation is related to the 
scatter fraction F according to the equation

 Csc = C(1 − F), (4.5)

where
Csc is the contrast in the presence of scatter
C is the contrast with no scatter
F is the scatter fraction

When the scatter fraction is 90%, as it can be in chest radiology (broad x-ray beam), the 
reduction in contrast due to scatter is also 90% and one obtains only 10% of the contrast 
that is available in the image without scatter (Figure 4.14). It is, therefore, important to 
reduce the amount of scatter for any imaging procedure.

There are a number of ways to reduce scattered radiation to improve radiographic 
 contrast (Figure 4.15). We will discuss these techniques in detail in later sections and 
only review them conceptually here. Scatter can be reduced by geometrical means, using 
a small field size or by having a large “air gap” between the patient and the image recep-
tor. In these cases, because scatter does not travel in the direction of the primary x-ray 
beam, it has a lower probability of striking the image receptor with a small field size or 
large  distance (air gap) between the patient and the detector. In addition, when a small 
field size is irradiated, less tissue volume is exposed, and therefore, less scatter radiation 
is produced. It is always good radiological practice to limit the radiation exposure to as 
small an area (field of view) as possible, consistent with the clinical needs of the study. 
This reduces the radiation dose delivered to the patient and helps to recover the contrast 
lost due to scattered x-rays.

There are several devices that can be used to reduce scatter. The most common one is 
called an x-ray grid that is analogous in concept to venetian blinds (Figure 4.15b). A grid 
contains thin parallel strips of lead embedded in aluminum or plastic with the strips aligned 
with the direction of the primary x-ray beam. The grid is placed between the patient and 
the image receptor. This arrangement favors transmission of primary x-ray photons, while 
attenuating scattered photons. The grid may be moved back and forth across the lead strips 
during an exposure to blur out the grid pattern.

Another approach uses a scanning slit system (Figure 4.15c), which translates a pair 
of slits in radiopaque metal plates across the patient during the x-ray exposure. One slit 
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is before (forming a narrow beam) and the other after the patient (rejecting scatter). The 
narrow beam geometry provided by this arrangement of slits greatly increases the ratio of 
primary to scattered x-ray photons. Unfortunately, this system is not useful when short 
exposures are needed (to deal with motion), and it requires more output from the x-ray 
tube, thereby shortening tube life since only a small fraction of x-rays produced are used 
in forming an image. These limitations outweigh the advantages of the reduced scatter, so 
narrow-beam scanning systems have not proved useful for most clinical studies. However, 
the narrow beam geometry intrinsic to an x-ray CT system can be used to make low-scatter 
images if desired, but spatial resolution may not be adequate.

4.6.2 Image Intensifier Veiling Glare

Veiling glare arises from scattered x-rays at the input and output windows of an image 
intensifier as well as scattering of visible light in the input and output optics of the image 
intensifier and video camera (Figure 4.16).

Veiling glare occurs to a certain extent in many electro-optical imaging systems. 
Its effect is similar to that of scattered radiation in that it reduces contrast. Its contrast-
reducing effect is quantified using the contrast ratio (R), which is defined as the output at 
the center of the image divided by the output with 10% of the II’s input area blocked by 
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lead (so that the output is due entirely to veiling glare—Figure 4.16). Ideally, one wants no 
veiling glare, corresponding to an infinite contrast ratio. Image intensifiers using cesium 
iodide (CsI) phosphors have a contrast ratio of 17:1, while improved systems with a fiber-
optic output window and very thin titanium input window can have contrast ratios of 35:1. 
If an image intensifier has a contrast ratio of R, the input radiographic contrast C will be 
reduced to a contrast Cvg by veiling glare where

 
C C

R

R
vg =

+
æ
è
ç

ö
ø
÷1
. (4.6)

For example, if an image intensifier has a contrast ratio of 20:1, then an ideal contrast of 
10% will be reduced to ~9.5% (~5% loss) due to the effects of veiling glare.

4.7  PHYSICAL DETERMINANTS OF CONTRAST 
FOR OTHER IMAGING MODALITIES

4.7.1 Planar Nuclear Medicine Imaging

Imaging in nuclear medicine is referred to as functional imaging. Factors that affect 
contrast are broadly classified as subject or detector dependent. The basic imaging device 
is  called a gamma camera and images are called scans even when scanning is not part 

Scattered light photons
in camera optics

Scattered X-ray photons
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Lead disk covering 10%
of input phosphor

Input
phosphor

Image
intensifier
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optics
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X-ray beam

FIGURE 4.16 The setup for measuring image intensifier veiling glare using a lead disk to block 
x-rays at the center of the field of view.
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of the imaging protocol, such as for planar imaging. During a routine nuclear medicine 
imaging exam, multiple planar images are often acquired, while the camera is viewing the 
patient from different directions. These views are generally labeled based on the anatomical 
side of the body where the camera was placed, such as anterior, posterior left lateral, left 
anterior oblique, etc.

4.7.1.1 Subject-Dependent Contrast Factors
In nuclear medicine studies, the affinity of a target organ for a biological molecule is evalu-
ated using a radionuclide attached to the molecule as a radioactive tracer or radiotracer 
(Figure 4.17). The distribution and time course of the radiotracer is recorded using a 
gamma camera following intravenous administration of the radiotracer. The radiotracer 
accumulation in the target organ relative to surrounding tissues provides the much needed 
contrast. This relative accumulation is called the target-to-background ratio and contrast 
is just the relative difference in detected activity between the target and the background. 
Nuclear medicine physicians are trained to recognize normal and abnormal radiotracer 
uptake, accumulation, and clearance patterns for various organ systems. Additionally, 

RT RT

Ant Post

LT

FIGURE 4.17 Whole-body bone scan of showing the distribution of the radiotracer Tc-99(m) 
methylenediphosphonate or MDP that localizes in bone. (Courtesy of IAEA Human Health 
Campus, Vienna, Austria.)
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dynamic imaging (multiple images acquired over time), coupled with region of interest 
analysis, can be used to quantify uptake and clearance rates for comparison with normal 
values.

Another subject-related contrast factor is the attenuation of gammas emitted from the 
organ of interest by both absorption and scattering. The most common radionuclide used 
is Tc-99(m) with a gamma energy of 140 keV, which has a half-value layer of approximately 
4.6 cm in the body. The attenuation depends on the depth of the organ of interest. For a 
shallow organ system such as bone, the attenuation is low compared with the liver, which 
extends deep into the abdomen. This attenuation effect is seen in the differences between 
the posterior and anterior views of the bone scan in Figure 4.17. As attenuation increases, 
the fraction of scatter increases, reducing subject contrast. Unfortunately, as body size 
increases, attenuation increases, reducing contrast.

4.7.1.2 Detector-Dependent Contrast Factors
A schematic of the main components of the most common gamma camera is provided in 
Figure 4.18. This gamma camera is sometimes called an Anger camera, named after its 
inventor Hal Anger. The gamma camera components that influence the contrast are the 
crystal, the collimator, and the pulse height analyzer (PHA) (spectrometer).

4.7.1.3 Crystal
The thickness of the NaI(Tl) crystal is important since a thicker crystal can absorb more 
gammas; however, the increased thickness leads to more uncertainty in position, and that 
reduces resolution and contrast for smaller objects. The energy resolution of the crystal 
is important to reject scatter. Energy resolution depends on the number of light photons 
produced on average per gamma absorbed. Energy resolution increases with increasing 
gamma energy. The energy resolution for Tc-99(m) is approximately 10%. The size of PMTs 
also affects spatial resolution with smaller PMTs providing higher resolution and therefore 
more contrast for smaller objects.

To CRT
for analog imaging

or to computer matrix
for digital imaging

x position

y position

z pulse
To PHA’s

PMT array
NaI crystal
collimator

Position logic circuit

FIGURE 4.18 Diagram of Anger-type gamma camera.
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4.7.1.4 Collimator
Unlike x-ray imaging where the image is produced by radiation transmitted through the 
body, for nuclear medicine, the image is produced by radiation that is emitted from within 
the body. A 2-D (planar) image of the 3-D distribution of radiotracer is formed using a 
device called a collimator. Collimators are made of lead with parallel channels (openings) 
that are perpendicular to the plane of the crystal (Figure 4.19). Gammas traveling paral-
lel to the channels form a 2-D image of the radiotracer distribution at the crystal. These 
gammas must be emitted in a very small solid angle to traverse the channels, so only a 
small fraction of gammas emitted are used to form the image (~1 in 10–4). Collimators are 
optimized to work within certain energy ranges, but most collimators are made for use 
with the 140 keV photons emitted by Tc-99(m). Collimator design is a trade-off between 
channel length, channel cross-sectional area, and septal thickness (Pb between channels). 
Resolution and sensitivity are tightly coupled with collimator designs where increasing 
spatial resolution diminishes sensitivity. For this reason, collimators are designed that best 
meet various imaging needs. When resolution is more important, a low-energy high-res-
olution (LEHR) collimator is preferred. Alternatively, when sensitivity is more important, 
a low-energy high-sensitivity (LEHS) collimator is preferred. A compromise collimator is 
also provided by most manufacturers, sometimes called a low-energy all-purpose (LEAP) 
collimator. The LEHR collimator is used when the radiotracer uptake has sharp borders, 
such as for extremity bone scanning. The LEHS collimator is used to improve sensitivity 
when tracking the entry and/or exit of a bolus of radiotracer within an organ, such as for 
first-pass cardiac studies. The LEAP collimator is used when there is a need for moderate 
spatial resolution and sensitivity.

FIGURE 4.19 Hexagonal section from a low-energy collimator used with TC-99(m). The spacing 
between collimator channels is ~1.9 mm for this collimator.
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Resolution diminishes with increasing distance from a collimator, but sensitivity 
remains relatively constant. This loss of resolution with distance reduces contrast for 
small deep lesions. This effect is also seen in the anterior and posterior view bone scans 
(lumbar spine in Figure 4.17). The degradation in resolution with distance is usually less 
severe with an LEHR collimator compared to LEHS or LEAP collimators, so it is likely 
the best choice for small deep lesions. This assumes that sensitivity is not a limiting 
 factor for the study.

4.7.1.5 Spectrometer
An energy spectrometer uses a PHA to selectively accept the energies of gammas emit-
ted by the radiotracer. This serves to reduce the effects of background and scattered 
radiation. A spectrometer is generally adjusted to have a window of acceptance of ~20% 
of the gamma’s photopeak energy. For TC-99(m), this is ±14 keV. Most spectrometers 
have the capability to support multiple energy windows for radiotracers such as Ga-67 
and Tl-201.

Scattered radiation has a lower energy than primary radiation, so a narrow spectrom-
eter window can be used to reject some scattered gammas. For higher-energy gammas, 
the  change in energy is larger for the same scattering angle (basic physics of Compton 
scattering), so scatter reduction by a narrow window can be more effective. Also, the prob-
ability for attenuation within the body decreases with increasing energy, providing the 
potential for improved contrast. However, the probability of interaction within the crystal 
drops with increasing gamma energy, potentially leading to reduced contrast. The trade-
off is to use a radionuclide with gamma energy of around 150 keV that can be collimated, 
that is absorbed with high efficiency with common crystal thicknesses, and that escapes 
the body with an acceptable level of attenuation. Tc-99(m) with its 140 keV gamma has 
become the radionuclide of choice.

4.7.1.6 Solid-State Gamma Cameras
Gamma cameras with designs similar to the digital imaging plates used in planar 
x-ray imaging with much thicker crystals are becoming popular. One system uses an 
array of over 11,000 tightly spaced CsI(Tl)/silicon photodiode modules in a UFOV of 
~12 × 15 in., consistent with the requirements of many clinical studies. The crystal is 
of dimensions ~3 × 3 × 6 mm, providing intrinsic absorption efficiency similar to com-
mon 9.5 mm thick NaI(Tl) gamma cameras (~88% vs. ~90% for Tc-99(m)). The intrin-
sic spatial resolution is mostly determined by the crystal 3 × 3 mm dimensions and is 
reported to be ~3.2 mm. The energy resolution for solid-state systems with Tc-99(m) 
is actually slightly better than conventional gamma camera systems (6%–8% vs. 10%). 
Also, the count rate capability is good, maxing out at ~5 million counts per second. 
A  one-crystal-per-pixel design where each crystal has an assigned pixel location is 
much simpler than the PMT position logic circuits used in older gamma cameras. This 
multicrystal design supports smaller, lighter, and potentially more mechanically robust 
gamma cameras.
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Other solid-state designs are available, some dedicated to mammography and some even 
proposed for handheld imaging. Collimators and spectrometers for solid-state gamma 
cameras are similar to those used for conventional gamma cameras, so operators readily 
adapt to their use.

4.7.2 Magnetic Resonance Imaging

Most magnetic resonance images (MRIs) are based on signals from hydrogen protons in tis-
sue, more specifically from mobile water molecules. The magnetic moment of the hydrogen 
protons and the magnet field strength makes these protons sensitive to RF at a frequency 
of ~43 MHz/T, the resonance frequency (called the Larmor frequency). An RF pulse at the 
Larmor frequency is used to alter the net magnetization of the protons so that they produce a 
measurable RF signal. The potential signal strength depends on relaxation times (T1 and T2) 
and proton density (PD) of tissues. MR imaging requires exquisite timing between RF trans-
mitter and receiver as well as the applied magnetic field gradients. The simultaneous timing 
of this is programmed into and executed by the MR pulse sequencer. A common clinical 
MRI uses a pulse sequence classified as spin-echo (SE) (Figures 4.20 and 4.21). Like nuclear 
medicine imaging, we can separate factors that affect contrast for SE imaging into subject- 
and detector-dependent factors.

4.7.2.1 Subject-Dependent Contrast Factors
The MRI signal is proportional to PD, the concentration of mobile water molecules. 
PD is lowest for air, low for bone, high for water, and similar to that of water (but lower) 
for most tissues. There are two relaxation processes that affect MRI signals, with spin–
lattice  relaxation quantified by relaxation time T1 and spin–spin relaxation by T2. 
The T1 relaxation time varies with magnetic field strength (B0) but more importantly 
by tissue, which produces T1W contrast. In the brain, T1 is longest for CSF, shortest 
for fat, and intermediate for other tissues. Unlike T1, the T2 relaxation time is mini-
mally affected by field strength. T2 is much shorter than T1 (approximately 1/10th). The 
T2 relaxation time varies by tissue with T2 relaxation times increasing as T1 relaxation 

T1W T 2W PDW
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FIGURE 4.20 MR images acquired to produce image-specific contrast between soft tissues. 
The T1-weighted (T1W) image contrast is mostly due to differences in T1, while in the T2- and 
PD-weighted images (T2W and PDW), the contrast is mostly due to differences in T2 or PD. All 
three images were acquired using SE-type pulse sequences.
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times increased. Potential contrast between tissues depends on the tissue  differences 
in T1, T2,  and PD. There are large differences in relaxation times for tissues in the brain 
(gray matter, white matter, and CSF) that can provide high image contrast between 
these tissues (Figure 4.20).

4.7.2.2 Detector-Dependent Contrast Factors
Similar to nuclear medicine imaging, the signals from MR images are intrinsic, arising 
from within the body. The signals produced are called RF signals since they fall within 
the radio-frequency band of the radiation spectrum. Unlike nuclear medicine, there is 
no ionizing radiation and little attenuation associated with the RF signals. The imaging 
 system consists of an RF transmitter, RF coils, gradient coils for spatial encoding, and 
an RF receiver. The signals from the RF receiver are digitized and sorted into “k-space,” 
which is a Fourier transform of signals from the object (subject or patient). The magnitude 
portion of the inverse Fourier transform of the k-space image is used to form MR images.

For SE MR imaging, contrast weighting is controlled by the operator-selected acquisition 
parameter’s repetition time (TR), echo time (TE), pixel spacing, and slice thickness. Pixel 
spacing and slice thickness determine the size of volume elements (voxels) in the images. 
The voxel volume is roughly the volume of space from which signals arise, so smaller voxels 
are needed for higher spatial resolution. A typical SE pulse sequence diagram shows the 
relationships among time of the RF excitation, the three gradients used, and the analog-to-
digital converter (ADC) (Figure 4.21).

While T1 or T2 relaxation times can be calculated for different tissues, they require 
multiple images while varying TR and TE and fitting to relaxation models for each voxel. 
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FIGURE 4.21 SE pulse sequence diagram. The lines of this diagram are greatly simplified but 
show the timing of the systems RF, gradient, and digitizer. The sequence repeats many times 
with a period called the repetition time (TR). TE is time from 90° RF pulse to middle of the RF 
echo seen in the top line. Note that the signal that is received (digitized) coincides with the 
RF echo.
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However, it is possible to acquire individual images with contrast weighted by either T1 
(T1W) or T2 (T2W) relaxation times, or proton density (PDW), without model fitting. 
Table 4.5 summarizes how TR and TE can be set up to develop weighted contrast images 
such as those in Figure 4.20 for a 2–3 T MR imager. Note that short TR in combination 
with long TE is not used in SE imaging.

In T1W images, tissues with shorter T1 times (e.g., fat) have higher signals. In T2W 
images, tissues with longer T2 times (e.g., CSF) have higher signals. Edema associated 
with trauma also has a higher signal in T2W images. In PDW images, tissues with greater 
proton densities have higher signals.

4.7.3 X-Ray Computed Tomography

Unlike a planar x-ray image that is a map of the x-ray’s intensity transmitted through 
a  body, an x-ray CT image is derived from a map of linear attenuation coefficients for 
each volume element (voxel) in the reconstructed image. Importantly, contrast between 
soft tissues is greatly improved in x-ray CT due to the removal of overlying and underlying 
tissues.

4.7.3.1 Subject-Dependent Contrast Factors
Subject contrast for x-ray CT imaging is due to differences in linear attenuation coefficients. 
The subject contrast between neighboring tissues with linear attenuation coefficients μ1 and 
μ2 is calculated as

 Contrast = (μ1/μ2 − 1) = [(μm ρ)1/(μm ρ)2 – 1]. (4.7)

As for planar radiography, contrast between bone tissue and surrounding tissues is high. 
Inspection of Equation 4.7 reveals that there are two special cases where subject contrast is 
dependent on either difference in densities or mass attenuation coefficients.

Case 1: If μm1 ≈ μm2, then contrast ≈ (ρ1/ρ2 − 1) only due to density differences.

Case 2: If ρ1 ≈ ρ2, then contrast ≈ (μm1/μm2 − 1) only due to mass attenuation differences.

Since attenuation coefficients vary with energy, a process that affects subject contrast 
is beam hardening, increasing of the average energy of the x-ray beam deeper within 

TABLE 4.5 Weighted Contrast in Spin-Echo MR Images

Acquisition Parameter T1W T2W PDW 

TR Short Long Long
(ms) (450–850) (2000+) (2000+)
TE Short Long Short
(ms) (10–30) (>60) (10–30)
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the subject. This potentially leads to differences in calculated linear attenuation coeffi-
cients for the same tissues in thin versus thick body regions. To help compensate for this, 
CT images are acquired using a high 125 kVp with additional Al filtering to effectively 
preharden the beam.

4.7.3.2 Detector-Dependent Contrast Factors
Most CT scanners are operated in a multislice mode where data from multiple slices are col-
lected simultaneously. An array of detectors is used, with many (up to 64) for the between-
slice direction and more for the within-slice direction (800 or more). A collimator is used 
on the x-ray tube side of a CT scanner to limit the x-ray beam to the extent of the detectors 
during scans. Additionally, scanners follow a helical or spiral scan mode where the x-ray 
tube and detectors are mounted on a rotating gantry using slip-ring technology and the 
patient bed is simultaneously moving during the scan. Unlike single-slice detectors with 
narrow x-ray beams, the large volume of the x-ray beam used with multislice detectors 
leads to more scatter. Multifinned septa are used to reduce acceptance of this scattered 
radiation. Detector size in the between-slice direction determines the slice thickness. Slice 
thickness and pixel size determine voxel size, and smaller voxels are needed to preserve 
contrast of small objects and at borders between bone and soft tissues. Operators can select 
slice thickness and reconstructed pixel sizes to adapt to the needs of the CT exam, but slice 
thickness is the primary concern.

4.7.3.3 Special Considerations for X-Ray CT Contrast
To standardize values for x-ray CT images, the linear attenuation coefficients are con-
verted to CT#’s:

 CT# = 1000 (μ − μw)/μw . (4.8)

Inspection of this equation shows that the CT# is a measure of the contrast between a tissue’s 
linear attenuation coefficient and that of water. The use of CT#’s helps to reduce variability 
in reported values between x-ray CTs from different manufacturers and different genera-
tions of CT systems. CT#s range from −1000 for air, slightly negative for fat, zero for water, 
slightly positive for soft tissues, to greater than 2000 for dense bone (Figure 4.22).

We cannot calculate image contrast between CT#s since they are not on a zero-based 
scale. We can shift CT#s to run from zero up by adding 1000 and then calculate con-
trast. If we do this, we get the same result as in Equation 4.7, that in x-ray CT the intrin-
sic contrast is the subject contrast due to differences in linear attenuation coefficients. 
Also, unlike planar x-ray imaging, the thickness of the target tissue is not an explicit 
variable in CT contrast. This holds as long as the target tissue is larger than the voxels. 
Subject contrast can be modified for x-ray CT using contrast agents similar to what 
is done for planar imaging. However, these are usually administered intravenously or 
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orally with a delay before imaging to allow for distribution throughout the vasculature 
and various tissues.

In clinical practice, the contrast in CT images is determined by display settings, referred 
to as window and level. For example, a window can be set to provide contrast across fat and 
soft tissues (Figure 4.22). A narrow window provides more contrast and a broader window 
provides more latitude. The window level determines which CT# is at the midgray level 
and the window width determines the range of CT#s that fall between displayed black and 
white levels.

If a voxel contains multiple tissues, this impacts contrast through a physical process 
called the partial volume averaging. The resulting CT# will fall between that of the tis-
sue with the lowest value and that with the highest. Larger voxels have greater potential 
for partial volume averaging and affect contrast at boundaries between tissues. Another 
source of volume averaging is associated with low-pass filtering that may be used to reduce 
noise levels. As the spatial extent of the low-pass filter is increased, partial volume averag-
ing increases. Such filters are chosen as a compromise between reducing noise levels and 
reducing spatial resolution.

L R

(a)

(b) (c)

FIGURE 4.22 X-ray CT of abdomen with axial (a), coronal (b), and sagittal (c) sections illustrated. 
The CT# display range was set to −215 to 457 to cover tissues of interest.
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4A APPENDIX
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The figure on the right is the basis for developing a simple mathematical model for calcu-
lation of contrast. Model limitations include failure to account for spatial resolution and 
scatter, but these can be added later. This simple model will be used throughout the course, 
so it is important to understand how it was derived and how it can be modified to account 
for other factors that are important to medical imaging.

The mathematical model given in Equation 4.2 for radiographic contrast based on 
 physical characteristics of tissues (Cp) is

 p
t b tC e x= -- -( )   m m 1, (4A.1)

where
μt is the linear attenuation coefficient of target tissue
μb is the linear attenuation coefficient of background tissue
xt is the thickness of target tissue of interest along x-ray beam

Given the three physical parameters for this equation, we can calculate the radiographic 
contrast (Cp) between two tissues, that is, prior to the detector. If μt is equal to μb, then 
contrast Cp = 0, as expected. If μt is larger than μb, then contrast Cp is negative but 
 cannot exceed −1. Conversely, if μt is smaller than μb, then contrast Cp is positive and 
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can exceed unity. This can occur if air is the target tissue or bone is the background 
tissue, but we will be more concerned with cases where these two linear attenuation 
coefficients are nearly equal (comparing soft tissue to soft tissue or vessels with contrast 
material).

In Chapter 1, we introduced the Rose model equation to provide a relationship between 
contrast at the threshold of visual detection (Cd) and several other physical parameters 
of interest:

 k C A2 2= d b tj , (4A.2)

where
k is the theoretical value of SNR at detection threshold (k ~ 5–7)
φb is the photon fluence (photons/area) in background
At is the cross-sectional area of target tissue

Note that Cd is squared so that positive and negative values of contrast are treated 
the same.

By setting Cd (from Equation 4A.2) = Cp (from Equation 4A.1), we get an expression for 
the relationship between five physical variables at the visual threshold of detection for a 
target tissue.

 k e Ax2 2
1= -éë ùû

- -( )m m jt b t
b t. (4A.3)

This equation can be solved for any single physical variable, if other variables are known.
It is often of scientific and/or clinical interest to estimate the incident radiation 

exposure to visualize a small lesion. To do this, you will need to know the incident 
 photon f luence φ0 and the energy (E) of the incident photons. For x-ray beams, we 
usually substitute the mean energy of the beam that ranges from 40 to 50 keV for most 
studies.

The following equation can be used to calculate radiation exposure in mR:
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Values for the mass energy absorption coefficient of air can be found as a function 
of energy in various radiological physics texts as well as the handbook of radiologi-
cal health. Table 4A.1 can be used for many interesting problems that deal with dose 
calculations.
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Example using Equation 4A.4. A chest film might require an incident exposure of 20 mR 
using an x-ray beam with an effective energy of 50 keV. What is the incident photon 
fluence?
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The following material should be helpful when reviewing the material in Table 4A.2:

The electron density [electrons/g] = 0N
Z

A
,

where
N0 is Avogadro’s number ~6.023 × 1023 (atoms/gram-atom)
Z is the atomic number (number of electrons per atom)
A is the atomic mass (grams/gram-atom)

Note that electron density is proportional to Z/A.
The effective atomic number (Zeff) is estimated using an equation like the following:

 Z Z Z Zeff = + + +a a a1 1
2 94

2 2
2 94

3 3
2 942 94 . . .. �, (4A.5)

where
αn is the fraction of electrons from element 1…n
Zn is the atomic number of element 1…n

TABLE 4A.1 Mass and Linear Attenuation Coefficients

Photon Energy (keV) (μen/ρ)air (cm2/g) μwater (cm−1) 

40 0.0625 0.2629
50 0.0382 0.2245
60 0.0289 0.2046

TABLE 4A.2 Physical Characteristics of Common Elements in the Body

Element Z A Z/A Density (g/cm3) K-Edge (keV) 

H 1 1 1.00 0.0586 0.01
C 6 12 0.50 2.25 0.24
O 8 16 0.50 1.14 0.53
N 7 14 0.50 0.808 0.39
P 15 31 0.48 1.82 2.14
Ca 20 40 0.50 1.55 4.04
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HOMEWORK PROBLEMS
P4.1 Assume that a 1  mm diameter artery contains a 10 mg/cm3-concentration iodine 

solution.

 (a) Calculate the approximate radiographic (subject) contrast assuming an effective 
attenuation coefficient of 15 cm2/g if no scatter is present. Make any reasonable 
assumptions you need to answer this question.

 (b) What is the radiographic contrast if the scatter fraction is 0.5?

P4.2 In a quantum-limited imaging system, a low-contrast object is just distinguishable 
from its surroundings.

 (a) If the object has an area of 1 cm2 and the measured exposure is 10–5 R, use the 
Rose model to estimate the radiographic contrast. Make any reasonable assump-
tions you need to answer this question.

 (b) If the object has an attenuation coefficient of 10 cm2/g, estimate the product of its 
density and thickness that is just distinguishable from its surroundings.

P4.3 Consider two imaging situations using contrast agents with electronic detectors. 
In one case, a detector of cesium is used to image an iodine contrast agent. In the 
other case, a detector of iodine is used to image a cesium contrast agent.

 (a) In which case would you expect the better image contrast? Why?

 (b) In which case would you expect the better signal-to-noise ratio at a given patient 
exposure level? Why?

 (c) Which of these two hypothetical situations is more realistic in terms of com-
monly available contrast agents and detector materials?

P4.4 Polycythemia is a disease characterized by an abnormal increase in the number 
of circulating red blood cells. In its normal function of breaking down hemoglo-
bin from dead red blood cells, the livers of patients with polycythemia accumulate 
abnormal amounts of iron.

 (a) Ignoring patient radiation dose considerations and knowing that the K-edge 
energy of iron is 7.11 keV, describe how you would choose the kVp and the filter 
for the x-ray tube to maximize liver contrast for patients with polycythemia.

 (b) Briefly comment whether your answer in (a) is clinically realistic when patient 
radiation dose is considered. A short calculation may help to clarify your answer.

P4.5 Digital subtraction angiography (DSA) is a technique using a digital fluorographic 
system. In DSA, one image (the “mask image”) is obtained before an iodinated 
 contrast agent is injected into the circulatory system. A second image (the “opacifi-
cation image”) then is obtained after injection of the contrast agent. The images are 
logarithmically transformed, then subtracted to remove anatomical background 
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structures to isolate the contrast agent in the circulatory system (typically arteries 
and cardiac chambers). The geometry of the two images is summarized in the fol-
lowing diagrams.

Unopacified
artery

Mask image Opacification image
I II

Opacified
artery

I0

xt xtxI

I0

where
I0 is the incident photon fluence for both the mask and opacification images
I is the photon fluence detected in the mask image
II is the photon fluence detected in the opacification image
μI is the linear attenuation coefficient of iodine within the artery
xI is the equivalent thickness of iodine from the contrast agent in the opacification 

image
μt is the linear attenuation coefficient of tissue
xt is the equivalent thickness of tissue in both the mask and opacification images

 (a) Show that for the mask image

 I I e x= -
0

mt t .

  and that for the opacification image

 I I e x x
I

t t I I= - +
0

( )m m .

 (b) If we define the logarithmic difference image L to be

 L = ln(II) − ln(I),

  show that

 L = −μIxI.

  Briefly discuss assumptions and how this result shows that logarithmic subtraction 
removes anatomical background structures from the DSA image.
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 (c) Define the scatter-to-primary ratio f as

 
f =

Exposure contributed by scattered radiation

Exposure contributeed by primary radiation
.

  In the presence of scatter radiation, if f is the scatter-to-primary ratio, the photon 
fluence in the mask image is contributed by both the primary (unscattered) and 
the scattered components. In this case, show that the detected photon fluence is

 I I e f I ex x= + ×- -
0 0

m mt t t t .

  Assuming that the scatter field does not change significantly by the addition of a 
small amount of iodine, show that for the opacification image,

 I I e f I ex x x= + ×- + -
0 0

( )m m mt t I I t t .

  (Hint: Part (c) follows directly from the definition of the scatter-to-primary ratio. 
The solution is very simple. Do not make it too difficult for yourself.)

 (d) For a scatter-to-primary ratio f, show that in the presence of scatter, the logarithmic 
difference image is
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  for small values of μIxI. Discuss the importance of this result in terms of the image 
contrast that is obtained in DSA.

P4.6 Dual-energy imaging is a technique in which two images are obtained with differ-
ent energy spectra with the purpose of separating two materials having dissimilar 
atomic numbers that are both present in the imaging field. In most realistic systems, 
the spectra used for image acquisition are polyenergetic bremsstrahlung spectra, but 
for purposes of this problem, we can approximate the beams as being monoenergetic 
with energies E1and E2. Assume that

I01 is the incident photon fluence at energy E1

I1 is the detected photon fluence at energy E1

I02 is the incident photon fluence at energy E2

I2 is the detected photon fluence at energy E2
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 (a) If the imaging field contains only bone (b) and soft tissue (t), and if

μb1 is the linear attenuation coefficient of bone at energy 1
μb2 is the linear attenuation coefficient of bone at energy 2
μt1 is the linear attenuation coefficient of soft tissue at energy 1
μt2 is the linear attenuation coefficient of soft tissue at energy 2

  show that the thickness of bone xb and the thickness of soft tissue xt are equal to
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 (b) Briefly discuss how the results in (a) allow you to separate bone and soft tissue 
when imaging the human body using dual-energy techniques.
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Mathematics for Linear 
Systems

In this chapter, we review the concepts of linear transformations and position invari-
ant functions as they relate to imaging. With some constraints, an image can be repre-

sented as the convolution of a position-invariant point spread function within the object, 
supporting utilization of the Fourier transform theory to alternatively describe imaging. 
An important factor for digital imaging is sampling, so we will examine the mathematics 
of sampling theory and model the effects of digitization of the medical image. Mathematical 
template functions and associated tools presented in this chapter will be used throughout 
the remainder of the text, and they should be familiar to the graduate-level engineer or 
physicist, so only a brief overview will be presented. Those who need review or further 
explanation of these topics are referred to several excellent texts.*

5.1 DIRAC DELTA FUNCTION
We start with the Dirac delta function δ(x), which is defined as follows:
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. (5.1)

Importantly, this has a unity integral value that is naturally unitless:
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* An excellent discussion is presented in Ronald N. Bracewell, The Fourier Transform and Its Applications, New York: 
McGraw-Hill Book Company, 2nd edn., c. 1986. A shorter but equally commendable discussion focusing on medical 
imaging is presented in Albert Macovski, Medical Imaging, Englewood Cliffs, NJ: Prentice-Hall, c. 1983. A thorough dis-
cussion of linear systems in medical imaging is given in the two-volume text Harrison H. Barrett and William Swindell, 
Radiological Imaging: The Theory of Image Formation, Detection, and Processing, New York: Academic Press, c. 1981.
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We will call δ(x) a “delta function,” with implicit rather than explicit homage to Dirac. 
This delta function has several important interesting properties. First, it is rather easy to 
show that the delta function greatly simplifies integration when it is present in the  integrand 
with another function:
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This equation states that when the product of a function and the delta function is inte-
grated over the domain of the function, the result is the value of the function at x = 0, 
assuming it exists. This property can be generalized to provide a sample of f(x) at position 
x = x′ as follows:
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where δ(x − x′) is a shifted delta function, shifted from x = 0 to x = x′.
A series of delta functions is called a “comb” or “shah” function, and these can be 

represented as a discrete sum since they do not overlap:
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Equation 5.5 is an infinite sum of delta functions, which are regularly spaced at inte-
ger intervals (Note: n and x have the same units). A function can be “point sampled” at 
integer intervals if it is multiplied by the comb function:
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so that the integral of this product yields the sum of nonoverlapping sampled function 
values f(x) where x = n:
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We will return to sampling and the delta function after we review a few more mathemati-
cal tools.
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5.2 CONVOLUTION
The convolution of f(x) with h(x) can be written using the convolution symbol “⊗” as 
f(x) ⊗ h(x). The convolution operation is defined in the following equivalent integral equations:
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In Equation 5.8, y is a dummy variable for x. In two dimensions, convolution is defined as 
follows:
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The symbol “⊗⊗” indicates a convolution operation on both independent variables. 
This seemingly awkward notation reduces the ambiguity of the expression f(x, y) ⊗ h(x, y), 
which could mean alternatively a one-dimensional convolution in terms of x, a one-
dimensional convolution in terms of y, or a two-dimensional convolution in terms of 
both x and y. In this text, the expression f(x, y) ⊗ h(x, y) will denote a one-dimensional 
convolution, and to avoid ambiguity, we will state explicitly (or make it clear implicitly) 
with respect to which independent variable the convolution is to be obtained.

We can show (actually you should show) that the convolution operation has both 
commutative and associative properties so that the order and grouping of functions is 
completely interchangeable:

 Commutative property: f(x) ⊗ g(x) = g(x) ⊗ f(x) (5.10)

 Associative property: f(x) ⊗ [g(x) ⊗ h(x)] = [f(x) ⊗ g(x)] ⊗ h(x) (5.11)

Other interesting features of the convolution operation are its “shifting” and “replication” 
properties. It follows directly from the definition of a delta function at x = a. The shifting 
property for convolution states that

 f(x) ⊗ δ(x − a) = f(x − a) (5.12)

such that a function f(x) can be relocated (or shifted) by convolving it with a shifted delta-
function. A function can be shifted by a and scaled by b using this property as follows:
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Finally, f(x) can be replicated an infinite number of times at unit spacing by convolving the 
function with the comb function:
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These expressions can be generalized for two-dimensional convolutions, and their proof 
will be left as exercises for the reader.

5.3 FOURIER TRANSFORM
In one-dimension, the Fourier transform of f(x) is defined by the integral equation

 

F u f x e xiux( ) ( )= -

-¥

+¥

ò 2p d  (5.15)

where F(u) is expressed in terms of the spatial frequency variable u. Similarly, the inverse 
Fourier transform of F(u) gives us the function f(x) where
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Note the use of capital letters for Fourier domain functions and lower case for spatial 
domain functions, while keeping the function letter unchanged. The spatial frequency 
variable (u) has units that are the inverse of those of the spatial variable (x). So if x is in 
mm, then u is in 1/mm. Together f(x) and F(u) represent Fourier transform pairs.

In two dimensions, f(x, y) and its Fourier transform F(u, v) are related by the following 
integral equations:
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and
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The Fourier transform has enough interesting properties to fill books and keep the pre-
cious time of mathematicians, engineers, and physicists fully occupied. Here, we present 
several basic definitions and properties, and as other properties are needed to describe 
imaging systems, they will be introduced.

To simplify the notation, we sometimes use the symbol I to indicate Fourier trans-
form. We will focus on a few Fourier transforms that will be useful for imaging scientists. 
The first is

 Á{ [ / ]} =f x a aF au( ) (5.19)

and if a > 1, we see that “expansion” in the spatial domain (division of x by a) causes “con-
traction” in the spatial frequency domain (multiplication of u by a). Likewise, expansion 
in the frequency domain results in contraction in the spatial domain. One might expect 
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this from the fact that units in the spatial domain are “mm,” while those in the frequency 
domain are “1/mm.” This also follows in two dimensions for a > 1 and b > 1:

 Á{ ( )} =f x a y ab F au bv/ , /b ( , )  (5.20)

One of the most useful properties of the Fourier transform is its relationship to convolution 
where convolution between functions in one domain becomes multiplication of functions 
in the other:

 Á{f(x) ⊗ g(x)} = F(u) G(u) (5.21)

such that

 f(x) ⊗ g(x) = Á–1{F(u)G(u)} (5.22)

and

 Á[f(x) g(x)] = F(u) ⊗ G(u) (5.23)

such that

 f(x) g(x) = Á–1{F(u) ⊗ G(u)} (5.24)

The spatial domain convolution operation can be rather difficult to apply analytically, 
but is one that arises often in medical imaging. By utilizing the Fourier transform, we 
can perform the convolution operation by multiplying the Fourier transform of the con-
stituent functions, then taking the inverse transform (Equation 5.22). Multiplication in 
the frequency domain is done as the product of two complex functions, but this operation 
is straightforward in most cases. Because this approach is so utilitarian, we can perform 
much of the mathematics of medical imaging by learning Fourier transforms of a few basic 
functions used to describe imaging systems.

Following are definitions of five common template functions that are key to our 
mathematical description of medical imaging:
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Sinc function: sinc( )
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Triangle function: Ù( )
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Comb or Shah function: III( ) ( )x x n
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Note: The delta, sinc, rect, and triangle functions are each defined such that their integral 
is unity.

The Fourier transform of basic template functions along with several trigonometric 
functions and the classic Gaussian function is of major importance in medical imaging 
(Table 5.1 and Figure 5.1).

TABLE 5.1 Fourier Transform Pairs Commonly Used in Medical Imaging

Spatial Domain f(x) Frequency Domain F(u) 
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5.4 MODELING MEDICAL IMAGING AS A LINEAR SYSTEM
The imaging process can be modeled as a system that mathematically transforms an object to 
a corresponding image. In a simple 2-D model, the mathematical transform (S), a function 
of the imaging system, determines how the object f(x, y) is transformed to the image g(x, y). 
For x-ray imaging, the object function f(x, y) alters the x-ray transmission at position (x, y) in 
the object for a thin slab of thickness dz. We will only deal with this slab for now. The image 
function g(x, y) is modeled as the x-ray photon fluence at (x, y) in the image (i.e., the radio-
graphic image). The most basic form for an imaging equation is the following:

 g(x, y) = S[f(x, y)] (5.43)

For much of the discussion of medical imaging systems, we will assume that they are linear 
systems. This assumption is made implicitly, or we can force it to happen explicitly, and 
although it limits us to a fairly specific set of characteristics, it provides several attractive 
properties.

A linear imaging system defined in terms of a linear imaging system transform S has 
two important properties. First, if we image the sum of two objects f1 and f2, the result is 
identical to that obtained if we add the images of the objects acquired separately:

 S[f1(x, y) + f2(x, y)] = S[f1(x, y)] + S[f2(x, y)] (5.44)
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FIGURE 5.1 Graphical representation of common template functions (a) and their Fourier 
transforms (b).
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This is known as the property of linear additivity. This allows us to model imaging for a 
thin slab under the assumption that if all slabs were modeled, we could sum the parts that 
compose the image. Second, if we image the object f(x, y) and then multiply the image 
by a constant a, we get the same result as imaging an object of magnitude a times f(x, y). 
This can be represented mathematically as

 aS [f(x, y)] = S[af(x, y)] (5.45)

where a is the multiplicative constant. This is known as the property of linear scalar. 
The properties of linear additivity and scaling can be summarized in a single definition of 
the linear operator. The operator S is said to be linear if for every two functions f1 and f2 in 
its domain and for every two constants a and b, S behaves as follows:

 aS[f1(x, y)] + bS[f2(x, y)] = S[af1(x, y) + bf2(x, y)] (5.46)

An example of a linear operator is the derivative operator (d/dx). That is, if f1 and f2 are two 
functions, then
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Other examples of linear operators are the integral as well as most smoothing and edge-
sharpening operations. Importantly, convolution and the Fourier transform are linear 
operations.

Investigation of how the imaging system operator S transforms a delta function provides 
insight about image formation. We begin the derivation using the two-dimensional shifting 
property of the delta function applied to f(x, y):
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If the linear imaging operator S operates on the function object f(x, y) to produce a resultant 
image function g(x, y) such that

 g(x, y) = S[f(x, y)] (5.49)

then using the linearity property of S and the integral property of a function and a shifted 
delta function given in Equation 5.4, we have
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Note that in Equation 5.50, the term f(ξ, η) does not depend explicitly on the variables 
(x, y) and, therefore, is constant with respect to the operator. However, S[δ(x − ξ, y − η)] is a 
function of (x, y) and (ξ, η), and this new function is given the function label h (note we are 
using function labels in alphabetical order here from f to h):

 S[δ(x − ξ, y − η)] = h(x, y; ξ, η) (5.51)

The h function can be substituted into (5.50) giving the following equation:
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The image value g is related to the object transmission f by the spatial response function h 
(Equation 5.52), which can be a function of both “object” (ξ, η) and “image” (x, y) coordi-
nates. To model projection x-ray imaging, f(ξ, η) represents the object transmission at the 
point (ξ, η), while g(x, y) is the resulting image value at the point (x, y). Note: h(x, y; ξ, η) 
is better known to imaging physicists and engineers as the point spread function. Loosely, 
h(x, y; ξ, η) is the image from an infinitesimal object (i.e., delta function) at the point (ξ, η) 
in the object plane. In general, h can be a very complicated function of object and image 
coordinates. The importance of a linear shift-invariant system is that the point spread 
function h is the same for all locations, greatly simplifying usage. In this case, the spread 
in h only depends on the difference in coordinates:

 h(x, y; ξ, η) = h(x − ξ, y − η) (5.53)

Simply stated that if the image of a point has the same functional form as the point is 
moved around in the object’s x-y plane (Figure 5.2), then the imaging system is shift invari-
ant. While this is not exactly true for projection x-ray imaging systems, it is approximately 
true over any sufficiently small area.

Substituting Equation 5.53 into Equation 5.52 gives an equation for g(x, y) expressed 
as a convolution:

 

g x y f h x y f x y h x y, ( , ) ( , ) , ,( ) = - - = ( )ÄÄ ( )
-¥

+¥

-¥

+¥

òò x h x h x hd d  (5.54)

This result is important because it shows that an image can be expressed as the convolu-
tion of the object with the system point spread function. Equation 5.54 holds regardless 
of the type of imaging system, making this a very general approach to all forms of imag-
ing systems.
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So how does this mathematical formalism apply to medical imaging (or projection x-ray 
imaging in particular)? We can think of an object as being comprised of an infinite num-
ber of point objects, each with differential area dξdη where the transmission at each point 
is equal to the object transmission f(ξ, η). We can then image a single point f(ξ, η) by fixing 
(ξ, η) and letting (x, y) vary, producing the point image dg(x, y) as follows:

 dg(x, y) = f(ξ, η) h(x − ξ, y − η)dξ dη (5.55)

Here, dg(x, y) is just an image of the point spread function h modulated by the object 
transmission at (ξ, η). Repeating by varying (ξ, η) to span the object produces a multiplic-
ity of point spread functions, one for each point on the object that are overlaid and added 
to each other. Equation 5.54 shows that the sum of all projected point spread images, 
obtained by integration, gives us the radiographic image g (i.e., photon fluence) produced 
by the transmission object f.

For a linear shift invariant system, we see that the point spread function h is the key 
functional component in image formation. Since it measures how object points spread out, 
it also serves as the basis for assessing the spatial resolution of an imaging system. For a 
linear space invariant system, we can determine the point spread function h(x, y) by imag-
ing an infinitesimal object (a delta function), and this provides a comprehensive measure 
of spatial resolution.

The description of the imaging process based on convolution is helpful since we can 
utilize the property that the Fourier transform of the convolution of two functions equals 
the product of their Fourier transforms. That is, if F(u, v), G(u, v), and H(u, v) are the 
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FIGURE 5.2 Geometry of source projection. For the general case, the spread function h changes 
with location (a). For a shift invariant system, h does not change with location but rather depends 
only on the difference between output coordinates (b). For a shift invariant imaging system, the 
image g can be represented as “convolution” between the object f and the point spread function h 
as follows:
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Fourier transforms of f(x, y), g(x, y), and h(x, y), then in the spatial frequency domain, 
Equation 5.54 becomes

 G(u, v) = Á[g(x, y)] = Á[f(x, y) ⊗ ⊗ h(x, y)]

 G(u, v) = Á[f(x, y)] Á[h(x, y)] = F(u, v) H(u, v) (5.56)

 Á{Image} = Á{Object} Á{Point Spread Function}

The Fourier transform simplifies many of our calculations since it converts the convo-
lution of two functions (an integral equation) in the spatial domain into an operation 
multiplying two functions in the spatial-frequency domain. The product of F(u, v) and 
H(u, v) is often easier than computing the convolution of f(x, y) with h(x, y) since Fourier 
transforms can be looked up in standard tables or otherwise determined. The Fourier 
transform of most functions leads to both real and imaginary parts requiring the use of 
complex multiplication, but this is more straightforward than spatial domain convolution 
in many cases.

The Fourier transform also provides insight into the imaging process as a means 
to represent a system’s spatial frequency response. We can describe the response of 
a system to a simple sinusoidal input. If we know the general response to sinusoids 
(i.e., at all possible spatial frequencies with corresponding phases), then we know the 
response of the system to any well-behaved function (i.e., object). Since a point object 
can be assumed to have a constant magnitude at all frequencies (Equation 5.30), the 
frequency response (departure from this constant value) of an imaging system given 
by the Fourier transform of its point spread function is the system transfer function 
H(u, v). Since the system transfer function H(u, v) is often a complex function (having 
nonzero real and imaginary parts), we will concentrate on its magnitude, known as the 
modulation transfer function or MTF(u, v). You will become familiar with the MTF in 
the following chapters.

5.5 GEOMETRY-BASED MODEL OF X-RAY IMAGE FORMATION
In Section 5.4, we used a mathematically elegant approach (borrowed from Macovski) to 
describe the imaging process in terms of convolution between an object and the point 
spread function, which implicitly assumed zero magnification. However, projection x-ray 
imaging is based on geometry and this concept is not obvious from the formalism pre-
sented in the previous section.

In this section, we will demonstrate how projection x-ray imaging can be expressed as 
a convolution, while accounting for its inherent magnification. The approach (borrowed 
from Barrett and Swindell) will be presented geometrically, which will help to reveal both 
features and limitations of projection x-ray imaging.

In this derivation, we will use the geometry defined in Figure 5.3 in which the x-ray 
“source” is located in the xsys-plane, the “object” of interest in the xoyo-plane, and the image 
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in the “detector” xdyd-plane. The three planes are parallel and share a common z-axis. 
For this derivation, let us make the following assumptions:

h(xs, ys) = emitted photon fluence (photons/area/s) at location (xs, ys) in the source plane. 
The emission is assumed to be isotropic and nonzero only where photons are emitted.

f(xo, yo) = x-ray transmission of the object at point (xo, yo) in the object plane.

g(xd, yd) = incident photon fluence in the detector plane (photons/area/s).

From the definition of photon fluence g(xd, yd) [photons/area/s], the number of photons 
incident on the detector per second in a small area dxddyd at position xd, yd is

 dNd/dt = g(xd, yd) dxd dyd (5.57)

In�nitesimal source
h(xs, ys)

ys yo
yd

xs

ss sd

xo
xd

z

Source plane Object plane Detector plane

In�nitesimal object transmission
f(xo, yo) In�nitesimal image

g(xd, yd)

Detector

sdss
xs

s

xd
xo

R

z

Object

Source θ

X-ray projection geometry

Geometry of the image formation process

FIGURE 5.3 Geometry and triangles used to show the relationship between variables used in the 
math of image formation by projection radiography. The x-ray tube focal spot is on the source 
plane, tissue is on the object plane, and the radiographic image is formed at the detector plane.
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The number of photons incident on the detector per second can also be calculated from the 
source and object geometry as
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Setting Equation 5.57 equal to Equation 5.59, we obtain the photon fluence g incident at 
position (xd, yd) of the detector:
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For simplicity, we will assume small angles where

 cos θ ≈ 1 (5.61)

and

 R ≈ s = ss + sd (5.62)

where s is the source-to-detector distance. Therefore, Equation 5.60 simplifies as
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Equation 5.63 contains coordinates in three different planes (source, object, and detector). 
If there were no magnification, the detector and object coordinates would be the same, but 
magnification must be accounted for, so to deal with this, we will express all coordinates 
at the detector plane. This is important since our measurements are made at the detector 
plane, and magnification can be used to express corresponding coordinates at the object or 
source planes. Similar triangles (Figure 5.3) that show that
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where ss and sd are the distances from object to source and object to detector planes. Solving 
Equation 5.64 for xo leads to an equation for the x-coordinate at the object plane as a function 
of source and detector plane x-values:
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Here M is the object magnification (Figure 5.4):
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Source magnification =
Projected source width

Source width

= = = M – 1

Msource = M – 1

s – ss
ss

s
ss

sd

ss

sdss

s

Object magnification
Source
plane

Object
plane

Detector
plane

Projected object
distribution

Projected object
width

Object width

sd

Object magnification M =
Projected object width

= = M
Object width

sd + ss

ss

ss

s

Object

– 1

FIGURE 5.4 Geometry used to determine source and object magnification (M). The object magni-
fication (M) is equal to the projected object width divided by the object width. The source magnifi-
cation (M − 1) is equal to the projected source width (through a pinhole placed in the object plane) 
divided by the source width.
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Similarly, the equation for the y-coordinate is
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Substituting x0 and y0 from Equations 5.65 and 5.67 into (5.63) yields
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Finally, if we project the source coordinates onto the image (detector) plane through a 
point in the object,

 x M Ms s ss* ( ) and * ( )= - - = - -1 1x y y  (5.69)

f(x, y) = object transmission M = object magnification
M – 1 = source magnificationh(x, y) = source distribution

g(x, y) = photon fluence rate forming the image

g(x, y) =
(M – 1)2

1
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1 1
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Object transmission
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Image distribution
g(xd, yd)
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xd
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FIGURE 5.5 The source distribution h produces a magnified image distribution g for each point 
in the object. Integrating over all contributions from the source and object forms the final image. 
Here, the focal spot (source) is modeled as a bimodal distribution.



96   ◾   Fundmental Mathematics and Physics of Medical Imaging

Equation 5.68 can now be expressed in terms of coordinates at the detector plane based on 
source magnification (M − 1) and object magnification (M):
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On the right side of Equation 5.70, all coordinates indicated with “*” are in the detector 
plane, so the asterisk and subscripts can be dropped. This equation is then seen to be the 
convolution of the source distribution h with the object transmission distribution f where 
magnification is included:
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The subscripts were removed without loss of mathematical generality (Figure 5.5), and we 
have chosen the distance units of R so that 4πs2 = 1. One can calculate appropriate scale 
factors to account for such issues by making measurements of h with a pinhole camera. 
The interpretation of Equation 5.71 is that for projection x-ray imaging, the image “g” is 
formed as the convolution of the magnified source “h” with the magnified object “f ”. This 
result is consistent with the general imaging equation (Equation 5.54). This section, based 
on the geometry of projection x-ray imaging, shows that the “magnified source is the ‘point 
spread function’” presented in the prior section!

It is instructive to look at Equation 5.71 for two special cases.

CASE 5.1: IMAGING A POINT OBJECT (FIGURE 5.6)

If we have a point object f(x/M, y/M) = δ(x/M) δ(y/M), then the image g is equal to
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the source h magnified by the factor M − 1. Indeed, we see that if we image a point object with 
a magnification M, the source distribution h is projected onto the detector with a magnification 
M − 1. In this case, the image is a magnified version of the source. So, if we image a point object 
(i.e., a pinhole camera), we obtain an image of the source distribution magnified by a factor of 
M − 1. The minus sign in the arguments of h provides the spatial reversal when the source is 
projected through a point object.
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CASE 5.2: IMAGING WITH A POINT SOURCE (FIGURE 5.7)

If we now image with a point source h(x, y) = δ(x/(M − 1)) δ(y/(M − 1)), then Equation 5.71 
becomes
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the object magnified by M. Note that the negative argument can be made positive since the 
delta function only exists at x, y = 0, 0. Again, this is precisely what we expect, and is highly 
desirable for projection radiography. As shown in Figure 5.7, with an ideal (point) source, the 
object is projected onto the image receptor but is magnified by the factor M. These two cases 
are good examples of why M is “object magnification” and M − 1 is “source magnification.”
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FIGURE 5.6 In the limiting case of a point object (such as for a pinhole camera), the resulting 
image is a magnified and spatially reversed version of the source.
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In reality, we have a small x-ray source h(x, y) (focal spot) irradiating an extended object 
f(x, y). One way to view imaging is to consider the object as an infinite collection of points. 
Each small point in the object projects an image of the extended source (focal spot) onto the 
image plane with corresponding attenuation. Finally, the net image is equal to the sum of these 
projected focal spot images.

Alternatively, we can treat the extended source as a collection of point sources. Each 
point source projects an image of the object onto the image receptor. The final image is 
obtained by summing the projected images from each of the points comprising the extended 
source.

Mathematically, the image forming operation is quite straightforward if we know the source 
distribution h(x, y) and the object transmission f(x, y). If the object is magnified by a factor of 
M onto the detector, then the source h is magnified by a factor of M − 1. These magnified 
 distributions are given by
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FIGURE 5.7 In the limiting case of a point source, the image is a magnified version of the object.
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Importantly, if we evaluate these when M = 1, we see that the magnified source becomes a 
delta function and that the object is not magnified.

5.6 FREQUENCY DOMAIN MODEL OF IMAGE FORMATION
The imaging process can be represented in the spatial-frequency domain by taking the 
Fourier transform of Equation 5.71. If we maintain our notation where (u, v) are the spatial 
frequency variables corresponding to the spatial variables (x, y), and if the functions f, g, 
and h have Fourier transforms F, G, and H, respectively, then taking the Fourier transform 
of Equation 5.71 gives

 G(u, v) = M2F(Mu, Mv) [H(−(M − 1)u, −(M − 1)v)] (5.74)

Note that when M = 1, then H(u, v) = H(0, 0) = constant, with magnitude = 1 if the integral 
of h(x, y) = 1 (i.e., normalized to unit area); therefore, G(u, v) = F(u, v), as expected. Hence, 
in the spatial frequency domain, the Fourier transform of the image G is obtained by 
multiplying the Fourier transform of the magnified source distribution H by the Fourier 
transform of the magnified object transmission F. As described before, h is the point 
spread function and H the system transfer function.

The representation of an imaging system in the frequency domain also provides a useful 
tool in the analysis of image systems with multiple stages. If the image of an object with 
transmission f is formed through a sequence of steps, where each step is a linear spatially 
invariant system represented by point spread functions h1, h2, …, hn, then the image g is 
given by multiple convolutions:

 g = f ⊗ h1 ⊗ h2 ⊗ … ⊗ hn (5.75)

In the frequency domain, the product of the Fourier transforms of these spread functions 
leads to a frequency domain image:

 G = F · (H1H2…Hn) (5.76)

so that the composite system transfer function H-system is given by the product of the 
transfer functions of each stage:

 Hsystem= H1H2… Hn (5.77)
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Example 5.1

Emission of x-rays from a realistic focal spot is not uniform in the direction per-
pendicular to the anode–cathode axis. Rather, in 1-D, it has the form of a double 
Gaussian (Figure 5.8):
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We will use this focal-spot distribution function to illustrate several mathematical 
concepts.

 (a) Prove that the convolution of two Gaussian functions is another Gaussian 
function. Specifically, show that

 

1 1 1
2

2

2

2

2

2 2

2 2b
e

c
e

b c
e

x

b

x

c

x

b c

- - -

+Ä =
+

p p p

  (5.79)

 (b) Explain why h(x) in (5.78) can be expressed in terms of a convolution with two 
delta functions:
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FIGURE 5.8 In one dimension, a more realistic focal spot h(x) can be represented as the sum of 
two Gaussian functions having separation 2a and width b.
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 (c) Use (a) and (b) to show that if this focal spot distribution is used to image a 
1-D object with a Gaussian transmission function
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2  (5.81)

  and an object magnification M, then the image is represented by the function
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 (d) Interpret the result obtained in (c) geometrically.

Solution

 (a) We can prove Equation 5.79 in the spatial frequency domain. Making use of the 
properties of Fourier transforms and Equation 5.35, we have
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  such that
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 (b) From Equation 5.13, we have for the focal spot distribution h(x)

 

h x e x a x a e x a e
x

b

x

b

x

b( ) ( ) ( )  ( )= Ä + + -[ ] = Ä +
é

ë
ê
ê

ù

û
ú
ú

+ Ä
p p p

d d d
2

2

2

2

2

2
  ( )d x a-

é

ë
ê
ê

ù

û
ú
ú

 (5.85)

  such that

 h x e e
x a

b

x a

b( )  
( ) ( )

= +
- - +p p2

2

2

2

 

 (c) From Equation 5.71, the 1-D image distribution g(x) is seen as the convolution 
of the magnified focal spot distribution h (point spread function) with the mag-
nified object distribution f:
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  After substitution using Equations 5.80 and 5.81, we have
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(5.87)

  and using the associative property of convolution (Equation 5.11),
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  We can compute the convolution of two Gaussian functions using the result of 
part (a) of this example
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  And evaluating the convolution leads to the following:
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 (d) A helpful geometrical interpretation of the image can be seen in Equations 5.89 
and 5.90. The two delta functions determine the positions in the image plane for 
the two lobes of the focal spot. The distance between these two lobes is 2(M − 1)a. 
The width of the lobes is in the Gaussian (exponential term) and based on both 
the width of the magnified object (Mc) and the width of the magnified focal spot 
(M − 1)b.

If the magnified width of the Gaussian terms (lobes) is much larger than 
the distance between the two images (i.e., if ( ) ( )M b M c M a- + -1 2 12 2 2 2 � ), 
then the two Gaussian distributions will blur together and appear as one.

  If the magnified width of the Gaussian term is much smaller than the distance 
between the two images (i.e., if ( ) ( )M b M c M a- + -1 2 12 2 2 2 � ), then two 
Gaussian distributions can be distinguished. Additionally if the width of the 
magnified object (Mc) is much larger than that of the magnified focal spot 
distributions (M − 1)b, then Equation 5.90 simplifies to
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  with two distinct images of the object Gaussian lobes.
Most importantly as M approached unity, which is the case for many radio-

graphic procedures, Equation 5.91 reduces to

 g x be
x

c( ) =
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2

2

2

p

 (5.92)

  In this case, both the effect of the focal spot width and its two lobes are eliminated 
and the image appearance is that of the object alone.
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5A APPENDIX
Scaling and shifting of common imaging functions

An integrable function f(x) can be height and width scaled and shifted along x.
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The integral of the height and width scaled function is the integral of the original func-
tion multiplied by the product of the height and width scales a·c. We refer to a·c as the area 
scale, and if a = 1/c, then the area is unchanged by the scaling. The shift term does not affect 
area as long as the limits of integration span the range of the function.

Scaling and shifting of template functions

The normalized sinc function is
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 and n is an integer.

The scaled and shifted sinc function is then
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Note: If a = 1/c, then the area for the scaled sinc function remains unity.

The scaling and shifting properties for other normalized template functions (rectangle, 
triangle, and Gaussian) follow the trend given for the sinc function.

Relationship between rect and sinc functions

Several interesting results are seen when we evaluate the Fourier transform of 
f(x) = rect(x/a).
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From this simple exercise, we see that f(x) = rect(x/a), with width scale = a, transforms to

 F(u) = a · sin c(au) with height scale = a and width scale of 1/a.

Result 1. Since the height of the rectangle = 1, then f(0) = 1 and the integral of a · sin c(au) = 1. 
This is easily confirmed since the integral of sin c(u) is unity and the area scale of a · sin c(au) 
is unity.
Result 2. Since F(0) = a, the integral of rect(x/a) = a. This is easily confirmed for rect(x/a) 
since its height = 1 and its width = a.
Result 3. Setting a = 1 leads to the classic unit area templates, f(x) = rect(x) and F(u) = sin c(u), 
as Fourier transform pairs.
Result 4. For the spatial domain function rect(x/a), the corresponding frequency domain 
a · sin c(au) first goes to zero at u = 1/a. This supports a sinc function that goes to zero 
at  frequencies that are noninteger multiples of π. These zero points are independent of 
height scaling.
Result 5. In the limit as a goes to infinity, rect(x/a) approaches a unity valued constant 
over all x. We know that the Fourier transform of such a constant is δ(u) leading to the 
following:
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HOMEWORK PROBLEMS
P5.1 We sometimes get confused about the correct units for the spatial frequency vari-

able u, in particular, whether u is expressed in terms of cycles/length, radians/length, 
or degrees/length (or some other unit), all of which would be reasonable units for a 
spatial frequency variable. 

 (a) Please answer this question: If the spatial variable x has units of mm, what are the 
units of the conjugate spatial frequency variable u? 

 (b) We know that if ℑ denotes the Fourier transform operator, then
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  First, graph the function
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  and label your axes carefully. Use your graph to determine the spatial frequency 
of f(x) in the appropriate units. Then graph
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  and explain how the location of the delta functions comprising F(u) substantiates 
your answer in part (a) with respect to the correct units for the spatial frequency 
variable u. 

 (c) As long as we are discussing units, what are the units of δ(x)?

  Big hint: This question is easy to answer if you remember that
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P5.2 The following problems demonstrate the versatility of the Fourier transform.

 (a) Use the definition of the Fourier transform to prove that if F(u) is the Fourier 
transform of a function f(x), then
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 (b) Use the result from (a) to show that 
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P5.3 A function is symmetric about the origin if f(x) = f(−x) for all values of x. Show that 
if a function is symmetric, then its Fourier transform is real (i.e., contains no imagi-
nary components).

P5.4 Prove using direct application of the Fourier transform equations and any of its 
properties (5.30, 5.31, 5.34, and 5.35).
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C h a p t e r  6

Spatial Resolution

6.1 DEFINITIONS AND MEASUREMENT OF SPATIAL RESOLUTION

6.1.1 Point Spread Function

In the spatial domain, the resolution of an imaging system is characterized by its point 
spread function (psf) (Figure 6.1). For 2-D images, the psf(x, y) is the image obtained of an 
infinitesimal point object that can be defined as the product of two delta functions:

 point x y x y x y, ,( ) = ( ) = ( ) ( )d d d  (6.1)

If the imaging system is represented mathematically by the transform S, then the system 
point spread function psf(x, y) is obtained by transforming the point object (Figure 6.1):

 psf , point ,x y x y( ) = ( )éë ùûS  (6.2)

If (u, v) are the conjugate spatial frequency variables for the spatial variables (x, y), then 
the modulation transfer function MTF(u, v) is obtained from the point spread function 
psf(x, y) as the magnitude of its two-dimensional Fourier transform:

 STF = psfu v x y, ,( ) Á ( ){ }  (6.3)

 MTF = STFu v u v, ,( ) ( )  (6.4)

Here, STF(u, v) is the “system transfer function,” which is a complex function (having 
real and imaginary parts or alternatively using magnitude and phase). Since we are often 
just concerned with the magnitude of a system’s response as a function of frequency, the 
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modulation transfer function, or MTF(u, v), is commonly used to assess resolution. The 
most important theoretical descriptors of the spatial resolution of a medical imaging system 
are the psf and the MTF.

The psf for an x-ray imaging system is difficult to determine in practice because an 
infinitesimal point object (Figure 6.1) can only be approximated for an x-ray imaging sys-
tem. A tiny aperture in a radiopaque plate is used to approximate a point object. Since the 
aperture must be small in comparison with the spatial resolution of the system, very few 
x-rays are transmitted through the aperture requiring lengthy exposure times. Per specs 
from one system a 0.010 mm pinhole diameter is recommended for focal spot sizes from 
0.5 to 0.10 mm, a 0.030 mm diameter for sizes from 0.10 to 1.0 mm, a 0.075 mm diam-
eter for focal spots from 1.0 to 2.5 mm, and 0.100 mm diameter for sizes above 2.5 mm. 
After the film image is obtained, a scanning microdensitometer is used to record a profile 
through the center of the psf. An H&D transform is then applied to convert film density to 
relative exposure (required for linearity purposes). Linearity is required for all spatial reso-
lution measurements and linearization will be assumed to be a part of the measurement 
process when the psf for x-ray imaging is recorded using film.

6.1.2 Line Spread Function

Measuring the line spread function (lsf) (Figure 6.2) can reduce technical difficulties 
associated with obtaining and measuring the psf. As its name suggests, the lsf is obtained 
with a narrow slit in a radiopaque object, rather than a tiny point aperture. The lsf is an 
oriented one-dimensional representation of the two-dimensional psf, so images are usu-
ally acquired with the line oriented both parallel and perpendicular to the x-ray tube’s 
anode–cathode direction, the two most important directions. Also, the lsf is acquired 
near the center of the field of view. We record the lsf with a microdensitomer by scanning 
across the film image of the slit, perpendicular to its length. As for psf determination, 
the width of the lsf ’s slit must be sufficiently narrow so that its finite extent does not 
contribute significantly to the width of the slit’s image. That is, the spread in the imaged 
slit must be due almost entirely to the blurring contributed by the imaging system rather 
than the width of the slit. For x-ray film-screen systems, a slit width of 0.010 mm is used 
for this measurement.

x

y

δ(x, y)

Object Image

y

psf(x, y)

x

FIGURE 6.1 The inherent blurring of an ideal point δ(x, y) by the imaging system can be assessed 
by evaluation of the system’s point spread function psf(x, y).
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A line (or slit) is defined mathematically as
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The line is narrow in the x-direction and not a function of the y-coordinate. If S is the 
linear transform for the imaging system, then the line spread function lsf(x) is represented 
mathematically as follows:
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Therefore, the line spread function lsf(x) is equivalent to the integral along y of the 
2-D point spread function psf(x, y). Note: We are continuing to use capital letters for func-
tions in the frequency domain and lower case letters for functions in the spatial domain.

The 1-D MTF is the Fourier transform of the lsf. This is shown mathematically as follows:
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Hence, the Fourier transform of the lsf is the STF evaluated along one dimension (recall 
that MTF = |STF|). If the psf is spatially symmetric, then STF(u, 0) completely specifies 

line(x) = δ(x)

lsf(x)

y y

FIGURE 6.2 The line spread function lsf(x) is the image of an ideal line object (e.g., small slit in a 
lead plate). A 2-D line can be modeled as a 1-D delta function δ(x).
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the MTF. The advantage of the lsf over the psf is that we can average multiple samples 
of the lsf profile at different y-locations to reduce noise, so that less exposure is needed. 
However, care must be taken to ensure vertical alignment of the lsf such that the peak is 
at the same location in each scanned profile.

It is possible to remove the effect of finite width of a slit on the measured MTF(u)* 
using a process called deconvolution. The measured MTF(u)* is the product the system’s 
MTF(u) and the magnitude of the slit’s Fourier transform, Slit(u). Therefore, the algebraic 
division MTF(u)*/Slit(u) can then be used to estimate the corrected MTF(u). However, 
care must be taken where Slit(u) goes to zero, since MTF should also be zero, and in gen-
eral, the deconvolution (division here) is stopped before the first zero in Slit(u). By using 
a very narrow slit, this first zero should be well beyond the useful frequency range of the 
system MTF. This approach to remove the size of the aperture can be applied to the MTF 
determined from a psf as well.

6.1.3 Edge Spread Function

The final method to measure spatial resolution of an imaging system is based on the “edge 
spread” function (esf) (Figure 6.3). For this technique, the source is presented with an 
object that transmits radiation on one side of an edge, which is perfectly attenuating on the 
other. The transmission for such an edge can be defined mathematically using a unit step 
function:
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As Barrett and Swindell point out, this step function can also be written as
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yy

Input: f(x) = step(x) Output: g(x) = esf(x)

FIGURE 6.3 The edge spread function esf(x) is the image of an ideal step object (e.g., edge of a lead 
plate). The lsf can be derived as the spatial derivative of the esf. Similarly, a line object is modeled as 
the derivative of an edge object.
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based on the definition of line(x) from Equation 6.5. If the system transform S is linear, 
then
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where it can be seen that the lsf is just the derivative of the esf:
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A profile curve across the edge image is used as the esf. The derivative of the esf is the lsf, 
the Fourier transform of which yields the MTF in one direction. The advantage of the esf 
over the psf- or lsf-based approaches is that the esf can be acquired with a much smaller 
radiation exposure. As with the lsf, we can average many edge profiles, but we must ensure 
alignment of the individual edge profiles.

6.2 COMPONENTS OF UNSHARPNESS
Now that we have described system blurring or “unsharpness” mathematically in terms of 
spread functions, we will use this approach to further study and/or quantify the four major 
imaging system components of unsharpness in radiographic imaging systems. Geometric 
unsharpness refers to the loss of detail with increasing size of the radiation source (focal 
spot). Motion unsharpness refers to the loss of detail due to motion of the source (focal 
spot), the detector, or the object being imaged (patient) while the image is being acquired. 
Detector unsharpness refers to the loss of detail due to the resolving power of the detector. 
Finally, digitization unsharpness refers to the loss of detail associated with the conversion 
of the image from its natural analog form to a digital format, that is, analog-to-digital 
conversion.

6.2.1 Geometric Unsharpness

Geometric unsharpness in a projection radiograph refers to the loss in image detail caused 
by the size of the x-ray source, that is, the focal spot. As shown in Figure 6.4, an extended 
focal spot can blur the appearance of an object. We use language borrowed from astron-
omy to describe the extent of this blurriness. The area directly behind the object, which is 
completely contained within the shadow of the object, is called the “umbra.” Similarly, the 
region that has a partial shadow is called the “penumbra.” In some texts, the penumbra is 
called the edge gradient. (Note: umbra is Latin for shadow and paene is Latin for almost. 
“Umbrella” has similar Latin roots as ombrella.)

Obviously, as the size the focal spot increases, the size of the umbra decreases while that 
of the penumbra increases, and the degree of geometrical unsharpness or edge blurring 
increases. Therefore, to obtain the most detail in the image, one should use the smallest 
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focal spot possible. However, the focal spot must be large enough to handle the localized 
heat generated on the anode. This fundamental limitation forces many diagnostic medical 
procedures to utilize x-ray tubes with focal spots at least 1 mm wide.

Another important factor affecting geometric unsharpness is object magnification M. 
As we found in Chapter 5, if the object is projected onto the image receptor with a 
magnification M, the focal spot is magnified by a factor of M − 1. When the object is 
halfway between the source and detector, it is imaged with a magnification of 2, while the 
projected focal spot size is equal to its physical size (magnification equal to M − 1 = 1). 
As the object is moved closer to the detector, the object magnification tends toward 
unity, while source or focal spot magnification tends toward zero. As the object is 
brought closer to the source, the magnification of both the object and the focal spot 
magnification increases, causing increased geometric unsharpness (Figure 6.5). The 
increase in geometric unsharpness that accompanies magnification limits the degree 
to which magnification can be used to increase the spatial resolution with which the 
object is imaged.

Geometric unsharpness is modeled mathematically using linear systems analysis 
 presented previously in Equation 5.69. In this formulation an image g(x, y) is obtained by 
convolving the magnified object f(x/M, y/M) with the magnified focal spot distribution 
h(−x/(M − 1), −y/(M − 1), that is, the magnified psf. This is expressed mathematically as
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or in the frequency domain

 G u v M F Mu Mv H M u M v, , .( ) ( ) - -( ) - -( )( )2 1 , 1  (6.14)

Point source
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Object
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Detector
plane

Detector
plane

Penumbra or
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Finite source

Image
density

Image
density

FIGURE 6.4 The geometric component of unsharpness in a projection radiograph is the loss of 
detail due to the finite size of the x-ray tube focal spot. Increasing focal spot size reduces the umbra 
(shadow) region and increases the penumbra, leading to blurring at edges.
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H(u, v) is the two-dimensional transfer function associated with blurring by the focal 
spot. Both f(x, y) and F(u, v) refer to the object distributions (in spatial and frequency 
domains), which are magnified by M onto the plane of the detector. Geometry requires 
that M ≥ 1, and when M > 1, the projected image is larger than the object. M > 1 can 
 provide increased resolution if the detector is the limiting factor. Likewise, h(x, y) and 
H(u, v) refer to the source or focal spot distributions where the source is magnified by 
a factor of M − 1 onto the plane of the detector. The negative signs in the arguments of 
h and H indicate that the image of the source distribution is spatially reversed. When 
M > 2, the focal spot image is magnified potentially reducing detail in the final image. 
The trade-off between object magnification and focal spot magnification at the detec-
tor plane will be investigated later in this chapter after we discuss the effects of detector 
unsharpness. Recall that  magnification or enlargement in the spatial domain is minifica-
tion or contraction in the spatial frequency domain.

6.2.2 Motion Unsharpness

Ideally, x-ray imaging assumes that the patient, radiation source, and detector system are 
all stationary with respect to one another during the radiographic exposure. However, 
this is not true except in extreme cases, that is, postmortem. When one or more of these 
components move during the exposure, the image is blurred due to “motion unsharpness.” 
Patient motion is usually the main cause of motion unsharpness since movement of both 
the detector and the source can be controlled. The motion of the patient can be complex 
and uncontrollable, for example, the motion due to cardiac motion or peristaltic motion in 
the abdomen. Motion due to breathing can be managed by breath-holding during the x-ray 
exposure. While it is difficult to model patient motion exactly, a simple 1-D model can be 
used to demonstrate this effect.

Object

Umbra

Detector
plane

Object

PenumbraPenumbra Umbra

Detector
plane

Finite
source

Finite
source

Small magnificationLarge magnification

FIGURE 6.5 Reducing the distance from the object to the detector reduces geometric unsharpness.
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Consider a point object (pinhole) moving uniformly in the x-direction at a constant 
velocity v during the exposure time T. The displacement of the projected image in the plane 
of the detector, due to motion of the object, is MvT, where M is object magnification. Under 
these assumptions, the pinhole image will take the form of a rectangle (Figure 6.6):
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The term 1/(MvT) ensures that the motion spread function [hmotion(x)] has unit area. Also, 
this ensures that it approaches a delta function in the limit where either v or T approach 
zero (little motion or extremely short exposure time). This motion spread function empha-
sizes that an effective and obvious method of limiting the effect of motion unsharpness is 
to use very short exposure times. For example, chest radiographs are taken with exposure 
times of 50 ms or less, to minimize the effect of cardiac motion and provide a moderately 
sharp image of cardiac borders.

6.2.3 Film-Screen Unsharpness

Unsharpness is also caused by light diffusion within the intensifying screen. When x-rays are 
absorbed at depth in the intensifying screen, the light diffuses, contributing to unsharpness. 
A thicker screen has more light diffusion and therefore will contribute more to unsharp-
ness. The resolution varies from 6–9 lp/mm for images made with fast (i.e., thick) screens to 
10–15 lp/mm for images obtained with detail screens under laboratory conditions. The reso-
lution is usually much poorer (2–4 lp/mm) for fluoroscopic images obtained using an image 
intensifier. Light diffusion, and therefore screen unsharpness, can be limited in detail screens 
by tinting the phosphor layer of the intensifying screen. Do you know why?

Point source plane

Object moving with velocity v
during time interval T

Object
vT

MvT

MvT Πhmotion(x) = 1
MvT

x

FIGURE 6.6 Motion unsharpness is modeled as the loss of detail due to motion of a pinhole 
object during the radiograph exposure. For uniform velocity (v), the motion spread function has a 
 rectangular shape.
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An MTF of 10% is often used to represent limiting resolution. Unsharpness contributed 
by film, in most clinical examinations, is negligible in comparison with either geometric or 
screen unsharpness. For example, the MTF of film is ~50% at a spatial frequency of 20 lp/mm, 
while that of some screens is ~50% at about 1/10th this frequency (2 lp/mm), such that the 
loss in resolution is principally due to the screen at frequencies above 1–2 lp/mm. Traditional 
radiological practice uses screens for many diagnostic studies, so screen (not film) unsharp-
ness is the major contributor to film-screen unsharpness. So film is responsible for the non-
linear response to radiation exposure and the screen is the major contributor to blurring.

Following the arguments presented by Macovski and referring to Figure 6.7, we can 
calculate the spread function due to screens as a function of screen thickness. Assume that 
an x-ray photon enters the film-screen normal to its surface and is absorbed at a depth x in 
the intensifying screen. We will establish a coordinate system with an origin placed at the 
site of interaction. Let r be the distance within the plane of the film emulsion from the x-ray 
photon’s path, and let d be the thickness of the intensifying screen.

Film exposure is proportional to the integrated fluence, the number of light photons per 
unit area reaching the emulsion. At r = 0, the position directly in line with the interaction 
site, the light fluence exposing the film depends on the depth of interaction x. Because light 
photons are assumed to be isotropically emitted from the interaction site, their fluence at 
r = 0 follows an inverse square law:
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where k is a constant of proportionality that relates to the generation and propagation of 
light in the intensifying screen following the absorption of the x-ray photon. At a distance 
r from the origin, the light fluence falls off due to an inverse square law and also is modu-
lated by a cosine term due to oblique angle that the light photons strike the film emulsion. 
Therefore,
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FIGURE 6.7 An x-ray photon is absorbed at a depth x in an intensifying screen. Light emitted by 
the phosphor at angle θ interacts with the film at a distance r from the path of the x-ray photon.
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We assume that this system is linear and space-invariant so that the Fourier transform of 
Equation 6.17 gives the frequency response of the system. We can determine the spatial 
frequency behavior as radial frequency using the Hankel transform H, since h(r, x) has 
circular symmetry (Appendix 6A).

Bracewell (p. 249) shows that
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which can be applied to Equation 6.17 yielding
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where J0 is the Bessel function of the zeroth order.
To standardize the frequency response, we will normalize H to give unit response at 

zero spatial frequency (ρ = 0) giving

 
H x

H x

H x
e x* r

r p r,
,

,
( ) =

( )
( )

= -0

0

2

0
 (6.20)

The function H*(ρ, x) gives the average frequency response per photon interacting at a 
depth x in the intensifying screen. When a beam of photons interacts with the intensify-
ing screen, we must calculate the response due to all photons interacting with the screen, 
along the same vertical path, regardless of depth. If we assume that pd(x) is the fraction of 
all incident photons interacting per unit thickness at a depth x in the intensifying screen 
(i.e., the probability density function), then the average transfer function for this beam of 
interacting x-rays is
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To determine pd(x), we observe that the fractional number of photons surviving after a 
distance x of an infinitely thick intensifying screen is e−μx so that the fraction of photons 
removed up to a distance x is

 P x e x( ) = - -1 m  (6.22)
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P(x) can be considered as the cumulative distribution function running from zero a 
x = 0 to 1 at x = ∞. The probability density function is the derivative of this cumulative 
distribution function:
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However, Equation 6.23 applies only to the unrealistic case of an infinitely thick intensify-
ing screen. For an intensifying screen of finite thickness d, the fraction of photons removed 
up to a distance x = d is
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xProbability of photon interaction up to distance
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where the aforementioned expression has been normalized using the number of photons 
absorbed in the screen so that ¢P xd( ) represents the fraction of absorbed photons up to the 
distance x. This scaling normalizes the cumulative distribution function P′(x) such that it 
ranges from zero at x = 0 to unity at x = d as desired. The probability density function pd(x) 
for an intensifying screen of finite thickness d therefore is
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Based on Equation 6.21 the frequency response is as follows:
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Here, due to the assumed symmetry of the light production, the system transfer function 
H is also the system MTF. Note that as the radial frequency ρ approaches zero, then H(ρ) 
approaches unity as required by the normalization of the psf.

For high spatial frequencies (where ρ is large), we know that

 e d- +( ) »2 0pr m  (6.28)
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and that 2πρ ≫ μ, so we have at high frequency that
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For the best spatial resolution, we want the magnitude of Hhf(ρ) to be as large (i.e., close to 1) 
as possible at higher frequencies. In this regard, Equation 6.29 shows that there is a trade-
off between screen thickness and spatial resolution. As the screen thickness d is increased, 
the efficiency of the screen increases reducing radiation dose to the patient. Alternatively, 
decreasing the screen thickness d increases the high-frequency response, increasing spatial 
resolution while requiring increased patient radiation dose. It is important to note that phos-
phor materials with the higher absorption efficiency (i.e., larger values of μ) can have both a 
lower patient radiation dose and a higher high-frequency response. Practically, even though 
the most efficient phosphors are used in modern intensifying screens, manufacturers offer 
intensifying screens having a range of phosphor thickness so that the practitioner can select 
the screen that offers sufficient spatial resolution while keeping patient exposure down.

6.2.4 Digital Image Resolution

We have represented an image g(x, y) as the convolution between the object transmission 
f(x, y) and the psf h(x, y) of the imaging system:
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where both the object and the psf are corrected for magnification M when projected onto the 
plane of the image detector. (Note: The psf is assumed to be normalized here so that we do not 
have to keep track of other scale factors.) The object term may contain blurring due to patient 
motion or other contributors to motion unsharpness, although these factors will be ignored 
in this section. Our goal here is to represent the digital image mathematically in terms of the 
analog image g(x, y) and to evaluate the frequency characteristics of the digitized signal.

A two-step process can represent digitization, where we first sample the analog image 
and then pixellate the sampled image data. When we sample the image, we select regularly 
spaced values from the analog values that we assign to rectangular pixels during the pixel-
lation process. In one dimension, let g(x) represent the analog image from which we wish 
to generate the digital image with a pixel spacing of a. Sampling is done by multiplication 
of the image g(x) by the comb function III(x/a), and pixellation is done by convolving the 
sampled image with a rect function II(x/a):

 g x g x x a x adig III II( ) = ( ) ( )éë ùû Ä ( )  (6.31)

where width a of the rect function is selected to exactly match the pixel/sample spacing 
(Figure 6.8).
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Intuitively, we suffer a loss of spatial resolution if pixel size and spacing are large com-
pared to details we wish to preserve in the image. The sampling process can also introduce 
aliasing (i.e., a false frequency signal) if the sampling frequency does not satisfy Shannon’s 
theorem (i.e., the sampling frequency must be twice the highest spatial frequency to be 
sampled).
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FIGURE 6.8 The process of image digitization begins with sampling of an analog image followed 
by pixellation. Each step in this process is illustrated for both spatial (a) and spatial frequency 
domains (b).
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Several effects of the digitization process are best seen using the frequency domain rep-
resentation of the digitization, as follows:

 G u a G u au c audig III( ) = ( )Ä ( )éë ùû ( )2 sin  (6.32)

In this equation, we see that in the frequency domain, digitization begins by convolving 
the Fourier transform G(u) of the image function with the comb function III(au). Since the 
comb function is the sum of an infinite number of regularly spaced delta functions, this 
convolution replicates G(u) at equally spaced intervals Δu = 1/a on the spatial frequency 
axis. The replicates of G(u) are further modified by multiplication by the sinc function. 
This multiplication reduces the amplitude of the higher spatial frequency replicates, since 
the magnitude of sin c(au) decreases with increasing frequency.

Note that the sin c(au) function has zeros that exactly coincide with the peaks in the rep-
licates. However, this does not remove the higher frequency range in the tails of the distri-
butions. It is just these high frequencies that lead to the box-like representation of original 
smooth analog signal. Compare the top left graph with the bottom left graph in Figure 6.8.

The replication term [G(u) ⊗ III(au)] suggests the possibility of aliasing in the sam-
pled function [g(x) III(x/a)]. More specifically, if adjacent replicates of G(u) overlap 
in the frequency domain, then aliasing occurs (Figure 6.9, lower right). If the highest 
 spatial frequency in the analog image is uobj [lp/distance] and the sampling frequency is 
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FIGURE 6.9 Aliasing is seen as the overlapping of replicates when the sample spacing is too large.
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usamp [samples/distance], then if usamp< 2uobj, then G(u) is aliased. This shows up as the 
overlapping of the replicates in the frequency interval from usamp − uobj up to the maxi-
mum frequency of uobj/2. Figure 6.9 illustrates the origin of Shannon’s sampling theo-
rem from Chapter 3 that the signal must be sampled at a frequency twice the highest 
frequency in the signal, that is, to avoid aliasing or overlapping of replicates. This figure 
also illustrates that the frequency of the aliased signal equals the sampling frequency 
(usamp) minus the presampled frequency (uobj).

Aliasing can be prevented by smoothing (or “band-limiting”) the analog signal g(x) 
before sampling if the maximum frequency in the smoothed image is reduced to less than 
1/2 the sampling frequency.

Mathematically, if smoothing is performed by convolving the analog image g(x) with a 
low-pass filter kernel blp(x), the digitized image can be expressed as

 
g x g x b x x a x adig 1p= III II( ) ( )Ä ( )éë ùû ( ){ }Ä ( )  (6.33)

which in the spatial frequency domain is equivalent to
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where Blp(u) is the Fourier transform of the smoothing or blurring function blp(x). The 
blurring process has two important advantages. First, it can improve the signal-to-noise 
ratio of the digitized image by removing high spatial frequency components that often 
are dominated by noise. Second, blurring can reduce or eliminate aliasing. Of course, the 
function blp(x) must be chosen carefully to reduce aliasing and improve the signal-to-noise 
ratio of the digitized image, without unacceptable loss of spatial resolution.

6.3  TRADE-OFFS BETWEEN GEOMETRIC UNSHARPNESS 
AND DETECTOR RESOLUTION

There is a fundamental trade-off between the increase in object detail that can be achieved 
due to object magnification and the decrease in object detail due to increased geometric 
unsharpness (source magnification). Object detail increases with increasing magnification 
if system resolution is limited due to poor spatial resolution of the detector. On the other 
hand, object detail decreases due to the magnified focal spot, so we seek a trade-off value 
for M that maximizes the detail obtainable.

If an image is recorded with object magnification M, and if the focal spot is modeled as a 
rectangle of width a,  the width of the focal spot when projected onto the detector plane is 

(M − 1)a. This width is equals 
M a

M

-( )1
 when back-projected to the object plane. We will 

characterize geometric unsharpness in the object plane using a cutoff frequency approach. 
The cutoff frequency is defined as that frequency where H(u) first goes to zero. Since h(x) is 
a rectangle function, H(u) will be a sinc function, and we know that 1/width of a rectangle 
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function will be at the first zero (cutoff frequency) of the sinc function. Therefore, the 
source cutoff frequency us = 1/width and in the object plane is
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Similarly, detector resolution modeled as a rectangle of width b in the plane of the detector 
corresponds to a width of b M/  in the object plane, giving a detector cutoff frequency in the 
object plane of
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We can see the trade-off between ud and us with increasing object magnification by graph-
ing them as a function of object magnification (Figure 6.10).
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FIGURE 6.10 The source cutoff frequency (us) decreases and the detector cutoff frequency (ud) 
increases with increasing magnification M. The component with the lowest cutoff frequency deter-
mines the overall cutoff frequency.
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The curve labeled “source” shows how increasing magnification leads to resolution loss 
(lower cutoff frequency). In the limit of infinite magnification, the unsharpness due to the 
source asymptotically approaches the value

 
u

a
Ms = ® +¥( )1

lim  (6.37)

The curve labeled “detector” shows how increasing magnification leads to resolution gain 
(higher cutoff spatial frequency) with increasing magnification. At unit magnification, the 
cutoff frequency for the detector is ud = 1/b, and for larger object magnifications, the cutoff 
frequency increases with a slope of 1/b. At any magnification (M), the lower “detector” or 
“source” cutoff frequency determines the system cutoff frequency. Since the source cutoff 
frequency is monotonically decreasing with magnification and the object cutoff frequency 
is monotonically increasing, the maximum or optimal cutoff frequency occurs where their 
response curves cross (are equal). This happens when b = (M − 1)a. This is the magnification 
at which the imaging system should be operated since it yields the highest cutoff frequency. 
At this magnification, the magnified source width is equal to the detector resolution width.

The optimal combination of digitization, detector, and geometrical components of reso-
lution (or unsharpness) is explored in Example 6.1.

Example 6.1: Cutoff Frequency Analysis

Assume we are imaging a patient with an image intensifier system. The image inten-
sifier has a resolution width of 0.2 mm and uses an x-ray tube with a focal spot width 
of 1.0 mm (both modeled as rectangle functions). The diameter of the image intensi-
fier input phosphor is 15 cm, and the video output is delivered to an image processor 
that can produce digital images in either a 512 × 512 format or a 1024 × 1024 format. 
(For this problem, we will ignore the spatial resolution characteristics of the televi-
sion camera, although generally this is an important consideration.)

 (a) As a function of object magnification, graph the cutoff frequency for geometric 
unsharpness, detector unsharpness by the image intensifier, and unsharpness 
due to both the 512 × 512 image matrix and the 1024 × 1024 image matrix.

 (b) From the graph generated in (a), determine the highest possible cutoff spatial fre-
quency first for a 512 × 512 image and then for a 1024 × 1024 image. In each case, 
specify the object magnification at which this optimal system response occurs.

Solution

 (a) Let M be the object magnification. The x-ray tube has a focal spot width of 
1.0 mm. Therefore, its object cutoff spatial frequency is given by
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The image intensifier has a resolution width of 0.2 mm and therefore has an 
object cutoff spatial frequency of

 
u

M
Md

1

0.2 mm
5.0 mm= = -  (6.39)

The 512 × 512 matrix has a pixel width of

 
a512 mm 0.293 mm= =150

512
 (6.40)

This is modeled as a rectangle of width 0.293 mm/M in the object plane with a 
cutoff spatial frequency of M/0.293 mm = 3.41M mm−1. However, a more seri-
ous cutoff occurs at half this frequency due to sampling, that is, the Nyquist 
frequency limit, so the actual cutoff frequency is
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Finally, the 1024 × 1024 matrix has a pixel width of
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=  (6.42)

with a corresponding Nyquist cutoff spatial frequency of

 
u

M
M1024

1512

150
3 41= = -cycles

mm
mm.  (6.43)

The graph of cutoff frequencies for the focal spot, image intensifier, 512 × 512 
image matrix, and 1024 × 1024 image matrix is shown in Figure 6.11.

 (b) When a 512 × 512 matrix is used, the detector resolution is limited by the matrix 
and focal spot size (geometric unsharpness) rather than by the image intensi-
fier. The optimal system response is achieved when the cutoff spatial frequency 
from the 512 × 512 image matrix equals that from the x-ray tube focal spot. This 
condition is determined by setting u512 = ud and solving for M

 M =1 586.  (6.44)
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with a cutoff spatial frequency of
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Even when a 1024 × 1024 matrix is used, the spatial resolution is still limited 
by the image matrix and geometric unsharpness. The optimal system response 
is similarly achieved when the cutoff frequency from the 1024 × 1024 image 
matrix equals that due to the x-ray tube focal spot (geometrical component). 
This condition is met when

 M =1 292.  (6.46)

giving a cutoff spatial frequency of
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However, the system cutoff frequency increases dramatically and is achieved 
with less magnification.

6A APPENDIX: THE HANKEL TRANSFORM AND THE BESSEL FUNCTION
It often is convenient to express equations and formulae in terms of polar coordinates (r, θ) 
rather than Cartesian coordinates (x, y). If we know the Cartesian coordinates of a point 
(x, y), we can obtain its polar coordinates through well-known transformations

 r2 = x2+ y2 (6A.1)
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FIGURE 6.11 In Example 6.1, at low object magnifications (M), the spatial resolution of the system 
is limited by digitization. The 1024 × 1024 matrix is better than the 512 × 512 matrix. At higher 
object magnification (M), the spatial resolution is limited by blurring due to the 1 mm focal spot.
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and
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Certain two-dimensional functions have circular symmetry. That is, if f(x, y) is a function of 
the two independent Cartesian coordinates (x, y), when expressed in terms of polar coordi-
nates, the function f can be specified entirely as a function of the radial coordinate r so that

 f(r) = f(x, y) (6A.3)

An example of such a function would be

 f(x, y) = exp[−π(x2 + y2)] (6A.4)

which in polar coordinates is given by

 f(r, θ) = exp[−πr2] (6A.5)

Obviously, f(r, θ) is circularly symmetric because it is independent of the angular variable θ.
If we can express a two-dimensional function f in terms of the single polar coordinate r 

(i.e., if f is circularly symmetric), then we can transform the Fourier transform from 
Cartesian to polar coordinates. In this case, the Fourier transform becomes the Hankel 
transform. If ρ is the spatial frequency variable corresponding to the spatial variable r, then 
the Hankel transform is defined by
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while the inverse Hankel transform is defined as
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where ρ is the conjugate spatial frequency variable for the spatial variable r (Equation 6A.1) 
and

 ρ2 = u2 + v2 (6A.8)

To derive Equation 6A.6, we change to polar coordinates in the definition of the Fourier 
transform and integrate over the angular variable. That is, if

 x = r cos θ and y = r sin θ (6A.9)
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are expressed in terms of the polar coordinates (r, θ), while the conjugate spatial-frequency 
variables

 u = ρ cos ϕ and v = ρ sin ϕ (6A.10)

are expressed in terms of the polar coordinates (ρ, ϕ), then
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And using the relationship defining the zero-order Bessel function of the first kind J0(z) 
where
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the definition of the Fourier transform in polar coordinates for circularly symmetric 
 functions becomes the Hankel transform H(ρ) where
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HOMEWORK PROBLEMS
P6.1 The value of the MTF of a system at 2 lp/mm is 0.25. Assuming three serial compo-

nents contribute to system blurring and that two are identical with an MTF value of 
0.7 at 2 lp/mm, calculate the MTF value of the third component at that frequency.
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P6.2 During an experiment to measure the spatial frequency response of an imaging sys-
tem, we obtain an esf, given by the normalized measurements in the following graph. 
Assume that the image unsharpness is due to penumbral effects from the source and 
that detector unsharpness is negligible, and that the image is recorded with an object 
magnification M = 2.

1

–a
2

a
2

 (a) From the esf shown earlier, show that the line spread function lsf(x) for the sys-
tem is
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 (b) Assume that we have a source distribution of
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  and a new detector, which has a detector psf described by a rectangular function
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  When the effects of both geometric unsharpness and detector unsharpness are 
included, show that the MTF of the system is

 MTF sinsystem u c au c bu( ) ( ) ( )= sin

  Moreover, if a = b, show that the psf of the system is given by the equation
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 (c) If a ≠ b, sketch the psf of the system and briefly justify your answer conceptually 
and mathematically.
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P6.3 A resolution pattern consists of equal width thin lead bars separated by equal widths 
of a radiolucent material (air, plastic, or thin aluminum). Assume that the spacing 
between adjacent lead bars equals the distance a and that the width of the interspace 
material and of the lead bars is equal.

x-ray photons

a

Lead
bars

Radiolucent
interspace
material

Radiolucent
support
material

Radiographic film

  Assume that we fix the distance between the x-ray source and the sheet of film at 
a distance L. When the pattern is placed directly on the film, we can resolve the 
individual bars. However, bringing the bar pattern closer to the focal spot increases 
geometric unsharpness of the bar pattern until its appearance on the radiograph is 
completely suppressed. The position at which this suppression occurs is found to be 
the distance h as measured between the resolution pattern and the source.

Appearance of the
resolution phantom

when it is placed
directly on the film.

Appearance of the
resolution phantom
when it is located at

a distance h from the
x-ray source.

 (a) Show that the projected spacing s of the bars in the resolution pattern, in terms 
of a, L, and h, is

 
s

aL

h
=
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 (b) Assuming a rectangular focal spot distribution. Show that the width of the focal 
spot can be described by the function
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 (c) Assuming that detector unsharpness is negligible, show that the MTF of the 
system is
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 (d) From the MTF determined in (c), describe why the bar pattern disappears in the 
image.

 (e) Draw a diagram showing the path of the x-rays from a rectangular source as 
they irradiate the bar pattern. Use this diagram to present an intuitive explana-
tion how geometric unsharpness suppresses the image of the bar pattern in the 
radiograph.

P6.4 A hypothetical defective image intensifier produces 3 parallel thin lines on the output 
screen when a thin line phantom is imaged. If the lines are separated by distance a,  
show that the MTF is given by 

 
MTF u ua( ) + ( )= 1

3

2

3
2cos p

 where u is spatial frequency in units of lp/mm.

P6.5 If a rectangular focal spot has a width equal to a and the detector has a resolving 
width of b, show that the optimum system resolution is obtained at a magnification of

 
M

b

a
= +1

 Discuss conceptually why this result is reasonable.

P6.6 We are imaging a patient using a scanning detector array system with a linear array 
of discrete scintillation detectors. The width of each detector element in the array 
is 5 mm. The array is oriented vertically and is moved from left to right across the 
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patient to create the image. The system has an x-ray tube in which the operator can 
select one of two focal spot sizes. The large focal spot has a width of 1.6 mm. The 
small focal spot has a width of 0.6 mm.

 (a) As a function of object magnification, graph the cutoff spatial frequencies for 
detector unsharpness and for geometric unsharpness contributed by both the 
large and small focal spots (i.e., 3 separate curves: one for the detector, one for the 
small focal spot, and one for the large focal spot).

 (b) Use the graph in (a) to decide the “optimal” object magnification (i.e., which 
reproduces the highest spatial frequencies in the patient) first for the large focal 
spot and then for the small focal spot. In each case, what is the highest cutoff 
spatial frequency and the optimal magnification for the system?

 (c) Assume that the detector array is located 2 m from the x-ray source. To achieve 
optimal spatial resolution for structures in the patient, how far should the patient 
be placed in front of the detector array first for the large focal spot and then for 
the small focal spot?

 (d) As we mentioned at the beginning of this problem, the width of each detector 
element is 5 mm. Assume we wish to scan across a 35 cm region of the patient in 
2 s. How fast should the detector data be sampled to produce pixels that represent 
square regions on the patient?

P6.7 You are digitizing an image described in one dimension by f(x). The sampling 
 distance is chosen to equal the pixel width. Assume that you have a square image 
covering 25 cm on each side and that you are digitizing the image with a 512 × 512 
matrix. To prevent aliasing, your instructor tells you to convolve the image with a 
sinc function of width with zero crossing points at the points

 xn = nb where n = ±1, ±2, …

  where b is a constant distance.

 (a) First, from the information presented earlier, derive the equation of the sin c 
function in terms of b that you will use to convolve the image prior to sampling 
and pixellation.

 (b) To analyze the effects of this operation, present a diagram analogous to that pre-
sented in the notes showing the effect of low-pass filtering, sampling, and pixel-
lation. Diagram the effects in both the spatial and the spatial frequency domains. 
Briefly explain each step of the diagram.

 (c) Find the minimum value of b that will prevent aliasing but will minimize the loss 
of spatial frequency information in the signal.

 (d) Describe the effect on the digital image if, before sampling, you convolve the 
image with (i) a Gaussian or (ii) a square function instead of a sin c function.
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P6.8 In a cineradiographic study of the heart, the maximum speed of motion of the coro-
nary arteries is 10 cm/s. If the heart is imaged with a magnification of 1.3 and an 
exposure time of 4 ms, calculate the physical width of a rectangular focal spot that will 
give an MTF at the image intensifier similar to that due to the blurring due to heart 
motion. (Assume the image is captured at the onset of systole and during which the 
myocardium moves uniformly at its maximum velocity.)

The primary question we face is how do we select the exposure time to minimize 
image unsharpness. If we use a small focal spot to decrease geometric unsharpness, 
we must increase the exposure time that increases motion unsharpness. Alternatively, 
if we minimize motion unsharpness by shortening the exposure time, this forces 
us to use a larger focal spot that increases geometric unsharpness. Faced with this 
trade-off, we must ask how we can select the focal spot width to minimize geometric 
unsharpness but which also allows us to minimize the exposure time to limit motion 
unsharpness.

 (a) Assume that we need an amount of photon energy equal to Es to obtain a satisfac-
tory image. Moreover, we operate the x-ray tube at its maximum power density 
of Pmax. If the focal spot is square in shape with width L, show that the shortest 
possible exposure time is
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 (b) Assume that the source, described by the function s(x, y), emits x-rays, which 
pass through a stationary object with an transmission function t(x, y). If the 
object magnification is M, the image i(x, y) is given by the convolution of s 
with t, with factors to correct for magnification of both the object and the 
source.
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  First, assume that the object moves with uniform velocity v during the exposure 
time T. Second, assume that the source is square in shape with width L. In this 
case, using the result from part (a), describe why the image i(x, y) is described by 
the function
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 (c) Use the result from part (b) to show that the width X of the system psf i ncluding 
the effects of motion unsharpness and focal spot blurring is approximated by
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  Show that the focal spot width Lmin that minimizes the width of the system psf is
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 (d) Assume we need a source energy Es of 600 J to generate an image at a power den-
sity Pmax of 107 W/cm2. At a magnification M of 1.5 and a velocity v of 10 cm/s, 
calculate the width of the focal spot and the corresponding exposure time that 
minimizes system unsharpness.

 (e) If we have a constant potential x-ray generator operating at 100 kV, calculate the 
tube current that delivers the required x-ray dose to the patient to generate the 
image under the conditions you have derived in part (d).

P6.9 Here is a problem for fun that does not have anything to do with spatial resolution or 
MTF. One day I was trying to explain to my cousin and good friend Sachi how inef-
ficient x-ray tubes are at generating x-rays, especially when used in a fan beam geom-
etry. For some reason, Sachi did not find this conversation very exciting. However, 
because Sachi has just graduated from UCLA and is a little short on cash right now, 
she appreciated it a little more when I did a financial analysis about x-ray tube effi-
ciency for her. Let us repeat this calculation for Sachi.

 (a) Assume that an x-ray tube, having a tungsten anode, is operated at 100 kVp and 
100 mA. If the tube is on for a total of 2 h/day for 6 days a week and 52 weeks per 
year, calculate how much energy is consumed by the x-ray system in 2 year.

 (b) The fraction of this energy that is used to generate x-rays (instead of heat) is given 
by the formula

 Fractional efficiency = 0.9 × 10–9 VZ

where
V is the x-ray tube potential in volts
Z is the atomic number of x-ray tube target

  Use your result from part (a) to calculate how much energy is liberated in the 
form of usable x-rays over 1 year.
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 (c) The x-rays from the anode are given off isotropically. Assume we collimate the 
beam to irradiate a detector array 5  mm wide and 43  cm long 2 m from the 
source. What fraction of the total x-ray beam is used to irradiate the detector 
array? Over the period of 1 year, how much x-ray energy is emitted in the direc-
tion of the detector array?

 (d) Assuming that electricity from your local supplier costs 12¢ per kilowatt-hour, 
calculate the total cost of electricity consumed by the x-ray tube over the period 
of 1 year. Also calculate the “cost” of the photons delivered to the detector array 
in the form of usable x-rays. (Sachi will be appalled at the difference between 
these two amounts!)

REFERENCE
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C h a p t e r  7

Random Processes

So far, we have dealt with the emission and attenuation of radiation as if they were 
entirely predictable processes, and unfortunately, they are not. For example, suppose 

the detection system records the number of photons from a radiation source striking a 
detector in a specified time interval. If this counting experiment is repeated multiple times, 
the number of counts recorded will vary. In fact, the number of counts would be quite ran-
dom, and even if you knew exactly the number of counts recorded in one trial, you could 
not predict the number of counts in the next or in any subsequent one. To paraphrase 
Einstein, God apparently does play dice with the universe, which does not behave cha-
otically. However, the measurements of counts in this example are randomly distributed 
about some average value. If a large number of measurements are made, you can determine 
an average (or mean) number of counts. You can also estimate the standard deviation, 
which indicates the spread in the number of counts about the mean value. You can deter-
mine the “probability” that a certain range in the number of counts would be recorded for 
any time interval, but you cannot predict the exact count. Therefore, while you can deter-
mine statistical descriptors, such as the mean value and standard deviation, using a large 
number of measurements, you cannot predict individual measurements. This is the nature 
of measurements associated with any random process.

Like emission of radiation, attenuation of radiation is a random process; if you could 
deliver the same number of photons to an object, the number of photons transmitted 
through that object would vary randomly. Again, after making enough measurements, 
you would be able to estimate the mean and standard deviation in the number of photons 
transmitted, and determine the probability of a given range in the number of photons to 
be transmitted through the object, but cannot predict the exact number. This is true even 
if you know exactly how many photons were delivered to the object.

Because the basic processes of emission and attenuation of radiation are random, and 
because the random nature of these processes is inherent and physically unavoidable, we are 
compelled to study the nature and characteristics of these random processes. This is very 
important, since it focuses our attention on the uncertainty in images that we will associate 
with random noise. We previously defined random noise as the random variation in a signal 
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(i.e., in an image). As we will discover in the next chapter, this random variation has several 
physical causes. Whether dealing with emission imaging with a radiotracer as the source, 
transmission imaging where the source is the focal spot of an x-ray tube, or the emitted 
RF signal for magnetic resonance imaging, we must understand features and limitations 
imposed by the random nature of these imaging modalities’ radiations. For this, we must 
develop the tools to model and quantify random processes that relate to noise in images.

7.1 PROBABILITY DISTRIBUTIONS
Assume that we perform an experiment during which we derive an outcome x. Furthermore, 
assume we know that a specific random process determines this outcome. For example, 
our outcome may be number of photons that we measure from a radiation source in a fixed 
time interval. This is an example where possible outcomes are discrete; we may obtain 
1 count or 100 counts but will never obtain partial (e.g., 3.25) counts in any given measure-
ment. In a second example, our outcome might be the distance that a 60 keV x-ray photon 
travels through a column of water before it is Compton scattered. In this second exam-
ple, the possible outcomes are continuous and may take on any value greater than zero. 
Whether we are dealing with discrete or continuous measurements, we would like to know 
the “probability” of a given outcome. Probabilities can be calculated using mathematical 
functions called probability distribution functions.

7.1.1 Discrete Probability Distributions

In the case of a discrete variable n (i.e., one where outcomes are integer values), the prob-
ability distribution of outcome n, denoted as P(n), gives the probability that an experiment 
will produce an outcome equal to n. For example, when recording counts from a radio-
active source using a fixed counting time, if P(5) = 0.12, we are stating that in 12% of the 
trials, we expect to measure 5 counts.

A characteristic feature of a discrete probability distribution is that the summed prob-
ability is normalized to be equal to 1 for all possible outcomes. Mathematically, this is 
given by the following equation:
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We define the mean value of n as μ and variance of n as σ2 for the random variable n, which 
is distributed according to the probability distribution P(n) using the following equations:
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In these equations, it is easy to see that μ is just the average value of n weighted by P(n). The 
variance (σ2) is then the average value of (n − μ)2, the square of the distance of n from the 
mean. The standard deviation (σ) is defined as the square root of this variance. The use of 
Greek symbols for mean and variance apply when P(n) covers all possible values of n, and 
these are called population mean and variance. When working with a limited sample (not 
covering all possible values of n), the mean is called sample mean (n) and the variance is 
called sample variance (s2), with non-Greek symbols to distinguish them from population 
parameters.

7.1.2 Continuous Probability Distributions

In the case of a continuous variable x, the definition of the probability distribution of x, 
denoted by P(x), is defined slightly differently from that given for the discrete random vari-
able. In particular, we define the probability distribution P(x) such that P(x)dx gives the 
probability for the interval from x to x + dx. For continuous random variables, we call P(x) 
the probability “density” function, sometimes abbreviated pdf(x).

Continuous probability distributions, like the discrete probability distributions, have 
certain characteristics that are important. In particular, we know that the probability is 
equal to 1 when we consider all possible outcomes. Mathematically, this means that inte-
gration from x = −∞ to x = +∞ is unity:
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We define the mean value μ and variance σ2 of the continuous random variable x distrib-
uted according to the probability density function (pdf) P(x) as
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Again, the standard deviation is σ.

7.2 SPECIAL DISTRIBUTIONS
There are three probability distributions that we are particularly interested in because they 
are frequently encountered in medical imaging. They are (1) the binomial distribution, 
(2) the Poisson distribution, and (3) the Gaussian (or normal) distribution. These distribu-
tions are presented here without derivation, but derivations can be found in many statistics 
textbooks.
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7.2.1 Binomial Distribution

The binomial distribution is a probability distribution of a discrete random variable that 
can have only two possible outcomes (called “success” or “failure”), where the probability 
of success in an individual trial is p, and therefore, the probability of failure is 1 − p. The 
binomial distribution is signified by P(m; n, p), which gives the probability of m successes 
out of n individual trials where p is the probability of success. The mathematical formula for 
the binomial distribution is
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Note: The number of successes m is the discrete random variable, and n and p are distri-
bution-specific parameters. An example where the binomial distribution can be used is 
calculating the probability that a certain number of heads will occur in repeated tosses of 
a fair coin (one for which heads and tails have equal probability). The probability of getting 
a head in one trial is 1/2 (p = 0.5). Therefore, the probability of getting 2 heads (m = 2) in 
6 trials (n = 6) is

 P(2;6,1/2) = [6!/(2! 4!)] (1/2)2(1/2)4 = 0.23. (7.8)

When p = 1/2, then (1 − p) = 1/2; the last two terms in Equation 7.7 can be grouped as (1/2)n. 
The probability of obtaining all tails (m = 0) or all heads (m = 6) in 6 trials is just (1/2)6. 
Note: by definition 0! = 1. Finally, the sum of Equation 7.7 over all possible outcomes is 
equal to one, since this is the probability of all possible outcomes.

7.2.2 Poisson Distribution

A second important probability distribution of a discrete random variable is the Poisson 
distribution where a single trial can produce zero through a positive number of successful 
results. Since this is a probability distribution of a discrete random variable, a fractional 
outcome is not permitted. If independent trials are conducted with a mean value = λ, then 
the probability that the outcome = n in a single trial is given by the Poisson distribution 
function:
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Unlike the binomial distribution, the Poisson distribution has a single parameter λ. 
Also, unlike n, which must be a positive integer, λ (also positive) can have a fractional 
value, since it is the average of many independent trials. For example, if we record 
a mean of 5.63 counts from many 1 s trials from a radioisotope counting experiment, 
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the number of counts for individual trials will be distributed according to a Poisson distri-
bution with λ = 5.63 (Figure 7.1):
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Therefore, the probability of obtaining 6 counts in a 1 s measurement is
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Inspection of Figure 7.1 shows that for this example, the most likely outcome for any 
1 s measurement is n = 5. Also note that the distribution is skewed toward values greater 
than the mean. This asymmetry diminishes with increasing mean value.

The probability of obtaining a count of 5 or less P(n ≤ 5) would require a sum over the 
probabilities of obtaining counts ranging from 0 to 5. The probability of obtaining a count 
greater than 3 would therefore be P(>3) = 1 − P(n ≤ 3).

A fundamental property of the Poisson distribution is that the variance is equal to the 
mean, that is, σ2 = λ. This is particularly important to radiation physicists, since pro-
cesses such as nuclear disintegration and photon attenuation are Poisson-distributed 
processes. If we accurately determine the mean value of a random process that is 
Poisson-distributed, then the variance is equal to the mean and the standard devia-
tion is just the square root of the mean value. For example, in radiation counting, a 
value of n = 10,000 counts is accepted as a reasonably accurate measurement of the 
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FIGURE 7.1 Poisson probability distribution. Vertical axis scaled to highlight relative values.
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mean value, because the estimated standard deviation for repeat counting would be 
(10,000)1/2 = 100, just 1% of the mean.

7.2.3 Gaussian Distribution

Unlike the binomial and Poisson distributions, the Gaussian distribution is a probability 
distribution of a continuous random variable x. The pdf for the Gaussian distribution is 
given by
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Unlike the other two distributions, the mean value = μ and the standard deviation = σ are 
independent parameters in the Gaussian pdf. Also, unlike the other two distributions, 
Gaussian distributions are symmetric about the mean value.

Since the Gaussian distribution is a function of a continuous variable, probability must 
be calculated by integration over the range of interest. For example, the probability that a 
Gaussian-distributed random variable x falls within the limits x = a to x = b is
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Note that the continuous Gaussian pdf has units of probability/distance. An important 
characteristic of the Gaussian distribution is that 68.3% of outcomes fall within one ±1 
standard deviation of the mean (i.e., in the interval from μ − σ to μ + σ), 95.5% fall within 
±2 standard deviations of the mean, and 99.7% fall within ±3 standard deviations of 
the mean.

7.2.3.1 Gaussian Distribution as a Limiting Case of the Poisson Distribution
Both Poisson and Gaussian distributions are important in x-ray imaging. This is because in 
the limit of large values of n, the Poisson distribution approaches a Gaussian distribution 
(Figure 7.2). For large values of n, substituting n for both μ for σ2 in Equation 7.12 simplifies 
the resulting Gaussian formula:
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The pdf in Equation 7.14 has both Poisson and Gaussian characteristics. Since we typically 
deal with large numbers of photons in radiographic imaging, Equation 7.14 can be used to 
describe the statistical nature of photon emission from x-ray and gamma-ray sources, as 
well as that of the attenuation of photons by matter. For example, we can apply properties 
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of a Gaussian distribution in that 68.3% of outcomes fall in the range μ ± μ1/2, 95.5% fall 
in the range μ ± 2μ1/2, and 99.7% fall in the range μ ± 3μ1/2. Note: In the case of a Poisson 
distribution that μ = n, which is a dimensionless number, so there is no problem calculat-
ing the standard deviation as its square root.

The properties of a Poisson distribution are important in medical imaging, since we 
often characterize the level of noise as the standard deviation of a signal. If the signal is 
randomly distributed according to a Poisson distribution, the variance of the signal is equal 
to the mean. In counting experiments, if we obtain n counts in a measurement, colloquial 
expression of this concept is that “noise” or the standard deviation equals the square root 
of n. What is really meant by this expression is that (1) if one records a measurement of the 
number of photons recorded by an ideal detector for a fixed time period and measures n 
photons, and (2) if one assumes that the measurement reflects the mean number of counts 
recorded over a large number of measurements, and (3) if one assumes that the distribu-
tion of counts follows a Poisson distribution, and (4) if one has a large number of counts 
(>20) so that the distribution is approximately Gaussian, then the standard deviation is 
approximately equal to square root of n and 68.3% of future measurements should fall 
within +/− this standard deviation.

7.3 REVIEW OF BASIC STATISTICAL CONCEPTS
A review of several basic mathematical concepts associated with statistics will be helpful 
before introducing the valuable tools of Sections 7.4 and 7.5.

Concept 1: It is often necessary to determine how algebraic manipulation of a random 
variable affects the associated mean and variance. Let y = ax + b, where the random vari-
able y is calculated from the random variable x. The expected or mean value of y where 
E{} is the expectation operator is

 E{y} = E{ax + b} = aE{x} + E{b}, (P.1)

so μy = aμx + b. For this algebraic manipulation, μy is a times μx plus b. Note that if μx is 
zero, then μy is determined by b alone. An important case follows if a = 1 and b = −μx such 
that y = x – μx. In this case, y will be zero mean, and importantly, any random variable can 
be adjusted to be zero mean using this approach, that is, by subtraction of its mean value.

The variance of y = ax + b is calculated using the variance operator V{} as follows:

V{y} = V{ax + b} = E{[(ax + b) − (aμx + b)]2} = E{(ax − aμx)2 = a2 E{(x − μx)2} = a2V{x}. (P.2)

So, ssy xa2 2 2= s .
Equation P.2 shows that V{y} does not depend on b and scales by a2. Importantly, if 

a = 1/σx, then σy will be unity. A combination of Equation P.1 (to set mean = 0) and Equation 
P.2 (to set variance = 1) is used to transform a Gaussian random variable to the normally 
distributed random variable z:

 z = (x – μx)/σx, (P.3)
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with mean = 0 and standard deviation = 1. Probabilities for the normally distributed z are 
found in all statistics texts and available in spreadsheet applications such as excel.

Concept 2: Another important concept deals with determining mean and variance when 
adding or subtracting random variables. In this case, where x and y are both random vari-
ables, the expected or mean value of z = x ± y is calculated as follows:

 E{z} = E{x ± y} = E{x} ± E{y} → μz = μx ± μy. (P.4)

Equation P.4 states that the mean value resulting from adding or subtracting two random 
variables is the sum or difference in their mean values. Clearly, this result will be valid for 
adding or subtracting more than two random variables.

The calculation of variance of z = x ± y is a bit more complex as follows:

 V{z} = V{x} + V{y) ± 2 CoV{x, y}. (P.5)

The covariance term may or may not be zero but must be included in the formal math. The 
covariance between x and y is calculated as

 CoV{x, y} = E{(x − μx)(y − μy)} = E{xy} – μxμy. (P.6)

The variance in Equation P.5 differs depending on CoV(x, y). If x and y are independent 
random variables, then E{xy} = E{x}E{y} = μxμy such that CoV{x, y} = 0, and the net vari-
ance is just the sum of variances of x and y. Note that V{x} and V{y} in Equation P.5 
are added whether z is calculated by adding or subtracting, unlike the covariance term, 
that is, resulting variance will be larger when adding or subtracting random variables. If 
CoV{x, y} is positive (x and y rise above and below their mean values together), then V{z} 
will be larger when adding but smaller when subtracting (do you know why?). If CoV{x, y} 
is negative, then we observe the opposite effect for V{z}. The basic trend in Equation P.5 
holds for more than two random variables, but covariance terms get a bit messy, so we 
will stick with just two. In many cases, we can assume that the random variables are 
either independent or uncorrelated such that the covariance term in Equation P.5 is zero 
and can be ignored.

Concept 3: It is important to understand what happens to the mean and variance when 
averaging a group of random variables. For example, the mean value of random variables 
(xi) from a population x each with mean = μ and variance = σ2 is

 E{x} = 1/n E{x1 + x2 + x3 + ⋯ + xn}, (P.7)

 E{x} = 1/n (E{x1} + E{x2} + E{x3} + ⋯ + E{xn}), (P.8)

 E{x} = 1/n (nμ), (P.9)

 E{x} = μ. (P.10)
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So the mean value of from a set of random variables when averaging a large number 
of samples tends to the population mean. The variance of this set of random variables 
can be calculated using Equations P.2 and P.5 as follows where E{} is shortened to <> 
for clarity:

 V{<x>} = V{1/n <x1 + x2 + x3 + ⋯ + xn>} = (1/n)2 V{<x1> + <x2> + <x3> + ⋯ + <xn>},
  (P.11)

 V{<x>} = (1/n)2 (nσ2), (P.12)

 V{<x>} = σ2/n. (P.13)

So though E{x} tends toward the population mean when averaging, the variance is reduced 
by 1/n of the population variance. This reduction in variance of the mean with increasing 
n is used to establish group size when seeking to measure a significant difference between 
mean values of two groups, each with n random measurements.

7.4 CENTRAL LIMIT THEOREM
A very important theorem in statistics is the central limit theorem, which states that the 
distribution of “mean values” from any random distribution is approximately Gaussian, 
provided that the number of samples is large enough. For example, we can use the central 
limit theorem to generate a Gaussian distribution from the uniform distribution, which 
is definitely non-Gaussian. The random number generator found on most computers can 
provide samples from a uniform distribution. Mean values calculated as averages of “n” 
samples from these data will be Gaussian distributed.

The uniform distribution u(x) defined for the continuous random variable x over the 
interval [0, 1] is
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First, note that u(x) is normalized so that the integral of u(x) over all values of x is unity:
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Second, the mean μ of this uniform distribution is equal to
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and the variance is
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Using Equation P.1, we can generate a zero-mean distribution of random numbers ri by 
subtracting the mean value, here ½, from the uniformly distributed xi’s. If we create 12 
such zero-mean uniform distributions (perhaps with 100 samples each) and average them 
pairwise, the resulting 100-sample random distribution will have unit variance (per P7.13), 
and according to the central limit theorem, it will be Gaussian distributed.

Using the random numbers (ri’s) derived in this manner, a Poisson- and Gaussian-
distributed random variable xi can be formulated based on the following equation:

 xi = N + ri. (7.19)

The xi’s will have a mean value of N and a standard deviation of N . This can be used to 
simulate a counting experiment with mean = N and standard deviation = N1/2. This algo-
rithm is useful in modeling photon counting for x-ray and nuclear imaging.

7.5 PROPAGATION OF ERRORS
If the random variable z = f(x, y) is a function of “independent” random variables x and y, 
with variances sx

2  and sy
2, then the variance sz

2 of z is calculated as follows:
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This can be extended to calculate the variance of any function of any number of indepen-
dent random variables, if the functions and variances are known. Note that Equation 7.20 
predicts Equation P.5, but without the covariance term, since it only deals with indepen-
dent random variables. If covariance is not zero, then Equation 7.20 takes on the following 
form:

 
s s sz x y

f

x

f

y

f

x

f

y
2

2
2

2

2 2  = æ
è
ç

ö
ø
÷ +

æ

è
ç

ö

ø
÷ + æ

è
ç

ö
ø
÷
æ

è
ç

ö

ø
÷

¶
¶

¶
¶

¶
¶

¶
¶

CooV{ , }x y . (7.21)

The propagation of variance formulas should be considered as estimators of variance, since 
they are derived using only the linear term in a series expansion of f(x, y). However, these 
formulas have proven adequate for many medical imaging applications.



148   ◾   Fundmental Mathematics and Physics of Medical Imaging

Example 7.1: Attenuation Coefficient

We are to determine the linear attenuation coefficient of aluminum at the gamma 
energy of 60 keV. To do this, we have a source of 241Am (emitting a 60 keV gamma) 
that we have collimated into a narrow pencil beam. We are counting with a 100% 
efficient NaI(Tl) scintillation crystal connected to a counting system. We will ignore 
effects due to scattered radiation or count-rate-dependent phenomenon. In other 
words, we assume that we have a perfect counting system. When nothing (except air) 
is in the beam, we obtain 6832 counts. We then place a 1 mm thick piece of pure 
 aluminum in the beam and record 6335 counts.

 (a) If there is no imprecision in the measured thickness of aluminum, what is the 
linear attenuation coefficient of aluminum and what is the uncertainty due to 
the count data given earlier?

 (b) The tabulated value of the linear attenuation coefficient of aluminum is 
0.7441 cm−1. Is the difference between the calculated value and the tabulated 
value consistent with the precision you expect?

Solution

 (a) We know that for narrow beam geometry, the relationship between the number 
of photons without the attenuator (N0) and the number transmitted through the 
attenuator (N) is given by

 N N e x= -
0

m  (7.22)

 and solving for the linear attenuation coefficients gives
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 Therefore, the calculated value of the linear attenuation coefficient is
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  Since N and N0 are independent random values, the uncertainty in the calcu-
lated value is given by
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  Both gamma emission and attenuation are Poisson processes. Therefore, the 
variance of each measurement is equal to its mean so that

 
s s m m

N NN N
N xN N xN

2 2
0

0 0
0

1 1= = = - =, , ,  
¶
¶

¶
¶

, (7.26)

 leading to

s m s m sm
2

2
2

0

2

2
2 2 2

0
0

1 1
    = æ

è
ç

ö
ø
÷ + æ

è
ç

ö
ø
÷ = æ

è
ç

ö
ø
÷ +¶

¶
¶

¶N N x N
N

x N
N N 22 0 2

0

1 1 1æ

è
ç

ö

ø
÷ = +æ

è
ç

ö
ø
÷N

x N N
 . (7.27)

  Substituting x = 0.1  cm, N = 6335, and N0 = 6832 into Equation 7.27, we 
obtain the variance and standard deviation of μ introduced by imprecision 
in the count data as

 s sm m
2 2 1 13 042 10 0 1744 .  .= ´ =- - -cm and cm . (7.28)

 (b) The calculated value of 0.7553 cm−1 is within 1 standard deviation of the tabu-
lated value of 0.7441 cm−1, so the difference can be accounted for by statistical 
imprecision.

Example 7.2: 1-D Filter

What is the effect of using a 1-D moving average filter on a series of random values 
(xi’s) where the mean value of x and its variance are not changing? Let y be the output 
and the filter weights be w1 = 1/4, w2 = 1/2, w3 = 1/4.

Solution

The filter is applied such that y2 = w1 · x1 + w2 · x2 + w3 · x3 = 1/4 · x1 + 1/2 · x2 + 1/4 · x3, 
where the three sequential values of x are distinguished using subscripts. The out-
put values (y’s) will be stored in a different array from the input. It follows from 
Equation P.1 that the mean value of y in the neighborhood of x2 is

 <y> = 1/4 <x1> + 1/2 <x2> + 1/4 <x3>.

Since the mean value of x is not changing with position and the weights sum to unity, 
this simplifies such that the mean of the output of the filter is equal to the mean of the 
input, <y> = <x>. The variance of y, according to Equation P.2, is

 V{y} = (1/4)2 V{x1} + (1/2)2 V{x2} + (1/4)2 V{x3}.
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And since V{x} is consistent across x, this simplifies to

 V{y} = 3/8 · V{x}.

So, in this example, the mean value of x is preserved and the variance is reduced by 
more than 1/2, which is the objective of a smoothing filter. Note that the data in the 
input x series were assumed to be independent random variables. However, this is not 
true of output series y, since the covariance of the filtered data is nonzero, because 
adjacent values of x were combined to calculate y values. This property will be impor-
tant in the Chapter 9 dealing with autocorrelation functions.

Example 7.3: Common Formula for Propagation of Errors

Here, z is a random variable formed from “independent” random variables x and y.
Addition/subtraction:
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Multiplication:
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Division:

z x y= /
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Exponentiation:
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Summary

• Net variance is the sum of the variances of each random variable whether we are add-
ing or subtracting independent random variables.

• Net relative variance is the sum of net relative variance of each random variable 
whether we are multiplying or dividing independent random variables.

• In exponentiation, relative variance is scaled by the square of the exponent.

7.6 TRANSFORMING PROBABILITY DENSITY FUNCTIONS
The formulas for propagation of error described in Section 7.5 are useful for calculating 
variance for some mappings of one or more random variables (x, y, …) to a third ran-
dom variable (z). However, there are important cases when a more general approach is 
needed. These cases arise when the probability density function pdfx(x) of one random 
variable x is known, and you need to calculate pdfy(y) given the mapping function y = 
f(x). When we determine pdfy(y), the mean and variance of y as well as higher moments 
can be calculated using standard formula.

The basic scheme for calculating pdfy(y) in terms of a functionally related pdfx(x) is 
conservation of probability such that the probability{y1 ≤ y ≤ y2} = probability{x1 ≤ x ≤ x2}, 
where y1 = f(x1) and y2 = f(x2). This conservation of probability is stated mathematically as 
follows:
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Note the use of subscripts for the pdf’s to indicate which is for x and which is for y. Also 
recall that the integral over the full range of each pdf is unity. Importantly, Equation 7.33 
assumes that the mapping function y = f(x) is monotonic so that a one-to-one mapping of 
x to y occurs. This holds for simple linear mapping functions such as y = ax + b. However, 
and for an important case such as y = x2, Equation 7.33 can be modified to separately cover 
positive and negative ranges as follows:
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For pdf’s that are symmetric about x = 0, both integrals have the same area, and this leads 
to a simpler equation for this case:

 

pdf d pdf d( ) ( )y y x x

y

y

x

x

1

2

1

2

2ò ò= . (7.35)



152   ◾   Fundmental Mathematics and Physics of Medical Imaging

Higher-order polynomials and periodic functions also follow this multi-integration range 
scheme though we will not deal with those here.

If we look at a limiting case of Equation 7.33 where the ranges of integrations are 
reduced to dy and dx, then we see that
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Rearranging Equation 7.36 and using the absolute value of the derivative leads to
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The absolute value is needed, since dy may be increasing or decreasing as dx increases 
but the areas associated with the pdf ’s are always positive. We want everything on the 
right side of Equation 7.37 to be in terms of y and we can accomplish this by expressing 
x as f −1(y):
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This assumes that f −1(y) exists, which will be true for the pdf’s we will study. Equation 7.38 
shows that pdfy(y) can be calculated by replacing the argument of pdfx(x) with x = f −1(y) 
and dividing by the absolute value of dy/dx. Therefore, pdfx() serves as the starting template, 
which is scaled by 1/|dy/dx| to calculate pdfy().

For students interested in how this technique can be expanded to deal with more com-
plex functional relationships, look for chapters on Probability and Functions in classical 
statistics texts such as the one by Papoulis.

Example 7.4: Shifting and Scaling the Normal Distribution

Given that x is a standard (normal) Gaussian random variable (μx = 0, σx = 1) and that 
y = ax + b, what is pdfy(y)?

Given: pdfx
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f −1(y) = x(y) = (y − b)/a and |dy/dx| = |a|, so using Equation 7.38, we see that pdfy(y) is
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The resulting pdfy(y) is also a Gaussian function but with μy = b and σy = |a|. The 
transform y = ax + b when applied to the Gaussian-distributed random variable x 
with (μx = 0, σx = 1) produces a Gaussian-distributed random variable y with (μy = b, 
σy = |a|). This simple linear function can therefore be used to formulate y’s with any 
desired μy and σy values.

Example 7.5: Transforming Gaussian to Normal Distribution

A common use of this simple linear function is to transform a Gaussian random 
variable with known mean and standard deviation to a normal (Gaussian) random 
variable (μ = 0, σ = 1). Transforming a Gaussian-distributed random variable x to 
a normally distributed random variable z is done using the function z = (x − μx)/σx 
where μx and σx are the mean and standard deviation for the random variable x.
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Calculate: f −1(z) = x(z) = σxz + μx.
|dz/dx| = 1/σx.

Using Equation 7.38 with z in place of y, we see that pdfz(z) is
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which is the pdf for normal random variable z. Probability tables are available in 
most statistical texts for this normal z distribution, so probabilities for x between any 
range can be calculated by determining the corresponding range of z in the table.

Random number generators for z can be found in various software packages 
(Mathcad, MATLAB®, Mathematica, etc.). The scaling transform xi = σxzi + μx as 
shown in Example 7.1 can be used to generate Gaussian random variables with 
mean = μx and standard deviation = σx.

Example 7.6: Nonlinear Transformation of Gaussian Distribution

Given that x is a zero-mean Gaussian random variable with variance of sx
2  and that 

y = ax2 (a > 0), what is pdfy(y)? (Note that y ≥ 0)
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Solving for pdfy(y) makes use of Equation 7.35, since there are two values of x for each 
value of y. Using Equation 7.38 with this modification, this leads to
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Note that this pdfy(y) is no longer a Gaussian distribution, as should have been 
expected, since the transform function was nonlinear and particularly since y > 0 
though x can be positive or negative. The new pdf has the form of a Gamma distribu-
tion function.

7.7  GRAPHICAL ILLUSTRATIONS OF TRANSFORMS 
OF RANDOM VARIABLES

The basic principle in transforming random variable x to random variable y is based on 
matching probabilities. Probabilities can be determined from the cumulative distribution 
functions [cdfy(y) and cdfx(x)]. The general scheme is that y corresponds to x where 
cdf(y) = cdf(x). As such, the matching probabilities have the same vertical extent in the 
graph of Figure 7.3. Figure 7.3 shows how to convert between two pdf’s given their cdf ’s. 
The formulas for this are

 y xy x= ( )( )-cdf cdf1 ,

 x yx y= ( )( )-cdf cdf1 .

This approach can be used to the convert gray level histogram of one image to match that 
of another similar image, which can correct for minor differences in contrast.

Figure 7.4 illustrates how to convert from a Gaussian random variable x to a uniform 
random variable y. In this example, the value of x = 20 is transformed to the value of 
y = −10. We see that probabilities match when cdf(y), calculated as (y – ymin)/(ymax – ymin), 
is equal to cdfx(x). The yrange for this example is 100. The range of x does not have to match 
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that of y but we forced them to fall in the same range for this example so that both could 
be plotted on the same graph. This approach has been used for histogram equalization 
of medical images.

The conversions illustrated in Figures 7.3 and 7.4 can be implemented using math-
ematical software applications such as Matlab, Mathcad, and Mathematica as well as 
some image-processing applications. One use is the conversion from t-distributed ran-
dom variables to z-distributed random values, since probabilities are well documented 
for z-values.
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FIGURE 7.3 Graphical illustration of conversion between a Gaussian-distributed random vari-
able x and another random variable y with the same cumulative probability using their cumulative 
distribution functions (CDFs).
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FIGURE 7.4 An example for converting from a Gaussian-distributed random variable x (μ = 20, 
σ = 10) to a uniform distributed random variable y (ymin = −50, ymax = 50).
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HOMEWORK PROBLEMS
P7.1 A measurement is made of the time interval between successive disintegrations of 

a radioactive sample. After a large number of measurements, we determine that 
the disintegrations occur completely at random with a mean rate (θ). We find that the 
time interval between successive disintegrations follows an exponential distribution 
function f(t), given by

 f t e t( ) = -q q .

 (a) Show that f(t) behaves like a normalized distribution function over the domain 
[0, +∞) by proving that f t t( )  d =

+¥

ò 1
0

.

 (b) Prove (by direct calculation) that the mean time interval of the exponential 
distribution is μ = 1/θ and the standard deviation is σ = 1/θ.

 (c) If we perform an experiment and find that the mean time interval between suc-
cessive disintegration is 3 s, find the probability that a disintegration will occur 
within 2 s of a preceding one.

P7.2 Write a computer program in any language (Matlab, C, Basic, Java, etc.) or with a spread-
sheet to compute 100 Poisson-distributed numbers with an arithmetic mean equal to 61. 
(Extra credit: Determine the Poisson distribution for this example and compare it against 
the distribution of numbers that you obtained from your computer program.)

P7.3 You perform a counting experiment with a weak radioisotope source and a Geiger 
counter in which you measure 269 counts in 1 min.

 (a) Derive the formula for the Poisson probability distribution that describes the 
probability of obtaining N counts in 1 s (not 1 min!).

 (b) Assuming that the radioisotope source has a relatively long half-life (so that the 
count rate does not change during your measurement), what is the probability of 
measuring 3 or more counts in any 1 s time interval?

P7.4 You have assigned a student helper to make counting measurements on a radiola-
beled protein and instructed him to repeat the measurement 10 times so that you can 
calculate the mean and standard deviation. The student works on this project and 
when he returns, he reports that he has made 10 measurements with the following 
count values:

 105, 104, 107, 102, 101, 106, 105, 107, 107, 108.

 (a) Calculate the mean and standard deviation of these measurements, and show 
that the measured standard deviation is smaller than that you would expect from 
a counting experiment.
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 (b) Is the observation in (a) possible for a radiation counting experiment? Discuss 
possible reasons why the measured standard deviation could be smaller than 
the theoretically predicted value?

P7.5 The exponential pdf f(t) = θeθt describes how successive disintegrations are dis-
tributed in time.

 (a) Given that the minimum resolving time of a detector is 1 ms, at what true count 
rates will (i) 10%, (ii) 20%, and (iii) 50% of the true events be lost.

 (b) What is the observed count rate for each case?

P7.6 The distance between two points in a 3-D image is calculated as

 d x x y y z z= -( ) + -( ) + -( )1 2
2

1 2
2

1 2
2

,

  where (x1, y1, z1) and (x2, y2, z2) are the coordinates of the two points and (σx1, σy1, σz1) 
and (σx2, σy2, σz2) are associated standard deviations. Calculate the standard devia-
tion in the calculated distance (σd) in terms of these parameters using propagation 
of errors.

P7.7 For Example 7.1, what thickness of aluminum attenuator would provide the smallest 
value for the variance of the measured linear attenuation coefficient? Determine an 
approximate relationship that would allow you to estimate the optimal attenuator 
thickness for material with different linear attenuation coefficients.
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C h a p t e r  8

Noise and Detective 
Quantum Efficiency

8.1 INTRODUCTION
Noise is generally defined as the uncertainty in a signal due to random fluctuations in the 
signal. There are many causes for these fluctuations. For example, the fluctuation in x-ray 
beam intensity emerging from an x-ray tube is naturally random. In fact, the number of 
photons emitted from the source per unit time varies according to a Poisson distribution. 
Other sources of random fluctuation that are introduced by the process of attenuation 
of the materials present in the path of the radiation beam (patient, x-ray beam filtration, 
patient table, film holder, and detector enclosure) are also Poisson processes. Finally, the 
detectors themselves often introduce noise. In a film-screen cassette, both the intensify-
ing screen and the film contain individual grains that are sensitive to the radiation or 
light. Therefore, the exposure of the grains in the film produces random variations in film 
density on a microscopic level, which is a source of noise. When electronic detectors are 
used, the absorption of radiation by the detector is a random process as well as inherent 
electronic noise. Electronic detectors generate currents from thermal sources that intro-
duce random fluctuations into the signal. RF and other sources of noise are present in 
MR images. As such, we see that noise is inherent in all medical imaging systems, so it is 
important to investigate and characterize the sources of noise.

8.2 SIGNIFICANCE OF NOISE IN MEDICAL IMAGING
The importance of noise in medical x-ray imaging arises because x-rays are ionizing and 
can damage molecules of biological importance such as DNA or can cause cell death. We 
therefore seek to minimize patient exposure, and produce medical radiographs that are 
intrinsically “noise-limited.” That is, at the exposure levels obtained in radiographs, our 
ability to discern objects of interest may be limited by the presence of noise rather than, 
for example, limitations in spatial resolution. Indeed, on an ethical basis when ionizing 
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radiation is used to form a medical image, we are compelled to minimize patient exposure 
so that the image is quantum-limited to a degree that allows us to derive essential informa-
tion and make the best possible diagnosis. If this is not the case, then we are potentially 
delivering additional exposure to the patient without the benefit of additional diagnostic 
information. Alternatively, if our image is limited by electronic noise or noise sources other 
than photons, then we have not designed our imaging system correctly, since we should 
not let noise sources other than fundamental unavoidable photon statistical noise interfere 
with our ability to derive information from medical images.

8.3 DESCRIPTIVE QUANTITATION OF NOISE
There are various ways to quantify the level of noise in an image. In the previous chapter, 
we discussed random processes for which we knew the underlying probability distribu-
tions. In experimental studies, we may not know the exact nature of the probability dis-
tribution that describes the random process. Rather, we have a noisy signal, which, in an 
experimental setting, we can measure as many times as we wish. After a number of mea-
surements, we calculate the sample mean and the standard deviation using well-known 
formulae. If xi’s are individual measurements, then the sample mean (m) and sample vari-
ance (s2) are given by

 
m x

N
x s x m

N
x mi i

i

N

i i

i

N

= = = -( ) =
-

-( )
= =

å å1 1

1
1

2 2 2

1

and ,  (8.1)

where N is the number of measurements. Here, the brackets <> represent the averaging 
operation. The square root of sample variance s is the sample standard deviation, which 
we can use to quantify the uncertainty, or noise associated with a signal. The division by 
N − 1 rather than N to estimate variance (Equation 8.1) makes s2 an unbiased estimate of 
the population variance (σ2).

Theoretically, in medical imaging, the calculation of the mean and standard deviation 
would require multiple measurements (or multiple images) on the same object. For example, 
if one wanted to know the noise in a radiograph of a lung nodule from a patient, a large num-
ber of radiographs taken under identical conditions would have to be obtained. The restric-
tion of identical condition is impossible to achieve for a patient because of tissue movement 
due to the heart beating or the patient breathing could (and probably would) move the tumor 
so that identical measurements could not be made from repetitive radiographs. But assum-
ing that these difficulties could be overcome, and we did obtain multiple radiographs under 
identical patient conditions, the measurement of noise could be made by measuring xi at the 
same location in the radiograph from all of the radiographs. From these measurements, m 
and s could be calculated, giving the average and the uncertainty of the measured value but 
just at that single point in the image. To fully characterize the noise properties of the image, 
this process would have to be repeated for each location in the image.

Of course, this is rarely done except perhaps by a maniacal graduate student working 
on his or her dissertation and making measurement on a phantom rather that a patient. 
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Usually, to characterize the noise in an image, we obtain a single image that has a large 
region where the signal is uniform, and measure the mean and variance using multiple 
samples within this region. In radiography, this can be achieved by imaging a block of 
acrylic or some other uniformly thick material. In each case, the object placed in the x-ray 
beam mimicking a person is called a phantom. It is also a common practice to have noth-
ing in the x-ray beam (except for air—hence the term “air-scan”) to obtain an image for 
such noise measurements. In each case, we assume that the signal is the same (except for 
random fluctuations) at every location within the region of interest, and calculate the noise 
(standard deviation) using measurements at multiple sites within the region. This provides 
a good estimate of quantum noise assuming that there are no spatially correlated noise 
sources within the region of interest. A spatially correlated noise source might be gener-
ated by an oscillation in a video amplifier, a dirty roller in the film processor, or by some 
other (possibly unknown) process that affects neighboring values in the region of interest.

8.3.1 Signal-to-Noise Ratio (SNR)

The standard deviation is the most useful way to quantify noise in an imaging system. 
However, for the description of noise to have practical meaning, it needs to be evaluated 
relative to signal size. Since the noise specifies the uncertainty in the signal, it is important to 
relate noise size to signal size. For example, an electronic signal that has a noise magnitude of 
2 mV is 10% of a 20 mV signal, but only 0.01% of a 20 V signal. For this reason, the concept 
of SNR is used to describe the relationship between signal and noise magnitude (standard 
deviation). The signal and noise must be measured in the same units, relative exposure for a 
film image, electric potential (volts) for an electronic image, or photon fluence (or exposure, 
etc.) for a radiographic signal. Once both signal and noise magnitude are determined, simple 
division of the mean signal by the signal standard deviation is used to calculate the SNR.

8.3.2 Detective Quantum Efficiency (DQE)

An imaging device that is perfect in terms of noise performance is one that does not add 
noise, that is, does not degrade the SNR of the input signal. It is difficult, if not impossible, 
to improve SNR without degrading some other aspect of system performance (e.g., spatial 
or temporal resolution). How the system affects the SNR is an important characteristic 
quantified as the DQE of the system.

By way of definition, if an instrument or device receives information or data with an 
SNR of SNRin, from which it produces information or data with an SNR of SNRout, then the  
DQE of the instrument or device is
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A perfect device (in terms of SNR) is one that maintains an SNR of all signals presented 
to it and would therefore have DQE = 1. Since SNRs are unitless, input and output signals 
do not have to be measured using the same units when calculating DQE. For example, the 
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input signal might be measured using count rate and the output signal measured using 
voltage. In the following example, you will see why it is useful to square the SNRs in the 
calculation of DQE.

Example 8.1: DQE of NaI(Tl) Detector

Assume we use a sodium iodide detector of thickness a with a counting system to 
measure gammas from a 99mTc source (140 keV gammas). Assume also that the count-
ing system generates a signal equal to the number of photons detected, and that the 
only noise source is due to the Poisson statistics of the detected photons. Can you 
think of other sources of random noise in such a system?

If the linear attenuation coefficient of the sodium iodide at this energy is μ, and all 
gammas interacting with the sodium iodide crystal are detected, what is the DQE of 
this detector?

Solution

If N0 gamma ray photons are incident on the sodium iodide detector, then the number 
of photons that are transmitted through the detector without detection is

 N N e a
t = -

0
m  (8.3)

and the number of photons counted by the detector is

 
N N N N e a= - = -( )-

0 0 1t
m .  (8.4)

The noise in the signal input to the detector is due to the statistical fluctuation in the 
number of photons incident on the detector. Therefore,
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while the SNR due to the detector is determined from the photons counted:
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Therefore, the DQE of the detector system is
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Note that as the product μa becomes very large, DQE approaches unity as the detec-
tor absorbs most gammas (i.e., the detector becomes “near perfect” in terms of pre-
serving the SNR). Alternatively, if the value of μa is small, then e−μa can be expanded 
in a Taylor’s series and neglecting higher-order terms simplifies DQE further

 e aa- » -m m1  (8.8)

so that

 DQE » .ma  (8.9)

The DQE approaches zero in the limit of a low photon efficiency (small μ) and/or thin 
detector (small a).

8.4 OPTIMIZATION OF RADIOGRAPHIC SYSTEM SNR
There are several procedures that can be utilized to improve the SNR in an image 
(Table 8.1). Generally, but not always, these procedures sacrifice some other aspect of the 
medical image. It is one role of the physicist or engineer to balance these various require-
ments in order to obtain maximal information from the image. For example, if we double 
the resolution width of a 2-D detector, this will improve our SNR two fold (the number 
of photons collected is proportional to the detector area, so increases four fold). However, 
this improvement in the noise characteristics is accompanied by a decrease in detector’s 
spatial resolution. This may or may not be a problem depending on the spatial resolution 
needs and limits imposed by other components in the system. Similarly, one can increase 
the x-ray tube current (mA) or exposure time, allowing more photons to be produced 
and detected. However, increasing mA may require a larger focal spot size, decreasing 
detail, and increasing exposure time may lead to additional motion unsharpness, so these 
approaches need to be carefully considered.

8.4.1 Optimization of Photon Energy

The selection of x-ray photon energy is important in establishing the SNR for an imaging 
task. The basic issue with this optimization is that photon energy forces a trade-off between 
increasing radiation dose at lower energies and decreasing contrast at higher energies.

TABLE 8.1 Ways to Increase the Quanta SNR for X-Ray Systems

Method Disadvantages 

Increase detector size (area) Degrades spatial resolution
Increase tube current Increases patient exposure
Increase exposure time Increases patient exposure and motion
Increase kVp (mean energy) Decreases radiographic (subject) contrast
Increase detector thickness May degrade spatial resolution (screens)
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The trade-off between dose and SNR is tedious to analyze for several reasons. First, most 
attenuators, including simple ones such as water, contain more than one element, requiring 
estimation of the linear attenuation coefficients from the elemental constituents. Second, 
linear attenuation coefficients are complex functions of both energy and atomic number. 
Third, the polyenergetic nature of the x-ray beam forces evaluation of integrals for deter-
mining detector response. Generally, the integrals cannot be evaluated in closed form, 
requiring numerical methods.

However, it is instructive to estimate the SNR per unit radiation dose as a function 
of x-ray beam energy and determine if there is an optimal energy. In this estimate, we 
consider the SNR of a 1 cm thick void region within a volume of water having thick-
ness x (Figure 8.1), and the photon beam is considered to be monoenergetic with an 
energy E.

First, we calculate the SNR of the radiographic signal. We will use the following object 
and x-ray system parameters for this:

x, the thickness of water region

φ0, the incident photon fluence (actually exit fluence w/o phantom)

φ1, the photon fluence through x cm of water (number/area)

φ2, the photon fluence through 1 cm air void and x − 1 cm of water

μ, the linear attenuation coefficient of water

E, the photon energy

ρ, the density of water

A, the cross-sectional area of interest

SNR =

Dose =
AE

Axρ Water

1 cm air
thickness

0

x

1 2

1

1

0 –

12 –

FIGURE 8.1 Geometry for calculating SNR and radiation dose and as a function of x-ray beam 
energy for a 1 cm thick void within a volume of water having thickness x. The photon beam is 
monoenergetic with photon energy E.
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The photon fluence φ2 in the region of interest is

 j j m
2 0

1= - -e x( )  (8.10)

and the photon fluence φ1 in the background is

 j j m
1 0= -e x .  (8.11)

The signal is the difference in photon fluence between these two regions, and the noise will 
be estimated as the standard deviation (square root) of the background photon fluence. 
Note: In the low contrast case φ1 ~ φ2, so using the background alone to assess noise is justi-
fied, and noise is easier to measure in the larger background region. Therefore, the SNR for 
this simple model is

 
SNR = -j j

j
2 1

1

. (8.12)

The mean radiation absorbed dose is estimated as the energy absorbed in the water for 
a radiation beam of cross-sectional area A divided by the mass of the water in the beam 
(Equation 8.13). We will approximate the absorbed energy as the number of photons, 
(φ0 − φ1)A, multiplied by the photon energy E, limiting to the case of no scattering. The 
mass in the beam is the product of beam area A, beam length x, and water density ρ. This 
leads to an estimated mean absorbed dose of

 
Mean absorbed dose =

-( )
=

-( )j j
r

j j
r

0 1 0 1AE

Ax

E

x
. (8.13)

Note that the estimated mean absorbed dose is not a function of the area A. The SNR and 
the mean absorbed dose are graphed as a function of photon energy E in Figure 8.2.

Figure 8.3 shows that the optimal response (i.e., maximum SNR per dose) decreases 
with increasing thickness. This model suggests that a higher optimal SNR per dose is pos-
sible for thinner body parts and that the optimal SNR decreases substantially for larger 
bodies and parts, potentially leading to lower quality studies. Additionally, the optimum 
SNR for larger bodies requires higher photon energy.

8.4.2 Selection of Detector Material

Another important consideration in limiting quantum statistical noise is selection of 
appropriate material to maximize photon absorption by the detector. Increasing the thick-
ness as well as the linear attenuation coefficient of the phosphor material can increase 
absorption. As we showed in the chapter on spatial resolution (Equation 6.28), increasing 
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the phosphor thickness increases geometric unsharpness, suggesting that increasing the 
linear attenuation coefficient would be the preferred approach.

The choice of phosphor material must be carefully matched with the photon energy 
used. For best SNR characteristics, the linear attenuation coefficient of the detector should 
be highest in the energy region where the transmitted x-ray spectrum is highest and, in 
particular, where the contrast of interest is highest.

For many years, calcium tungstate (CaWO4) was the most common material used in 
intensifying screens. In these screens, x-ray absorption is primarily provided by tungsten, 
which contributes to both the physical density and a high atomic number of the phosphor. 
To understand whether the attenuation coefficient of tungsten is well suited as a phosphor 
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FIGURE 8.2 Based on the model in Figure 8.1 and assuming a fixed number of photons entering a 
volume of water containing a 1 cm air void, both the radiation dose and the signal-to-noise increase 
as a function of photon energy for E < 30 keV.
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for both object thickness and photon energy.
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for medical imaging, we must understand how it matches with the energy spectrum of the 
x-ray beam. This can be appreciated using a general rule of thumb to estimate the char-
acteristics of an x-ray spectrum. This rule states that the effective energy of a diagnostic 
x-ray beam is ~1/3 of its peak kilovoltage (kVp). Hence, a diagnostic examination using 
a 120 kVp beam should use a phosphor with its maximal attenuation at 120/3 = 40 keV. 
However, the K-edge of tungsten is 69.5 keV, in many cases too high to contribute to atten-
uation of the many of the x-ray photons for this x-ray beam (Figure 8.4). Additionally, the 
K-edge for calcium is too low ~4 keV.

For this reason, phosphors with rare-earth components were introduced and are 
widely used in diagnostic examinations. Typical phosphors include gadolinium oxysul-
fide (GdO2S:Tb), lanthanum oxybromide (LaOBr:Tb), and yttrium oxysulfide (Yt2O2S:Tb). 
These phosphors have K-edges ranging from 39 keV to about 50 keV, which improves their 
x-ray absorption for many diagnostic examinations (see Figure 8.4 for Gd).

Just as the x-ray absorption characteristics of the phosphor must be matched to the spec-
trum of the x-ray beam, the spectral response of the radiographic film must be matched 
to the spectral light output of the intensifying screens. Gadolinium oxysulfide (GdO2S:Tb) 
emits light with a maximum emission at 545 nm. It should be matched with a film sensi-
tive to green light (wavelength 550 nm). Another useful phosphor material is lanthanum 
oxybromide (LaOBr:Tb) that emits light in the range of 380–450 nm. It should be matched 
to a blue-sensitive film, one having an emulsion sensitive to photon wavelengths shorter 
than 500 nm.

When phosphors are viewed in fluoroscopy systems, the spectral output of the phosphor 
must be matched to the sensitive region of the human eye or video system used to record 
the image. Before the advent of image intensifiers, fluoroscopic screens used zinc-cadmium 
sulfide (a mixture of ZnS and CdS), which has a spectral output well matched to the spec-
tral response of the human eye. This material is used in the input phosphor of older image 
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FIGURE 8.4 For a typical x-ray spectrum used in diagnostic radiology (120 kVp), a rare-earth 
intensifying screen (Gadolinium) will absorb a greater fraction of the x-rays than a conventional 
phosphor (Tungsten) for photons with energy ranging from 50 to 70 keV.
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intensifiers, although it has been replaced by cesium iodide (CsI) in newer systems (see if 
you know why). Zinc-cadmium sulfide is still used as the output phosphor for image inten-
sifiers, since its spectral emission lies in the visible range of the electromagnetic spectrum 
and is well matched to the spectral response of optical devices.

Finally, laser film printers utilize a helium neon laser with a red light beam to expose 
the film. The films used with laser printers are sensitive in the infrared region, but also can 
be exposed by the red light used to provide low-level illumination (i.e., the “safe light”) in 
most dark rooms. An operator forgetting their physics will be very disappointed with their 
results if they forget to turn off the red light when removing a laser printer film in the dark 
room for placement in the film processor. Modern laser film printers have an attached film 
processor, so this problem has mostly resolved.

8.5 NOISE SOURCES IN THE MEDICAL IMAGE
Of the several sources of noise in the medical image, some are introduced by the chem-
ical or photographic limitations of our technology. However, there is a fundamental 
and unavoidable noise source against which we are always fighting in x-ray imaging, 
namely, photon statistical noise or quantum noise. By quantum noise, we mean the 
statistical imprecision introduced into a radiation signal by the random f luctuations 
in photon production, attenuation, and recording. These are natural sources that can-
not be avoided.

For a detector, the photon statistical noise is based on the number of photons recorded 
and used to generate the image. For example, in nuclear medicine imaging, we detect both 
primary and scattered gammas, but a spectrometer energy window favoring primary gam-
mas is used to selectively ignore most scattered gammas. Photons that pass through the 
detector without being absorbed, or even those that are absorbed without generating image 
information, are wasted and do not contribute to reducing noise in the image. Both signal 
and noise decrease as the number of detected photons decreases, but signal more so than 
noise, leading to a reduction in SNR. Recall that for many cases, the SNR can be estimated 
as N1/2. Since photons cannot be subdivided, they represent the fundamental quantum 
level of a system. In conventional radiographic imaging systems, x-ray photons and light 
photons are the quanta of importance. The point along the imaging chain where the fewest 
quanta are used to represent the image is called the “quantum sink.” The noise level at the 
quantum sink determines the noise limit of the entire imaging system. Therefore, without 
increasing the number of information carriers (i.e., quanta) at the quantum sink, the sys-
tem noise limit cannot be improved.

Example 8.2: Film-Screen Quantum Sink

A screen with 10% conversion efficiency is one that converts 10% of the absorbed x-ray 
energy to light photon energy. A 20% conversion efficiency screen produces twice as 
many light photons though with the same x-ray absorption.

In a film-screen cassette, an intensifying screen having 10% conversion efficiency 
is replaced by one having 20% conversion efficiency. Both screens have 50% x-ray 
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absorption efficiency for 50 keV x-ray photons, and the film is assumed to absorb 
100% of the light emitted by the screen.

 (a) In each case, where is the quantum sink (input to screen, in the screen, or input 
to the film)?

 (b) If the same film is used with both intensifying screens, which radiograph will 
be noisier?

Solution

 (a) With the 10% conversion efficiency phosphor, 50,000 eV/10 = 5,000 eV of the 
absorbed 50 keV x-ray photon’s energy is converted to light photon energy. The 
light photons have a wavelength of about 5000 A (Å = Angstroms) correspond-
ing to energy of

 
E =

×
»

12 396

5 00
2 5

,

,
.

eV

0 
eV,

Å

Å
 (8.14)

so the estimated number of light photons produced per 50 keV x-ray photon 
absorbed is
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Obviously, for a 20% conversion efficiency phosphor, this would increase to 
4000 light photons/x-ray photon.

If the input to the screen is 100 x-ray photons, the screen reduces this to 50 
absorbed x-ray photons, and the film sees 100,000 (50 × 2,000) to 200,000 (50 × 
4,000) light photons, depending on which screen is used. Therefore, if the film 
exposure is the same, then the “quantum sink” is due to the small number of 
x-ray photons absorbed in the intensifying screen (Figure 8.5).

 (b) When considering which radiograph will be noisier, it is important to remem-
ber that light exposing the film must be maintained in the linear exposure 
region of the film H&D curve. Assume we obtain the correct film exposure 
with the 10% efficient phosphor. When the 20% conversion efficiency phos-
phor is used, the x-ray exposure must be halved to maintain the same pho-
tographic exposure and resulting film density. At the quantum sink (i.e., the 
intensifying screen), fewer (x-ray) photons are used to create the image with 
the 20% conversion efficiency phosphor than the 10% phosphor; however, 
patient exposure is reduced by 50%. In this example, the image obtained with 
the 20% is noisier than that obtained with the 10% conversion efficiency phos-
phor (Figure 8.5).
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Fortunately, it is relatively easy to characterize photon statistics, at least at a descrip-
tive level. This is because photon production and attenuation are Poisson statistical 
processes. As pointed out before, a valuable result is that the standard deviation for 
the Poisson distribution equals the square root of the mean. In most cases, we can 
estimate the standard deviation by taking the square root of a single measurement 
of the number of photons. Of course, the next measurement generally will result in a 
different value, but this difference should be small if the variability is small compared 
to the signal (with a signal of N = 10,000, the standard deviation is just 1% of the 
mean). Furthermore, for N > 20–30, the Poisson distribution becomes Gaussian-like, 
which is useful for two reasons. First, the Gaussian distribution has the well-known 
property that 68.3% of the observations will fall within ±1 standard deviation of the 
mean, 95.5% of the observations will fall within ±2 standard deviations of the mean, 
and 99.7% of the observations will fall within ±3 standard deviations of the mean. 
The second useful property of the Gaussian distribution is that it has a nice math-
ematical form that is useful in generating homework problems for graduate students!!

Example 8.3: Screen Viewing Quantum Sink

A radiologist views a conventional fluorescent screen at a distance of 1.0 m. (No 
image intensifier is used in this example of an older imaging system.) Assume that 
the absorption efficiency of the intensifying screen is 100%, the conversion efficiency 
is 50%, the input exposure to the fluorescent screen is 1-R per second, the effective 
energy of the x-ray beam is 30 keV, and that (μen/ρ) = 0.1395 cm2/g. Also, assume an 
exposure time of 1 second.

Noise characteristics of
fast intensifying screens

Noisier image with screen having
20% conversion efficiency

100 x-ray photons 

50% absorption efficiency
10% conversion efficiency 

50 x-ray photons 

Radiographic film Radiographic film

100,000 light
photons to expose

film

25 x-ray
photons

absorbed 

50 x-ray
photons
absorbed

X-ray absorption is unchanged

Light conversion is changed

50% absorption efficiency
20% conversion efficiency 

FIGURE 8.5 A more efficient phosphor uses fewer x-ray photons than a less efficient phos-
phor to expose radiographic film. Therefore, when using the same film, the more efficient phosphor 
(i.e., the fast screen) produces a noisier image than the less efficient phosphor.
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 (a) Compute the number of photons/cm2 used to form the image at the input to the 
fluorescent screen.

 (b) Compute the number of photons/cm2 used to form the image at the output of 
the fluorescent screen.

 (c) Compute the number of photons that enter the eye from a 1 cm2 area of 
the f luorescent screen. Assume that the pupil of the eye has a diameter 
of 2 mm.

 (d) Where is the quantum sink for this system?
 (e) What is the system DQE?

Solution

 (a) X-ray photons/cm2 input at the screen:
The exposure is 1 Roentgen/s, so for a 1-second exposure time, the radiation 
exposure is 1 Roentgen.

At an effective energy of 30 keV for which
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the photon fluence is
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 (b) Light photons/cm2 output from the screen:
At a wavelength of λ = 5000 Å (Å = Angstroms), the energy of the light photon is
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The total number of light photons generated by the screen having 50% conversion 
efficiency is
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 (c) Light photons entering the eye:
At a distance of 1 m, the number of photons from a 1  cm2 area on the screen 
that enter the eye is
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assuming isotropic emission by the screen and that 1/r2 drop off at 1 m.
 (d) The quantum sink occurs at the stage where the image is formed by the fewest 

number of photons for the same area of the object.
This occurs within the eye of the radiologist.

 (e) DQE of the system:
Assume that the input noise arises from the quantum statistics of the incident 
x-ray field and that the output signal noise is due to the number of light photons 
entering the eye (both assumed to be Poisson processes). Therefore, the DQE is
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Note: For a system consisting of a chain of detection component, SNRout for the 
component representing the quantum sin c (i.e., the one with the lowest SNR) 
should be used for estimating the DQE.

8.6 NOISE SOURCES IN FILM-SCREEN SYSTEMS
Quantum mottle or statistical noise is only one of the several contributors to noise in an 
x-ray image. Both the film and the intensifying screen have a microstructure that con-
tributes to small random fluctuations in the radiograph. In the film, the microstructure is 
due to the developed silver halide. The noise introduced by the silver grains is called the 
film granularity. Similarly, interactions of x-ray photons in the intensifying screen create 
flashes of light that expose the film. The random appearance of the light flashes reveals the 
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underlying irregular structure of the screen called structure mottle. This irregular structure 
is due to an uneven distribution of phosphors in the screen, generating a spatially varying 
light distribution even when uniformly exposed to x-rays. Structure mottle occurs even 
when the x-ray exposure is infinite and quantum mottle is virtually eliminated. Structure 
mottle is spatially fixed, so rotating the screen rotates its pattern. Mathematically, we can 
define the three components of film-screen noise or mottle (σ2) to be film granularity (sg

2), 
quantum mottle (sq

2), and screen structure mottle (ss
2). These are assumed to be indepen-

dent processes, so these variances added to produce the overall screen-film noise variance.

8.6.1 Film Granularity

Nutting has shown that the density D of the film due to developed grains is related to the 
average number of developed grains per unit area (Ng/A) and the average developed grain 
area ag according to the relationship:
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Assuming that the only f luctuation in film density is due to the random number of 
film grains per unit area, and that other values are constant, the variance from film 
granularity σg is
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8.7 NOISE IN ELECTRONIC IMAGING SYSTEMS
In electronic imaging systems such as those used in digital subtraction angiography (DSA), 
we have three principal sources of noise. The first arises from quantum statistics, in which 
the discrete nature of the radiographic signal (which often is photon-limited) introduces 
uncertainty into the image. The second is electronic noise that is generated in the detector 
or detector electronics. The third is due to quantization error that occurs in digital elec-
tronic imaging systems when the signal is digitized. These three components of noise will 
be presented separately, followed by a discussion on how they combine to contribute to the 
overall noise in the imaging system. In this section, we will focus on video-based image 
intensifier systems and resulting digital images; however, descriptions can be generalized 
to other electronic imaging systems used in diagnostic radiography.

8.7.1 Noise Introduced by Quantum Statistics

A fundamental noise source in digital x-ray images (as in most other medical images) is 
quantum statistical noise. If a radiographic signal is composed of N photons/pixel, then the 
uncertainty (i.e., standard deviation) in that signal is based on Poisson statistics.

For video-based image intensifier (II) systems, the uncertainty in the x-ray photon sig-
nal propagates into an uncertainty in the electronic signal, and this is important since the 
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input to the II is the quantum sync for the II system. The amplitude of the resulting video 
noise can be calculated by assuming that the signal from the video camera is proportional 
to the x-ray photon fluence recorded by the image intensifier. This requirement is satis-
fied by a Plumbicon-type video camera. Assuming that the camera produces a maximum 
video voltage of Vmax for Nmax x-ray photons/pixel at the II input, then the video signal V for 
N photons/pixel leads to a proportionality relationship

 

V

V

N

N
V

V

N
N

max max

max

max

,= Þ = æ
è
ç

ö
ø
÷  (8.24)

where both Nmax and Vmax are constants based on the system configuration (Figure 8.6). The 
standard deviation of the video signal due to x-ray quantum statistical sources follows the 
same proportionality relationship:
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Video characteristic curve
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FIGURE 8.6 An ideal video camera produces an electronic signal proportional to the number of 
light photons/pixel. This relationship is maintained up to the maximum or saturation level of the 
video system (Vm) corresponding to Nm quanta per pixel at the input.
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where the standard deviation σN is the uncertainty in x-ray photons/pixel

 sN N=  (8.26)

so that the quantum noise seen in the video signal σq is
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Note: The units of this quantum noise are the same as measured for the video signal (volts).

8.7.2 Electronic Noise in a Video System

The electronic noise in a video camera is independent of other sources of noise. This elec-
tronic noise arises from the camera’s dark current, that is, noise when no light is input to 
the camera. The electronic noise level is also assessed as a standard deviation (σe) that is 
related to Vmax and the camera’s dynamic range (D) as follows:
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D
max .  (8.28)

The best vidicons have a dynamic range of ~1000:1 (although some are touted to achieve 
2000:1 dynamic range). If the maximum video signal were 2 V, then the standard deviation 
of the electronic noise from a camera with a 1000:1 dynamic range would be 2 mV.

Unlike quantum statistical noise that varies as the square root of the number of quanta 
comprising the signal, the magnitude of electronic noise is not dependent on signal size. 
It is therefore important to maximize the video signal whenever possible so that the electronic 
noise has a minimal contribution to overall noise. Unfortunately, electronic noise becomes a 
problem in regions of image with low video levels that result from high object attenuation, 
especially if such areas are of diagnostic interest.

8.7.3 Noise due to Digital Quantization

Quantization noise is introduced into an analog signal when it is digitized. As with other 
forms of noise, we use variance to quantify the noise. Quantization variance is calculated 
as the variance between the quantized signal and the analog signal over a single quantiza-
tion interval. The ADC’s quantization interval Δ runs from μI – Δ/2 to μI + Δ/2, where the 
digitized signal is the fixed value μI. Quantization or digitization variance is calculated 
using Equation 8.29 that is greatly simplified by letting μI = 0:
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Like electronic noise, the quantization noise does not relate to signal magnitude. Since 
we have some control over the magnitude of quantization noise, we can design imaging 
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systems so that sD
2  is small in comparison to electronic and quantum noise sources. For 

example, if the variance due to electronic noise is se
2, we can choose the quantization inter-

val of the analog-to-digital converter (ADC) so that the variance of the quantization error 
is 1/10th the variance due to electronic noise. Doing this using Equation 8.29 yields
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so the digitization interval is

 Δ = 1.1σe ≈ σe. (8.31)

Since this digitization interval (Δ) is approximately equal to σe, we can use this relationship 
to show that the digital dynamic range (Ddig) should be approximately equal to the analog 
electronic dynamic range (D).
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The digital dynamic range is calculated as Ddig = 2N where N is the number of bits used by 
ADC. The ADC must provide a number of bits to cover the electronic dynamic range, that is, 
2N ≥ D. Using this approach, we see that for a video camera with a dynamic range of 1000:1, we 
would need at least a 10-bit ADC, that is, one with 1024:1 digital dynamic range. An ADC with 
one less bit would have a dynamic range of 512:1 and would not be adequate.  An  ADC 
with one more bit would have a dynamic range or 2048:1 and would be acceptable if other 
criteria (sampling rate, etc.) were sufficient for use with the video camera.

Example 8.4: DQE and Quantization Step Size

Assume that we digitize a signal with a quantization step Δ that is k times the stan-
dard deviation of the overall noise in the analog signal (σ). Calculate the DQE of 
the digital (output) versus analog (input) signal as a function of k. Discuss why your 
result makes sense physically.

Solution

The input signal to the digitizer has only analog noise, while the output signal has 
both analog and quantization noise. From Equation 8.29, we know that quantization 
noise variance for step size Δ = kσ is
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The total noise variance of the output digital signal is the sum of analog and quanti-
zation noise variances, since they are independent
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and assuming that the signal size S remains the same (i.e., the digitization introduces 
no gain), we know that the input and output SNRs are given by

 SNR /in = S s  (8.35)

and
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so that the DQE is given by
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The DQE in this example is not an explicit function of analog noise level σ. As 
expected, for small k (where Δ ≪ σ), the DQE approaches unity so that the effect of 
digitization is minimal. For large k (where Δ ≫ σ), DQE tends toward zero because 
of the large contribution of digitization to system noise.

8.8 SYSTEM NOISE IN ELECTRONIC IMAGING SYSTEMS
As we saw in the aforementioned example, the system noise variance in an electronic imag-
ing system is obtained by adding the variance from each noise component, assuming that 
these noise contributions are independent (or uncorrelated). Also, the contribution to the 
signal and noise by digitization can be made sufficiently small so that it can be neglected. The 
video camera signal V contains a time-varying component Vq proportional to the exposure 
to the input phosphor and a “random” time-varying term Ve arising from the “electronic 
noise” of the system (the time variable is implicit).

 V = Vq + Ve. (8.38)

The uncertainty in the video output can be calculated using propagation of errors

 s s s2 2 2= +q e ,  (8.39)

where σ, σq, and σe are the uncertainties in V, Vq, and Ve respectively.
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We will investigate how these components contribute to system noise of a digital angio-
graphic system in more detail in Chapter 10. We will complete this chapter with a brief descrip-
tion of how quantum statistical noise influences a digital subtraction angiographic system.

8.9 NOISE IN DIGITAL SUBTRACTION ANGIOGRAPHY (DSA)
In DSA, the image containing an artery after injection of an iodinated contrast agent is 
subtracted from the precontrast image. This procedure is performed to isolate the image of 
the opacified artery after the subtraction process removes the structure from background 
anatomy. We will show in Chapter 10 that the images should be subtracted only after they 
are logarithmically transformed. For now, we will assume that this is true and will use the 
propagation of error technique summarized in Chapter 7 to determine the contribution of 
quantum statistical noise in the digital subtraction image.

Assume that you have two images of a blood vessel obtained before and after iodine 
opacification, and you examine the number of photons/pixel within the bounds of the 
vessel. For the image obtained before opacification of the artery occurs, the number of 
photons/pixel is

 N N e x= -
0

mw ,  (8.40)

where
μw is the linear attenuation coefficient of water (i.e., blood and soft tissue)
x is the thickness of the body
N0 is the incident number of photons/pixel

After opacification, the attenuation increases due to the iodinated contrast agent in the 
artery so that

 N N e x t
I

w I= - +
0

(   ) ,m m  (8.41)

where 
μI is the linear attenuation coefficient of the iodinated contrast agent
t is the thickness of the artery

We will assume that attenuation by the blood in the artery has not changed. The signal in 
the logarithmic subtraction image is formed as

 S N N t= - =ln( ) ln( ) .I Im  (8.42)

Propagation of errors for Equation 8.42 estimates the variance in the signal S as
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Since the photon fluence behaves according to Poisson statistics, we have

 sN N2 =  (8.44)

and

 sN NI I
2 =  (8.45)

so that from Equations 8.43 to 8.45, we have
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For small values of μIt (i.e., when μIt ≪ 1),

 e tu tI
I= +1 m  (8.47)

and
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so that the SNR of DSA (ignoring electronic noise) is
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HOMEWORK PROBLEMS
P8.1 A radiologist views the output phosphor of an image intensifier at a distance of 1 m. 

Assume that the x-ray absorption efficiency is 75%, the conversion efficiency of the 
input phosphor and output phosphor are both 50%, that the input exposure to the 
fluorescent screen is 10–5 R/s, and that the brightness gain (minification × flux gain) 
of the image intensifier is 10,000 (May need to review principles of IIs). Assume that 
the pupil of the eye has a diameter of 2 mm when the output screen is viewed and that 
the effective energy of the x-ray beam is 30 keV and that at this energy
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  Compute the number of photons used to form the image for the following:

 (a) X-rays absorbed within the input phosphor.

 (b) Light image emitted at the surface of the output phosphor.

 (c) The light field entering the eye.

 (d) Where is the quantum sink for this system?

 (e) Compare this result with the one derived in the notes in which the observer views a 
conventional fluorescent screen directly without the benefit of an image intensifier.

P8.2 For a thesis project, a student wants to make a bone densitometer that measures the 
thickness of bone and soft tissue with a dual-energy detection system. The measure-
ment of bone depends on two independent measurements with different energy 
radioisotopes.

 (a) If I01 is the incident photon f luence in the first measurement (energy 1) and 
I02  is the incident photon f luence with the second measurement (energy 2), 
show that the thickness b of bone is equal to
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  where μt1 and μt2 are the linear attenuation coefficients of tissue at energies 1 and 
2, respectively, and μb1 and μb2 are the linear attenuation coefficients of bone at 
energies 1 and 2.

 (b) Use propagation of errors to show that the variance in the measurement of the 
bone thickness b is
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  Note that for a given patient, A1 and A2 are both constant.
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 (c) In a real imaging system, we want to maximize the precision of the measurement 
(i.e., minimize sb

2 ) for a certain entrance dose to the patient. If f1 and f2 are the 
ratios of the radiation absorbed dose to photon fluence at energies 1 and 2, respec-
tively, and if a fraction k of the dose is obtained from photons of energy 1, while the 
remaining fraction (1 − k) of the dose is obtained from photons of energy 2, and if 
D0 = D1 + D2 is the total dose received by the patient, then show that
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 (d) Differentiate this equation with respect to k to determine what fractional mix 
of photons at energies 1 and 2 will give the best precision for the given dose D0. 
Remember that f1, f2, A1, A2, and D0 are all constant. Show that the best precision 
is obtained when the dose delivered by the photons of energy 1 contributes a frac-
tion kmin of the total dose where
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 (e) Finally, show that this condition is satisfied when the source intensities I01 and I02 
are related by the formula
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P8.3 Calculate the DQE for a system in which

 (a) The detector noise variance is three times larger than quantum noise variance. 
Assume 100% x-ray detection efficiency.

 (b) The system noise variance is twice the quantum noise variance and for which 
one-half of the incident x-rays are detected.

P8.4 You are developing an image processor to digitize a video signal from an image 
intensifier system.

 (a) Derive the digital level spacing Δ so that the noise contributed by digitization 
is approximately 30% of the analog noise σanalog. Express your answer in terms 
of σanalog.

 (b) If the dynamic range of the television camera is 1000:1 and the peak output of 
the television camera is 2 V, calculate the digitization spacing (in terms of 
millivolts) and the number of bits needed to digitize the signal.

 (c) If you know that the quantum noise always will be at least as large as the electronic 
noise of the system, how does this affect your answer to (b).
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P8.5 Using the equations derived in class, compare the SNR (at peak video signal) associ-
ated with a TV fluoroscopy system with a dynamic range of 1000:1 for the following 
cases. Assume that the dynamic range refers to a characteristic resolution element of 
(1 mm2).

 (a) Fluoroscopy at an exposure of 1 R per image.

 (b) Digital radiography at an exposure of 1 R per image (neglect digitization noise).
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C h a p t e r  9

Noise-Resolution Model

9.1 DESCRIPTION AND DEFINITION
The autocorrelation function is a measure of similarity between a data series and a shifted 
copy of the series as a function of shift magnitude. It is based on correlation analysis, which 
is used to find periodic patterns in noisy data, characterize similarity patterns for data com-
pression, and measurement of spatial resolution of an image receptor with uniform white 
noise as the input. For medical imaging, a classic use of the autocorrelation function is in the 
measurement of film and screen spatial resolution, more generally detector resolution.

The autocorrelation function is defined as E{I(x) I(x + Δ)}, where E{} is the expectation 
operation and I(x) is a 1-D function and Δ the shift in x. A similar function, the autocovari-
ance function, is defined as E{[I(x) − <I(x)>][I(x + Δ) − <I(x)>]}, and if I(x) is a zero-mean 
function, then <I(x)> = 0 and the two definitions give the same result. In fact, for most 
medical imaging applications, I(x) would be transformed to a zero-mean function before 
the autocorrelation function is calculated, so for our purpose, autocorrelation function = 
autocovariance function.

The autocorrelation function will be designated using a capital letter as Cx(Δ) as follows:

 Cx(Δ) = E{I(x)I(x + Δ)}. (9.1)

When probability density functions are not known (very likely), the expected value is 
 calculated as the average.

Example 9.1: Autocorrelation Function of Simple Periodic Function

The following example shows how to calculate the autocorrelation function for a simple 
series of data that repeats every three samples. First let us take a look at Cx(Δ) with Δ = 0:

x 1 2 3 4 5 6 7 8 9 
I(x) … +1, –1, 0, +1, –1, 0, +1, –1, 0, …
I(x + 0) … +1, –1, 0, +1, –1, 0, +1, –1, 0, …
I(x)I(x + 0) … +1, +1, 0, +1, +1, 0, +1, +1, 0, …
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For zero shift, the Cx(Δ) in this example is just the average of I(x)*I(x) over each 
period. The average was taken over three periods (N = 9) in this example, but in 
general, the extent of x would be much larger. Also, note that the numerator of C 
increases by 2 for each period of the sample, while the denominator increases by 3 
such that Cx(0) = 2/3 when averaged over exact multiples of periods. For a large num-
ber of samples (i.e., for N = 1000), the exact number of periods is not as important. 
For example, since 999 points of the 1000 would cover 333 complete periods from this 
example, only 1 sample would not contribute to the sum. If the period is known, then 
the calculation of the autocorrelation function should span multiples of the period.

Now calculate Cx(Δ) with Δ = 1

x 1 2 3 4 5 6 7 8 9 
I(x) … +1, −1, 0, +1, −1, 0, +1, −1, 0, …
I(x + 1) … −1, 0, +1, −1, 0, +1, −1, 0, +1, …
I(x)I(x + 1) … −1, 0, 0, −1, 0, 0, −1, 0, 0, …
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Note that as the numerator in this calculation changes by −1 for each period, the 
denominator changes by +3, therefore Cx(1) = −1/3. If the calculations are continued 
for various spacings, you will get the following:

 Δ = … −3, −2, −1, 0, +1, +2, +3 …

 Cx(Δ) = … 2/3, −1/3, −1/3, 2/3, −1/3, −1/3, 2/3 … (9.4)

Inspection of this autocorrelation function leads to the following characteristics:

• The autocorrelation function is positive (here = 2/3) at Δ = 0. Further, it can 
be shown that the value of Cx(0) ≥ Cx(Δ) for all Δ. For nonrepeating functions 
Cx(0) > Cx(Δ), that is, Cx(Δ) will be a maximum at Δ = 0. This will clearly be the 
case when we investigate detector spatial resolution using random noise.

• The autocorrelation function repeats with a period = 3, the same period as I(x).
• The autocorrelation function is –1/3 for Δ = ±1, ±2. The autocorrelation func-

tion is identical for these two displacements, that is, symmetric about Δ = 0.

Autocorrelation (or autocovariance) with Δ = 0 is just the variance of I(x) if it is a 
zero-mean function, or stated mathematically Cx(0) = σ2. With this identity in mind, 
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we can interpret Cx(Δ) as the covariation (or correlation) between a function I(x) and 
its shifted version I(x + Δ). A normalized measure of autocorrelation, normalized rel-
ative to the variance in I(x) at Δ = 0 (its maximum), is Rx(Δ) = Cx(Δ)/Cx(0). Therefore, 
Rx(0) = 1 and Rx(Δ) ≤ 1 for all other values of Δ, providing a standard measure of 
fractional similarity as a function of displacement.

Example 9.2: Autocorrelation Function of Sinusoids

Since cosine is a periodic function, we must integrate over an integer number of p eriods 
to ensure appropriate calculation of its autocorrelation function. The basic equation is
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From trigonometry cos A cos B = 1/2 cos(A − B) + 1/2 cos(A + B) and setting

 A = (2π/T)x and B = (2π/T)x + (2π/T)Δ and using cos(θ) = cos(−θ),

we get
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 (9.6)
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since the second integral is zero when integration range is a multiple of the period (T).
An identical answer is seen for the sine function. Note that C(Δ) = 1/2 for Δ = 0 

and C(Δ) has the same period (T) as the sinusoid.
In general, the following are true for all autocorrelation functions for zero-

mean I(x):

• C(0) = σ2 at Δ = 0, the autocorrelation function is variance of I(x).
• C(−Δ) = C(Δ), autocorrelation functions are symmetric.
• C(0) ≥ C(Δ), maximum at zero displacement (Δ = 0).
• C(Δ) = σ2(Δ), autocorrelation function = variance as function of Δ.
• R(Δ) = C(Δ)/C(0), normalized autocorrelation function.
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9.2 AUTOCORRELATION AND AUTOCONVOLUTION FUNCTIONS
There is a natural similarity between the autocorrelation function and convolving a 
 function with itself (autoconvolution). Autoconvolution is as follows:

 
f f f y f x y yÄ = -ò ( ) ( )d , (9.8)

whereas for autocorrelation, there is no reflecting, only shifting, in the second term 
l eading to

 
C x f y f y x y f y f y x y( ) ( ) ( ( ) ( )= - = +ò ò)d d , (9.9)

where
y is a dummy x variable for integration
f(x) is a real (i.e., not complex) function

The x in these equations can be replaced by Δ, since both indicate a shift in y. Graphing the 
two forms in Equation 9.9 will reveal why they are identical on integration. Also, intuitively, 
the shift direction can be to the right or left as long as all possible combinations are used.

9.3 POWER SPECTRAL DENSITY FUNCTION
The Fourier transform of C(Δ) has a simple form as follows:

 j( ) { ( )} ( ) *( ) ( )u C F u F u F u= Á = =D 2 . (9.10)

φ(u) is called the “power spectral density” (PSD) of f(x). Equation 9.10 can be used to directly 

calculate the autocorrelation function using C F u( ) ( )D = Á { }-1 2 .

The PSD and the autocorrelation function are Fourier transform pairs, with the follow-
ing form in 2-D:

 
j p( , ) ( , ) ( )u v C ex y

i u v
x y

x y= òò - +D D D DD D2 d d  (9.11)

and

 
C u v e u vx y

i u vx y( , ) ( , ) ( )D D D D= +òòj p2 d d . (9.12)

In general, the following are true for the PSD function:

• C(0,0) = σ2 = òòφ(u,v)dudv Integral of PSD = variance f(x).

• φ(u, v) PSD is real (Equation 9.10).
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• φ(u, v) ≥ 0 PSD is nonnegative (Equation 9.10).
• φ(u, v) = φ(−u, −v) PSD is symmetric.

A summary of autocorrelation and PSD functions for various input functions (Table 9.1) is 
helpful in understanding their use.

9.4 WIENER SPECTRUM
The PSD of zero-mean random noise is called the Wiener spectrum and is usually writ-
ten as W(u) rather than φ(u) to make this explicit. The autocorrelation function C(Δ) and 
Wiener spectrum W(u) properties of random noise can be exploited to determine the spa-
tial resolution of film/screen systems. Figure 9.1 is a 256 × 256 random noise image i(x, y) 
with mean = 0 and standard deviation = 1. Figure 9.2 is its Wiener spectrum {|I(u, v)|2} 
where |I(u, v)| is the magnitude of the Fourier transform of i(x, y). The origin u = 0, v = 0 is 
at the center of Figure 9.2.

FIGURE 9.1 2-D image [i(x, y)] of random values (m = 0, σ = 1).

TABLE 9.1 General Form of Autocorrelation and PSD Functions

Input Function C(Δ) ϕ(u) 

Sinusoid (μ = 0) Cosine Delta functions
Gaussian Gaussian Gaussian
Delta function Delta function Constant
Random noise (μ = 0) Delta function Constant
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The integral of |I(u, v)|2 is equal to 1 as predicted, since it should be equal to C(0,0) = 
σ2 = 1 for the image i(x, y). Figure 9.3 is a graph of the Wiener spectrum [W(ρ)] expressed 
as a function of the distance from the origin ρ (i.e., the radial frequency). Note that the 
highest frequency is ~128 cycles or line pairs as expected for a 256 × 256 image. Note also 
that for this graph, the data appear to vary about a mean response. Since every location 

FIGURE 9.2 |I(μ, ν)|2 is the power or Wiener spectrum of i(x, y).

FIGURE 9.3 Radial frequency plot W(r) of Wiener spectrum from Figure 9.2.
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in W(u, v) should vary randomly about its mean and the sum of all locations is equal to 1, 
then the mean value can be estimated as sum/2562 = 1/2562 =1.53 × 10–5.

If the Wiener spectrum in Figure 9.3 were fitted with a straight line, the slope would 
be ~0 with intercept equal to the mean value (1.53 × 10–5). The constant magnitude (other 
than noise) across all possible frequencies demonstrates that the Weiner spectrum of ran-
dom noise, if unmodified by the system transfer function, is made up of equal amplitudes 
at all frequencies. This noise is often called “white” due to the fact that white light also has 
a uniform mix of light of over a broad range of frequencies or wavelengths. Figures 9.3 is an 
example of the Wiener spectrum for an ideal imaging system, that is, one with a constant 
magnitude system frequency response |H(ρ)| = k. For a real imaging system, the Wiener 
spectrum W(ρ) = |H(ρ)|2 is the square of the normalized spatial frequency response.

This relationship can therefore be used to test the resolution capabilities of an imaging 
system when the input is “white” noise.

Figures 9.4 through 9.6 provide insight into how the Wiener spectrum relates to system 
resolution. Let us assume that an imaging system alters the 2-D random image i(x, y) of 
Figure 9.1 due to blurring as a result of point spread function. Figure 9.4 models this using 
a 9 × 9 Gaussian PSF applied to i(x, y) to simulate the imaging system blurring. The blur-
ring is modeled in the frequency domain as Is(u, v) = I(u, v)H(u, v), where I(u, v) is the 
Fourier transform of i(x, y) and H(u, v) is the simulated Gaussian system transfer function.

The 2-D Wiener spectrum of the blurred noise image from Figure 9.4 is given in Figure 9.5 
and as a radial plot [Ws(ρ)] in Figure 9.6. It follows that Ws(ρ) = |Hs(ρ)|2 or |Hs(ρ)| = [Ws(ρ)]1/2. 
This latter equation states that the square root of the Wiener spectrum for a system is the 
magnitude of its frequency response. Therefore, |Hs(ρ)| is similar to MTF. The MTF is 
estimated as [Ws(ρ)/Ws(0)]1/2, where the division ensures that MTF(0) = 1.

FIGURE 9.4 Random noise image of system modeled with a 9 × 9 Gaussian point spread function.
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FIGURE 9.5 Wiener spectra of system modeled with a 9 × 9 Gaussian point spread function.

FIGURE 9.6 Magnitude of frequency spectrum F(r) for Figure 9.5.
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While the Wiener spectrum can be calculated without using the autocorrelation func-
tion, it is instructive to analyze system’s spatial blurring by direct analysis of the autocorre-
lation function of noise. The rationale is that the autocorrelation function for random noise 
input to an ideal imaging system simulates a perfect point spread function for testing, that 
is, expected response Cr(Δx, Δy) = δ(x, y). Broadening of this expected point response is 
due to imaging system blurring, that is, the PSF(x, y) of the system. We say that the system 
PSF introduces short-range correlations, and this is reflected as a broadening of the auto-
correlation function of random noise. In the spatial domain, this is modeled as

 Cs(Δx, Δy) = Cr(Δx, Δy) ⊗ [PSF(−x, −y) ⊗ PSF(x, y)], (9.13)

where the broadened autocorrelation function Cs(Δx, Δy) is different from the ideal auto-
correlation function due to convolution with PSF(x, y) of each of the image functions in 
Cr(Δx, Δy) = δ(x, y). An example of this is provided in Figures 9.7 and 9.8.

The similarity of the autocorrelation analysis of a random noise image and the direct 
application of smoothing is seen from the similarity of Figures 9.7 through 9.10. The square 
root of the profile curves in Figures 9.8 and 9.10 provides an estimate of the system PSFs.

9.5 MEASURING FILM/SCREEN RESOLUTION
The autocorrelation function and Wiener spectra are both sensitive to low-frequency back-
ground variations and this limits their use in nuclear medicine, where such changes in 
uniformity are often present. However, both can be used to assess spatial resolution of 

FIGURE 9.7 Autocorrelation of zero-mean random noise i(x, y) smoothed with a 9 × 9 Gauss-
ian filter.
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film/screen systems without the confounding effects of other components of spatial resolu-
tion. A uniform random image can be acquired by exposing a small region of a film/screen 
at a large distance from the x-ray tube. This image is free of effects of focal spot size, grid, 
or magnification. The film is then scanned with a small aperture microdensitometer and 
the recorded film density converted to relative exposure using calibration data for the 

FIGURE 9.8 Profile along the autocorrelation function C(Δx, Δy) in Figure 9.7.

FIGURE 9.9 Point smoothed twice with a 9 × 9 Gaussian filter.



Noise-Resolution Model   ◾   195

film/screen combination. The film/screen MTF is calculated as the square root of the nor-
malized W(ρ) for these data. If necessary, the MTF can be corrected for the drop-off due 
to the scanner aperture, but with a sufficiently small aperture, this is not needed (one with 
drop in frequency response <5% at the highest frequency of interest).

The uniform noise presented to the film/screen system is quantum noise (i.e., white 
noise spectrally). The added noise in the developed image is also due to random processes 
in both the screen and the film, and since these are assumed to be independent, the random 
noises for these are additive. However, blurring by film and screen alter the MTF, which 
leads to an overall MTF with decreasing response as frequency increases (Figure 9.11).

FIGURE 9.10 Profile along smoothed point in Figure 9.9.

Ideal MTF

Screen MTF

Film MTF

ρ

M
TF

(ρ
)

FIGURE 9.11 Example MTF for film/screen system.
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Since the film MTF is approximately constant over the range when the screen MTF is 
falling off, these can be separated.

9.6 MORE ON DQE
The system equation for DQE given in Chapter 8 does not account for the natural loss 
in signal contrast with increasing frequency of imaging systems (Equation 8.2). Since 
mean random noise levels at the input and output of an imaging system are approxi-
mately constant with increasing frequency, the change in signal contrast or modula-
tion with frequency leads to changes in SNR( f ). A more general equation for DQE is 
therefore
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Using logic that was applied for the development of the Rose model equation, SNRin(f) can 
be expressed as a function of input contrast cin(f) and Nin, the number of photons from an 
area of interest within the background:

 SNR MTFin in in in in
2 2 2( ) ( ) ( )f c f N f N= = , (9.15)

where for sinusoids contrast = modulation such that c f fin inMTF2 2( ) ( )= . Since we can 
assume an ideal frequency response at the input of the system, MTFin

2 1( )f =  for all frequen-
cies, simplifying SNRin:

 SNR MTFin in in in in
2 2 1( ) ( )f f N N N= = × = . (9.16)

We can calculate SNRout(f) for a sinusoid using signalout(f) = cout(f) times the mean signal 
out as follows:
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Again for sinusoidal response, MTF ( )out
2 f  is equivalent to c fout

2 ( ). MTFout(f) is determined 
by the overall imaging system frequency response, that is, due to focal spot size, magnifi-
cation, grids, scatter, film, screen, etc. The average signal out ( sout ) and standard deviation 
(σout) are calculated using the system’s output units. The ratio of Equation 9.17 to Equation 
9.16 gives the system DQE(f):
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where
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since MTFout
2 ( )0 1= . Note that the mean and standard deviation in Equation 9.19 are just 

those that would be measured if the signal were uniform, and DQE(0) is the same as the 
DQE we determined using Equation 8.2.

A simpler version for DQE(f) is as follows:

 DQE DQE( MTFout( ) ) ( )f f= ×0 2 . (9.20)

Since MTFout
2 1( )f £ , the DQE(f) drops off with increasing frequency indicating less effective 

use of the input quanta.
DQE(f) for subcomponents of a system can be calculated using appropriately deter-

mined SNRin(f) and SNRout(f) for each component, a case where SNRin(f) is no longer a 
constant.

In most applications, MTF( f ) is calculated from the point spread function. It may 
be necessary to correct for sample spacing and aperture size used when digitizing 
the output image to obtain an accurate value for MTFout( f ), that is, if these are not 
sufficiently small.

HOMEWORK PROBLEMS
P9.1 In Chapter 5, we found that the convolution operation in the spatial domain becomes 

multiplication in the frequency domain. In the autocorrelation chapter, we noted a 
similar property for autocorrelation. However, we never looked at the finer details of 
this complex multiplication in the frequency domain.

Given F(u) = Fr(u) + iFi(u) and G(u) = Gr(u) + iGi(u) where the subscripts r and i 
indicate the real and imaginary parts of these complex functions. Determine the 
following:

 (a) The full expression (both real and imaginary parts) for F(u) · G(u) in the fre-
quency domain. This relates to how we use the FFT to calculate convolution.

 (b) The full expression for F u F u( ) ( )× in the frequency domain. This relates to how 
we use the FFT to calculate autocorrelation. The bar over F(u) indicated its com-
plex conjugate.

 (c) The full expression for F u G u( ) ( )× in the frequency domain. This relates to how 
we use the FFT to calculate cross-correlation.
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P9.2 Using Excel, Mathcad, or any similar program, create a 256-point zero-mean random 
noise sample i(x).

 (a) Calculate mean and variance of i(x).

 (b) Calculate autocorrelation function C(Δ) for i(x). Describe how you did this and 
any assumptions you made. What is the relationship between C(0) and i(x)?

 (c) Calculate Wiener spectrum W(u) for i(x). What is the relationship between C(0) 
and W(u)? How would you convert W(u) to MTF(u)?

P9.3 Three images are provided as follows: (i) X_bar.nii.gz, (ii) Ring.nii.gz, and (iii) 3-bars.
nii.gz. Use Mango to calculate the autocorrelation image for each and verify that 
the peak value in the autocorrelation image is equal to the sum in the original image.

 (a) In the X_bar autocorrelation image, illustrate using the cross-section graph a 
line oriented at 0°, 45°, and 90°. Make sure that the line you use goes through the 
peak value of the autocorrelation image. Why is the symmetry different in the 
horizontal and vertical directions?

 (b) For the ring autocorrelation image, what is the diameter of the middle of the 
outer ring? A line through the peaks in the graph does not go to zero between the 
outer ring and the bright central section. Why?

 (c) For the 3_bars autocorrelation image, why are there five horizontal bands? The 
cross-section graph for a vertically oriented line through the autocorrelation 
peak goes to zero between the peaks. Why? Also why are the peak values in this 
curve different? Do they conform to what should be expected?
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C h a p t e r  10

The Rose Model

10.1 INTRODUCTION
The model of human visual perception introduced in Chapter 1 was named after its 
 formulator Albert Rose. Dr. Rose was a scientist at the Radio Corporation of America 
(RCA) investigating the basic operating parameters of television in the 1940s and 1950s. 
In particular, he was trying to relate levels of contrast, resolution, and noise.

Isaac Newton once said, “If I have seen further, it is by standing on the shoulders of 
giants.” This has occurred over and over in science, for example, when Johannes Kepler 
built his model of the heliocentric universe based on the painstaking data of planetary 
motion collected by Tycho Brahe. In much the same way, Albert Rose built his model 
of human visual perception on the painstaking data collected by Richard Blackwell. 
We therefore will digress and talk about Blackwell’s studies, before continuing with the 
discussion of the Rose model and its application in diagnostic radiology.

Richard Blackwell was a scientist who worked on visual perception studies for the 
United States Navy during World War II. The navy was interested in what level of light and 
how large of an object was required by a sailor to spot an enemy vessel at night. It is obvi-
ous that a large light is easier to see than a smaller light, and that a bright light is easier 
to see than a dim light. But is a large dim light easier to see than a small bright light? The 
navy (or someone in the navy) wanted to know the answer to this question and provided 
Blackwell with funds to conduct this research.

The by-gone days of governmental generosity for research are apparent in the study that 
Blackwell performed. For his work, he hired 20 young women and kept them housed and 
fed in a dormitory built close to his laboratory. For 2 years, he had the women observe 
simple images of gray circles (the targets) on plain backgrounds projected onto a screen. 
For each observation, each woman reported whether or not she saw the circle, and in 
which quadrant of the projection screen it was located. Blackwell and his young female 
subjects performed thousands of observation studies, and slowly out of this painstaking 
work emerged a pattern that related target size and contrast to the level of illumination 
(or noise level) at the threshold of visualization. The results published in graphical form by 
Blackwell formed the basis for the more theoretical work by Rose.



200   ◾   Fundmental Mathematics and Physics of Medical Imaging

The theory, outlined by Rose, basically is a probabilistic model of low-contrast thresh-
old detection (Figure 10.1). The Rose model states that an observer can differentiate two 
regions of the image, called “target” and “background,” only if there is sufficient informa-
tion to do so. Specifically, the “signal” (defined as the difference in the mean number of 
photons in each region) must be k times the “noise” or kσ where the noise is the statistical 
uncertainty (standard deviation) σ in the regions. Based on the data of Blackwell, Rose 
found that k in the range of 5–7 was the threshold for visual detection of a target relative to 
its background. As defined “k” is a signal-to-noise ratio (SNR = signal/noise = kσ/σ = k), and 
therefore, “k” specifies the minimum SNR required for visual detection.

10.2 DERIVATION OF THE ROSE MODEL
We will derive the Rose model equation using a simple statistical model, which assumes that 
the number of photons in the target and background is Poisson distributed. Furthermore, 
we will apply this concept to low-contrast situations where the object of interest (target) is 
just visually perceptible (i.e., where the target and background numbers are nearly identical).

Given:
N is the number of photons in the background area
ΔN is the difference in number of photons between target and background areas
A is the area of the target (same area used for background)
C is the contrast of the signal with respect to the background

The contrast is defined as follows:

 C = ΔN/N. (10.1)

Background area of same size imaged with
Nb photons

Target imaged with
Nt photons

Both Nb and Nt will be randomly (Poisson) distributed
with a standard deviation of σ

σ σ

kσ

Want k ≈ 5 to distinguish the target
from the background

Background
Pb (N)

Target
 Pt (N)

FIGURE 10.1 Probability distributions for background and target at the threshold of detection.
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This difference ΔN is the signal of interest, and rearranging Equation 10.1 leads to an 
expression for the signal in terms of the contrast and the number of photons:

 Signal = ΔN = C · N. (10.2)

At the threshold of visualization, ΔN is small, so the number of photons in target and 
background areas is approximately equal. The noise is then the square root of N:

 Noise = N . (10.3)

The SNR (k) at the threshold of visualization is then

 
k

C N

N
C N C A= = × = =

Signal

Noise
f , (10.4)

where ϕ is the photon fluence (e.g., photons per unit area) used to form the image. 
Equation  10.4 is the basic mathematical form of the Rose model, sometimes called the 
“Rose model equation.”

Rose found that human observers require an SNR (k) of 5–7 to visualize a low-contrast tar-
get as separate from its background. The value of “k” is used to establish the threshold of visual 
detection or perception. This value was derived experimentally based on the work of Blackwell 
that we discussed earlier. In this course, we will use k = 5 in examples and problems.

An important use of the Rose model equation is to estimate the radiation exposure 
 necessary to visually perceive a small low-contrast object.

Example 10.1: Exposure Calculation Based on Rose Model

Assume that there is an air bubble in a 20  cm thick tank of water (Figure 10.2). 
Calculate the incident photon fluence and exposure needed to just see a 1 cm diam-
eter air bubble as a function of photon energy E.

Water 

Air bubble
(1 cm diameter)

0

x = 20

1 2

FIGURE 10.2 A 1 cm diameter air bubble contained in a 20 cm thick volume of water.
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Solution

The Rose model in Equation 10.4 leads to the following equation for k2:

 k c A2 2
1= F , (10.5)

where
k is the constant with value of 5
C is the contrast for air bubble
Φ1 is the number of photons per unit area to form the image (in background)
A is the area of air bubble
d is the bubble diameter

If Φ0 is the photon fluence without the water phantom, then the photon fluence 
through the water (background) is

 F F1 0= -e xm . (10.6)

Assuming no attenuation by the air bubble, the photon fluence through the water and 
the air bubble of diameter d (target) is

 F F2 0= - -e x dm( ). (10.7)

The air bubble is therefore imaged with a contrast of
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An air bubble of diameter d has an area A of
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From the Rose model, the area also can be calculated combining Equations 10.5, 10.6, 
and 10.8, and assuming that k = 5,
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Equating 10.9 and 10.10, we see that the incident photon fluence to just see the air 
bubble is
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where
d is the diameter of air bubble (cm)
x is the thickness of water tank (cm)
μ is the linear attenuation coefficient of water (cm−1)

We can determine an equivalent radiation exposure X corresponding to photon 
fluence Φ0 using the following equation from Johns and Cunningham, converted 
into the appropriate units for this problem:
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Here, E is in units of keV, Φ0 in units of cm−2 and the mass-energy absorption coeffi-
cient of air is in units of cm2/g. So the exposure required for the air bubble of diameter 
d in a water phantom of thickness x is
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The minimum input exposure required to see 1  cm and 1  mm diameter air 
 bubbles in a 20  cm thick water tank is given for different photon energies in 
Table 10.1. Note that the minimum exposure occurs at 80 keV for both bubble 
diameters, and that a much larger exposure (×104) is needed to see the smaller 
bubble (1/10th diameter).
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10.3 CONTRAST-DETAIL ANALYSIS
A number of investigators, most notably Gerald Cohen, developed an experimental tech-
nique based on the Rose model to evaluate object detectability at the threshold of human 
visibility in medical images. This method, called contrast-detail curve analysis, is based on 
numerous assessments at different contrasts and object sizes, and the contrast required for 
visualization is plotted as a function of object diameter. The plotted curve is called a contrast-
detail curve. Theoretical sketches of several contrast-detail curves are provided in Figure 10.3 
and support our intuitive notion of the relationship between contrast and object size in a 
medical image. Large objects can be visualized at low contrast (lower right), while small 
objects require high contrast (upper left). The contrast-detail curve declines asymptotically 
toward the lower right corner (low-contrast, large objects). A contrast-detail curve allows 
one to predict the threshold contrast needed for detection of a wide range of object sizes.

Systems can be compared using their contrast-detail curves (Figure 10.4). One curve 
can be generated from each system, or on the same system under different operating condi-
tions. For example, a contrast-detail curve can be generated at one radiographic technique 
(i.e., kVp, mA, and exposure time), and compared with another curve using a different 
technique. The lower curve indicates a better technique, one that supports detection with 
lower object contrast (System A in Figure 10.4).

10.3.1 Experimental Determination of Contrast-Detail Curve

A contrast-detail curve can be generated by a panel of observers who attempt to detect 
simple objects in a test image from the system under investigation. We will describe how a 
test object can be designed for film-screen radiography. Of course, the design of an appro-
priate test object will depend on the system being evaluated, but the general principles 
follow those presented.

A typical test x-ray object for contrast-detail analysis, called a Rose model phantom, is 
shown in Figure 10.5. The phantom is a wedge-shaped piece of plastic (or some other material 
having low attenuation) through which holes of various sizes are drilled. The plastic wedge is 

TABLE 10.1 Input Radiation Exposure to Just See Air Bubble as a Function of Photon Energy 
(20 cm Water Phantom). Bold indicates lowest input exposure

Photon Energy (keV) mm
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air
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÷  (cm2/g) mm
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ö

ø
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water

 (cm2/g) Input Exposure 
(mR) (1 cm bubble) 

Input Exposure (mR) 
(1 mm bubble) 

10 4.533 5.066 1.10E+35 6.1E+41
15 1.242 1.568 3.10E+07 1.6E+12
20 0.4942 0.7613 18.15 3.78E+05
30 0.1395 0.3612 0.0177 2.48E+02
40 0.0625 0.2629 0.0031 39.49
50 0.0382 0.2245 0.0016 19.27
60 0.0289 0.2046 0.0012 14.17
80 0.0236 0.1833 0.0011 12.58

100 0.0231 0.1706 0.0012 13.81
150 0.0249 0.1505 0.0017 19.23
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FIGURE 10.3 Contrast-detail curves are obtained by having observers detect circular targets in a 
radiograph of a Rose model phantom. Resulting contrast-detail curves indicate the contrast needed 
to minimally perceive objects of increasing size for high and low x-ray fluence (high and low SNR).
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FIGURE 10.4 Two imaging systems can be compared using contrast-detail curves. For a given 
object size (“detail”), system A can detect the same level of detail at a lower contrast than system B, 
indicating that system A may be superior to system B.
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placed on a film-screen cassette and imaged, and an observer is asked to report which holes 
are just perceptible in each column of the resulting image. The plastic thickness provides 
varying contrast and hole diameters provide varying detail. A contrast-detail curve is gener-
ated by graphing contrast versus hole diameter for minimally perceptible holes.

For construction, assume we have a piece of plastic of thickness t through which a hole of 
diameter d is drilled. The plastic is radiographed with the x-ray beam parallel to the axis of 
the drilled hole. If Φ is the photon fluence (photons/cm2) through the hole and Φ1 the fluence 
through an adjacent section of plastic, the contrast between the hole and the plastic is

 
C e t= - = -F F

F
1

1

1m , (10.14)

where μ is the linear attenuation coefficient of the plastic. In “low-contrast” situations (i.e., 
where μt ≪ 1), the exponential term can be expanded as a Taylor’s series exp(μt) ≈ 1 + μt 
so that contrast is approximately proportional to the plastic thickness

 C ≈ μt. (10.15)

The hole is projected onto the radiograph as a circle having diameter d (without magnifica-
tion). Therefore, the area of the object we wish to detect is

 
A

d= p 2

4
 (10.16)
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FIGURE 10.5 In designing a Rose model phantom, objects of equal SNR are determined by 
 increasing the hole diameter and decreasing the material thickness by the same factor (f). These 
fall along the diagonal lines.
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and for low-contrast conditions, the photon fluence Φ through the hole is approximately 
equal to that through the plastic (background). Therefore, the Rose model states that

 
k C A t

d2 2 2
2

4
= = ( ) ×F Fm p

, (10.17)

where k is the SNR required by the observer to detect the holes in the radiograph. (For 
observers under ideal conditions with threshold detection levels, k has a value from 5 to 7.)

The Rose model phantom is typically constructed with plastic thickness (i.e., contrast) 
increasing in one direction and hole diameter (i.e., detail) changing in the perpendicular 
direction. The threshold contrast and thickness are related by

 C2 = (μt)2 (10.18)

and the hole area is related to its diameter by

 
A

d= p 2

4
 (10.19)

If the hole diameter d is increased by a multiplicative factor while the phantom thickness 
t is decreased by the same factor, then k2 remains constant (Equation 10.17). This means 
that on the Rose phantom, a line connecting holes at increasing diameter with correspond-
ing decreasing contrast has a fixed value of k2 and represents a diagonal line along which 
the SNR k is constant for a given photon fluence (Figure 10.5). Hence, a radiograph of 
the Rose phantom will contain a hypothetical diagonal line along which threshold detection 
occurs for all targets. Targets at larger size and contrast on one side of this line should be 
detected more easily. Those on the other side of the line with lower contrast and size should 
be more difficult to detect.

Example 10.2: Rose Model Phantom Design

Design a Rose phantom to be used in conventional film-screen radiography. The 
phantom will be radiographed with an exposure of 0.1 μR at an effective energy of 
20 keV. Assume that the phantom is made of water-equivalent plastic.

Solution

Obviously, we have some latitude in the design of the phantom. Let us start by cal-
culating the plastic thickness required to see a 2 mm diameter hole. We know that at 
energy of 20 keV, and given that
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the photon fluence for an exposure X = 0.1 μR is
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From the Rose model and Equation 10.17,
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and using a value of k = 5,

 
t

k

d
= 2 =

m pF
1 58. cm, (10.23)

where μ = 0.7613  cm−1 is the linear attenuation coefficient of the water-equivalent 
phantom material at 20 keV.

We have now established a single thickness and hole diameter for the phantom. 
From our preceding discussion, we know we can increase the phantom thickness by a 
multiplicative factor while we decrease hole diameter in the opposite direction by the 
same factor. Experience has shown that this factor should be no larger than 2 . Using 
this factor, we will select hole diameters of

1 mm, 1.41 mm, 2 mm, 2.83 mm, 4 mm
and phantom thickness of

0.79 cm, 1.12 cm, 1.58 cm, 2.23 cm, 3.16 cm.
Both change stepwise by a factor of 2 . This leads to a phantom with five rows each 
at one of the designed thicknesses. Within each row, there will be five holes, one for 
each of the five diameters.

10A APPENDIX
A contrast-detail curve is a graph of contrast versus diameter where these are the values 
at the threshold of visual perception. The data are generally taken from several volun-
teers who view images of a Rose model type phantom. The basic Rose model equation 
can be used to model a contrast-detail curve after modifications to correct for differ-
ences due in asymptotic behavior for large and small diameter objects (Figure 10.4). 
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The solution of the basic Rose model equation in terms of contrast versus diameter is 
as follows:

 
C

k

d
= ×2 1

fp
,
 

(10A.1)

where 
k is the SNR for minimal perception
d is the diameter of the object (cm)
ϕ is the photon fluence (cm−2)

The asymptotic behavior for the basic model tends toward infinite contrast with small 
d and zero contrast for large d. Neither cases are possible, nor is the behavior correct. 
We see an indication of the actual asymptotic behavior in Figure 10.4 for both small 
and large.

Contrast asymptote correction: The most straightforward correction to the basic Rose 
model is to add a baseline contrast (C0) that must exist even for larger diameter objects. 
This leads to the following modified Rose model:
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(10A.2)

The departure from the basic Rose model asymptote has been suggested to be a problem 
with the human visual system for objects exceeding the diameter of the eye’s high visual 
acuity region, the foveal region. The added constant partly compensates for this and C0 has 
been determined experimentally from studies of contrast-detail curves.

Diameter asymptote correction: The departure from the basic Rose model at small d has 
been modeled as a geometrical limitation of the imaging system, where images do not 
correctly reproduce small diameter objects. The correction is to add a small diameter δd 
leading to the corrected Rose model:
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(10A.3)

Equation 10A.3 is the asymptotically corrected version of the Rose model equation, a more 
correct and detailed version.

The theory behind the correction in diameter follows from the need of the basic Rose 
model equation to accommodate for the spatial resolution of the system. How the increase 
in area is modeled as an increase in diameter is given below:

Partly correct Rose model:
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A
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Here, A is increased by δA to model system blurring:
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For a circular cross-sectional object:

 
¢ = +

A
d dp d( )2

4
.

Substitution into the equation for C yields
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Simplifying leads to
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It is instructive to review the effect of each parameter in Equation 10A.3 on minimal 
contrast:

k—(larger k means more contrast needed for all diameters) affected by environment: 
brightness of viewer, background light.

C0—(larger C0 means more contrast needed but effect greatest for larger diameters) 
complexly interrelated with image size projected onto the retina.

δd—(larger δd effectively increases size of object shifting the contrast-detail curve toward 
larger diameters) related to spatial resolution (effective diameter of the PSF) includes eye 
resolution for visual tasks.

ϕ—(larger ϕ means less contrast needed for all diameters). For x-ray systems, larger 
photon fluence is possible with slower film-screen systems. For digital imaging, plates can 
vary over several orders of magnitude to see smaller low-contrast objects if needed.

HOMEWORK PROBLEMS
P10.1 A patient is suspected of having a tumor located in his lung. Assume that in the 

area of the lung, the body thickness is equivalent to 10 cm of water and that the soft 
 tissue has an attenuation coefficient corresponding to an HVL of 3 cm H2O.

 (a) Calculate the entrance exposure required to detect a 1  cm tumor (water-
equivalent) sitting in the lung. For simplicity, assume relative path lengths 
of 10 and 11 cm rather than worrying about the replacement of 1 cm of low-
density lung tissue.
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 (b) Repeat the calculation for a 1 mm tumor.

 (c) Repeat (b) assuming path lengths of 15.0 and 15.1 cm (i.e., a 15 cm thick body 
region) if scatter is neglected.

P10.2 Compare the x-ray exposure required for noise-limited radiographic imaging for 
a small cubic object of dimension a and for a cube of similar material but dimen-
sion 2a.

P10.3 For a fixed radiographic entrance exposure, how is the SNR of an image affected if 
the diameter of the object is halved and its contrast tripled.

P10.4 We wish to determine the incident exposure required to image a 1  mm diam-
eter, 1 mm long arterial stenosis that is located in 20 cm of water-equivalent tis-
sue. Assume that the artery contains 10 mg/cm2 of iodine at a density of 2 g/cm3. 
Calculate the incident exposure for the energies listed in Table 10.2. Using this 
information, determine the optimal energy for imaging the stenosis.

P10.5 The Rose model phantom given in Example 10.2 is used in various imaging 
situations.

 (a) Draw a contrast-detail curve for this phantom at the imaging technique (0.1 μR 
per exposure, 20 keV effective energy) given in Example 10.2.

 (b) Draw a contrast-detail curve if the exposure time is doubled while the exposure 
rate is maintained at the same level given in (a).

 (c) If the effective energy of the beam is changed from 20 to 30 keV, but the exposure 
is still 0.1 μR, how does this change the contrast-detail curve? Answer this ques-
tion quantitatively.

 (d) If the thickness of the phantom is doubled, how does this change the contrast-
detail curve obtained in (a)?

TABLE 10.2 Attenuation Data for Homework Problem P10.4 

Photon Energy (keV) mm
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10 4.533 5.066 162.7460
15 1.242 1.568 54.5977
20 0.4942 0.7613 25.0943
30 0.1395 0.3612 8.4212
40 0.0625 0.2629 22.3827
50 0.0382 0.2245 12.5016
60 0.0289 0.2046 7.6938
80 0.0236 0.1833 3.5496

100 0.0231 0.1706 1.9562
150 0.0249 0.1505 0.6984
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 (e) The Rose phantom is used with a fluorographic system where the electronic 
noise equals the quantum statistical noise. How does this change the contrast-
detail curve obtained in (a)?

 (f) The Rose phantom is used in a situation where the scatter fraction is 75%? How 
does this change the contrast-detail curve from that given in (a)?
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C h a p t e r  11

Receiver Operating 
Characteristic (ROC) Analysis

11.1 INTRODUCTION
Unlike imaging system performance testing methods that focus on spatial resolution, 
contrast, and noise, the approach used in receiver operating characteristic (ROC) analysis 
focuses on outcomes. ROC analyses compare the result of a diagnostic imaging test (with 
decision positive or negative) with the known clinical condition (disease present or absent). 
Both the test decision and disease condition are restricted to binary results (+/−), so there 
are four possible outcomes (Table 11.1).

Two of the test outcomes are correct or true (TP & TN) and two are incorrect or false 
(FP & FN). A perfect test would yield only correct or true outcomes. If the diagnostic 
or decision threshold is fixed, we can evaluate groups of patients with disease (Disease+) 
and without disease (Disease−) to determine values for Table 11.1. The distributions of test 
results for patients with and without a disease reveal that these can overlap appreciably 
(Figure 11.1). In this figure, the threshold for a positive test was set at the point where the 
two distributions crossed to emphasize this overlapping. While in practice, we would not 
have sufficient patient data or time to determine such distributions, this figure helps to 
illustrate several important concepts. In practice, we evaluate a limited number of patients 
with and without the disease and based on a threshold for positive test determine the 
number of patients in each of the groupings, indicated by the regions labeled as TP, FP, TN, 
FN in Figure 11.1. From these data, we can fill in Table 11.1.

11.2 TEST CHARACTERISTICS
There are several indices used to gauge performance of diagnostic tests.

Sensitivity: The sensitivity of a test, also called the true-positive fraction (TPF), is an 
index of how well the test performs with patients who have the disease (0 ≤ TPF ≤ 1). 
Test sensitivity = TP/(TP + FN), where TP is the number of patients with the disease 
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that were above the test threshold and FN the number with the disease that were 
below the threshold. Test sensitivity provides a measure of the accuracy of the test with 
a disease population.

Specificity: The specificity of a test, also called the true-negative fraction (TNF), is 
an index of how well the test performs with patients from the nondiseased popu-
lation (0 ≤ TNF ≤ 1). Test specificity is calculated using the number of true-nega-
tive and the false-positive patients (TN & FP) where specificity = TN/(TN + FP). 
Test specificity provides a measure of the accuracy of the test with a nondiseased 
population.

Accuracy: The overall accuracy of a test is the fraction of correct test results or diagno-
ses for both disease and nondiseased populations. Test accuracy is calculated as the 
number of patients with correct test results divided by the number in the group, so test 
accuracy = (TP + TN)/(TP + FP + TN + FN).

Prevalence: The prevalence of the disease is calculated as the fraction of patients who 
have the disease, so disease prevalence = (TP + FN)/(TP + FP + TN + FN).

TABLE 11.1 Test Result vs. Disease Condition

Disease 

Test Present (D+) Absent (D−) 

Positive (T+) True positive (TP) False positive (FP)
Negative (T−) False negative (FN) True negative (TN)

Sensitivity
TPF = TP/(TP + FN)

0.73
TPF + FNF = 1

Specificity
TNF = TN/(TN + FP)

0.86
TNF + FPF = 1
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FIGURE 11.1 Probability distributions of test results for disease and nondiseased patients. 
 Calcu lated sensitivity and specificity are for the test threshold indicated by the vertical line.
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Inspection of Figure 11.1 reveals that the test indices vary as position or width of the 
two distributions changes or if a different test threshold is used. There is therefore a need 
to characterize a test (imaging exam) with a more comprehensive outcome measure. ROC 
analysis attempts to do this and has gained popularity as a general method for determining 
the value of a diagnostic imaging system to test for disease. I will present a brief introduction 
to the theory and methods used for ROC analysis. For those that want additional details, 
I recommend the excellent text by Swets and Pickett, Evaluation of Diagnostic Systems—
Methods from Signal Detection Theory.

11.3 ROC ANALYSIS
ROC analysis is used to assess the accuracy of diagnostic outcomes for an imaging system 
as a function of varying decision or test threshold. The analysis is done without the explicit 
use of resolution, contrast, or noise measures, though outcomes clearly involve these. 
Unlike contrast detail analysis with a Rose model phantom, ROC analysis can be used to 
compare different imaging modalities (MRI, x-ray CT, SPECT, or PET) for outcomes with 
the same disease. Additionally, ROC analysis can be used for a single imaging modality as 
an aid to optimize acquisition parameters, such as different TR and TE for MRI and kVp 
for CT for a specific disease. Finally, even different forms of image analysis can be evalu-
ated for specific diseases. The main obstacle with the ROC approach is that we must know 
whether the disease is present or absent, the objective of diagnostic imaging, and we may 
not know this until confirmed by multiple diagnostic exams or perhaps biopsy. This is clearly 
a problem for prospective studies where we seek to detect the presence of disease.

In ROC analysis, the true-positive fraction [TPF = TP/(TP + FN)] of a diagnostic exam 
is plotted against false-positive fraction [FPF = FP/(FP + TN)] as the diagnostic threshold 
is varied (Figure 11.2). If a physician were trying to determine the existence of a tumor on 
a chest film, TPF would be the fraction of times the physician said there was a tumor (test 
was positive) when there actually was a tumor in the patient. Similarly, the false-positive 
fraction is the fraction of times the physician said there was a tumor when no tumor was 
present. As trivial examples, if a physician always said that a tumor was present in a chest 
film, then he would call all the examples of tumors correctly in which case his TPF would 
be 100%. Unfortunately, he would diagnose all healthy people as having a tumor, and his 
false-positive fraction would be 100% (upper right extreme of ROC curve). Alternatively, if 
a physician always said that no tumor existed, his TPF would be 0%, but he also would miss 
all the tumors on the film, so his false-positive fraction would be 0% (lower left extreme of 
ROC curve).

An ideal imaging system would give no false positives unless the observer insisted 
upon calling everything positive (No overlap of D+ and D− distributions). Its ROC curve 
therefore would hug the upper left corner and top of the graph range. On the other hand, 
if the image conveyed no information and the observer was forced to guess whether or not 
the object was present, the ROC curve would be a diagonal line from the lower left to the 
upper right corner (useless test is a chance line, Figure 11.3). As shown in this figure, the 
amount by which the ROC curve bows away from the diagonal and toward the upper 
left-hand corner is an indication of the usefulness of the imaging technique.
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11.4 COMPARING ROC CURVES
There are several measures that can be used for comparing ROC curves. One is the 
minimum distance from the curve to the point indicated by a perfect system (TPF = 1; 
FPF = 0 at the upper left corner of the graph). A more comprehensive measure is the area 
under the ROC curve. For a perfect test, this area = 1.0; for the useless test, the area = 0.5. 
It is therefore the area in excess of 0.5 that is important. The area measure is considered 
superior to the minimum distance measure, since it provides an assessment over a range 
of diagnostic thresholds for the D+/− distributions. There are cases where the curves cross 
when comparing modalities or methods and the one with the smallest distance may not be 
preferred across the full range. At other times, the FPF determines the operating point and 
then the ROC curve with the largest corresponding TPF would indicate the better system.

11.5 SELECTING OPERATING POINT
As indicated earlier, the test criteria for positivity could be set such that the physician 
is always correct for the D+ patients, allowing treatments to be planned. It is definitely 
important to achieve a high TPF; however, as can be seen from Figures 11.1 through 11.3, 
for any practical imaging exam adjusting test criteria to increase the TPF will also increase 
the FPF. Likewise, adjusting the threshold to reduce FPF also reduces TPF. As with all 
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medical decision-making, careful consideration must be given to the balance between 
having a high TPF and a low FPF.

If we lower the test threshold, we increase the number of FP patients and they are 
ultimately faced with additional diagnostic exams and increased medical expense. If we 
increase the threshold, we can miss patients with the disease that we might have discovered 
during an early stage where it might be more successfully and economically managed. This 
is the dilemma we are faced with in medical decision making. Each facility must determine 
the decision threshold that best fits with their patient population and imaging capabilities.

11.6 AN ROC EXAMPLE
ROC analyses use knowledge of the absence or presence of disease, which might not be 
available when we need to evaluate an imaging system. However, as is often done with 
resolution, contrast, and noise testing, we can substitute a phantom for the patient with 
and without lesions (or objects simulating lesions). While this is not optimal, the phantom 
approach provides a means to compare systems until patient outcomes are available.

For visual diagnoses, it is more difficult to assess and vary diagnostic threshold than 
those that have quantitative measures. A common ROC method for visual diagnoses is to 
have observers inspect an image and rate their confidence that an object is present and then 
check this decision against a “gold standard” (known presence or absence of the object) 
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FIGURE 11.3 ROC curves for three tests, one considered excellent with minimal overlap of D+ and 
D− distributions, one practical, and one useless where the two distributions are identical.
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to determine true-positive and false-positive fractions. It is common to use a rating system 
that ranges from “0” when an observer is least confident that an object is present through 
“4” when an observer is most confident that the object is present.

Assume that observers used this rating system to indicate whether or not objects are 
present in a radiograph (Table 11.2).

Here, observer rating “4” represents the highest positive threshold (certain of presence) 
and rating “0” the lowest positive threshold (nearly certain not present). Points on the ROC 
curve are obtained from cumulative results, because as the threshold is lowered from 
“4” toward “0,” the lower threshold would also include those with a higher threshold, 
and ultimately, the lowest threshold would include all. Table 11.3 is the worksheet used to 
determine TPF and FPF for the example.

Note that the ROC analysis does not require the same number of observations for the 
D+ and D− groups, since the objective was to estimate only fractions; however, the same 
observers were used. This table provided pairing for TPF and FPF for each threshold, and 
these paired data can be plotted as an ROC curve (Figure 11.4).

TABLE 11.2 Data for ROC Analysis Example

For images where the object is present, the observers give the following scores:

Observer Rating Number of Decisions 

0—Nearly certain not present 2
1—Probably not present 3
2—Uncertain 7
3—Probably present 5
4—Nearly certain present 3
For images where the object is not present, the observers give the following scores:

Observer Rating Number of Decisions 

0—Nearly certain not present 5
1—Probably not present 7
2—Uncertain 8
3—Probably present 3
4—Nearly certain present 2

TABLE 11.3 Calculation of TPF and FPF for an Example for ROC Analysis

D− Objects Absent D+ Objects Present 

t N(t) Cumulative FPF t N(t) Cumulative TPF 

4 2 2 0.08 4 3 3 0.15
3 3 5 0.20 3 5 8 0.40
2 8 13 0.52 2 7 15 0.75
1 7 20 0.80 1 3 18 0.90
0 5 25 1.00 0 2 20 1.00

t is the observer rating level from Table 11.2.
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Though only five points were used in this ROC study, we could include another point at 
(TPF = 0; FPF = 0) if needed, as this would be the threshold that had no positive test results. 
The dashed lines are provided to better illustrate the curve trend for the thresholds used. 
This ROC result is not an example of what might be considered a good imaging system, 
since the curve is far from the upper left corner of the graph (ideal test); rather, it is 
 provided as an example of how to acquire data, process results, and graph an ROC curve. 
The estimated area for the curve is 0.644, which is quite low, since random guessing would 
have an area of 0.500.

Incidentally, if you assumed the opposite ordering of ratings for the test (0-to-4 vs. 4-to-0) 
you would get a much different ROC curve, one below the diagonal and with different values 
for paired TPF and FPF. This is a good way to check that you ordered your data correctly.

HOMEWORK PROBLEM
P11.1 Use Excel to create an ROC curve where D+ (with disease) and D− (without disease) 

distributions of test results are modeled as Gaussian functions. Use a range of test results 
from 1 to 100. The mean and FWHM for the Gaussian distributions are as follows:

D− D+
Mean 45 55
FWHM 20 25

 What is the area for this ROC curve?
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FIGURE 11.4 ROC curve for the example data from Tables 11.2 and 11.3.
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C h a p t e r  12

Digital Subtraction 
Angiography

12.1 INTRODUCTION
In this chapter, we describe a technique known as digital subtraction angiography (DSA), 
which is also referred to as digital radiography, digital fluoroscopy, and photoelectronic 
imaging. We will use these terms somewhat interchangeably though the term “digital 
subtraction angiography” refers specifically to techniques that subtract two images, one 
obtained before and one after the contrast media is administered to the patient, for the 
purposes of studying blood vessels (angiography). The more general term, digital radiogra-
phy, encompasses the use of all digital electronic techniques in x-ray imaging. According to 
some writers, this term also includes the use of x-ray computed tomography (CT), though 
digital radiography in this chapter will refer only to those techniques in which digital 
 systems are used to acquire planar rather than tomographic images. We will concentrate 
on a hybrid DSA system that uses an image intensifier viewed by video camera prior to 
digitization, since these analog components provide excellent examples.

12.2 DESIGN FOR A HYBRID DSA SYSTEM
The generic diagram of a hybrid digital radiographic system in Figure 12.1 shows many 
interacting components. The heart of this system is a digital processing component that 
acquires images from a video camera based on timing signals for the x-ray generator and 
analog-to-digital convertors (ADCs). The operator component provides human control of 
the flow of data from the x-ray source throughout the system.

Image acquisition begins when timing signals, delivered to the x-ray generator under 
computer control, initiate the production of x-rays that are transmitted through the patient 
and received by the image intensifier. An aperture, placed between the image intensifier 
and the video camera, controls the amount of light delivered to the camera. The aperture 
is adjusted to optimize the signal-to-noise ratio (SNR) of the acquired image, as will be 
discussed later in this chapter. A video camera receives the light image from the image 
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intensifier and converts it to an electronic signal that is delivered to the image processor 
as analog video. The image processor digitizes the image, stores it in memory, and makes 
it available in digital format for subtraction from other images acquired at a different time 
or at a different energy. The basic components of the DSA system including the x-ray tube 
and x-ray generator, the image intensifier, and the video camera are similar to but must be 
of higher quality than those used in an analog fluoroscopy system to ensure proper synchro-
nization and match between analog and digital components.

A common image-processing algorithm used with digital radiographic systems is 
 temporal subtraction (Figure 12.2). For this technique, dynamic images of the patient are 
acquired at a rate of one exposure per second or higher. A contrast agent is injected into 
the patient either intravenously or intra-arterially. A set of dynamic images is acquired as 
the contrast agent flows into the area of interest. The difference between contrast images 
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FIGURE 12.1 Box diagram of components in a hybrid DSA system.
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and “mask” images (without contrast) is used to isolate the contrast signal. This removes 
static (nonmoving) anatomical structures common to both. The elimination of static struc-
tures makes small arteries visible in the subtraction images that were not visible or barely 
visible before subtraction.

12.3 CLASSICAL ANALOG IMAGING SYSTEM COMPONENTS
12.3.1 Image Intensifier

The subtraction algorithm assumes that the patient’s anatomy is similar or identical in 
both the contrast and mask images. The video camera, the x-ray tube, and the other system 
components must be stable to ensure this for anatomical structures to be properly removed 
by subtraction. To preserve the contrast available in the radiographic image, the image 
intensifier must have a high contrast ratio and dynamic range. Analog-to-digital conver-
sion should provide sufficient spatial sampling to preserve the resolution of the image 
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FIGURE 12.2 Temporal subtraction to highlight change due to the contrast material in carotid 
artery.
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intensifier, sufficient temporal sampling to capture the time-varying video signal, and 
 sufficient dynamic range.

12.3.2 Light Aperture

A light aperture (Figure 12.3), similar to those found on single-lens reflex cameras, is placed 
behind the output phosphor of the image intensifier to control the light level reaching the 
video camera for a given exposure rate. A small aperture requires a greater radiation expo-
sure to deliver the proper light level to the video camera, decreasing the effect of quantum 
noise and producing a better overall SNR in the image. Conversely, a large camera aperture 
is used when the objective is to reduce patient exposure in cases where quantum noise does 
not limit the diagnostic information in the image.

12.3.3 Video Camera

A key component in the imaging chain of a hybrid DSA system is the analog video camera. 
The basic function of the video camera is to produce an analog electronic signal that is 
proportional to the light intensity incident at the video target of the camera (Figure 12.4).

The photoactive element is the video target that changes in electrical conductivity when 
exposed to light. Scanning an electron beam across sequential lines of the video target 
creates the video signal. Regions where the target is exposed to high light intensities have 
high conductivity, and thus a large current. Regions of the target exposed to low light 
intensities have low conductivity and thus a small current. The resulting signal is a mea-
sure of the light intensity exposing the video target. The information is read out serially as 

Video
camera

Video
camera

Image 
intensifier 

Image
intensifier

Patient 

(a) (b)

Patient 

High patient exposure
(high photon statistical SNR)

Low patient exposure 
(low photon statistical SNR)

Camera
aperture

Camera 
aperture

Video camera the same video signal
for a specific light intensity input 

FIGURE 12.3 The effect on patient exposure by the aperture used to control light level for an image 
intensifier system: (a) small camera and (b) large camera apertures.
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the electron beam is swept over the target to generate the analog video signal. This read-
ing process resets the conductivity of the video target. The video signal is a time-varying 
signal that encodes the two-dimensional light image at the target as an electrical temporal 
record. Time points in the video signal correspond to spatial locations of the light image 
at the target.

The video camera’s target can be read out in one of two ways. In 525-line video cameras 
used in the broadcast industry, the electron beam is scanned across the target in 262.5 
passes across the area of the target. The resulting 262.5 lines encode the image of the target 
in what is called a video field (Figure 12.5). A video field is produced every 1/60 of a  second. 
During alternating fields, the electron beam scans lines between the lines of the other field. 
Therefore, two fields are acquired using an interlaced scanning pattern. The fields are called 
“odd” and “even” with each field comprising 1/60 of a second, and two fields make one 
“frame” acquired in 1/30 of a second that is comprised of 525 lines. This frame is the full 
image, and new images are acquired at a rate of 30/s. The interlace scan mode was chosen 
by the early broadcast industry to reduce bandwidth during transmission while avoiding 
flicker in the viewed video image.

Interlaced scanning is not ideal for digital radiography. The basic problem with the inter-
laced mode is that the video fields are not read out in one pass. An alternate continuous 
scanning mode scans lines sequentially such that the entire frame is filled in one pass. 
To distinguish this mode from interlaced video, it is called noninterlaced video.

Most video targets have a small amount of lag so that even when they are exposed to a 
uniform abrupt change in light level, several fields are needed to adjust (Figure 12.6). Also, 
assuming that beam scanning and x-ray exposure start at the same time, those locations 
scanned later in the frame will be exposed longer than those scanned early, and it takes several 
video fields before the output signal is stable. Thus, just after the x-ray beam is initiated, these 
effects lead to images with incorrect signals. The early fields must be discarded, although this 
is clearly undesirable, since it underutilizes the x-ray exposure delivered to the patient.
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FIGURE 12.4 Schematic of video camera.
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An alternative to the continuous scanning mode called progressive scanning resolves 
the problems with wasted exposure (Figure 12.7). When this mode is used, an image 
is stored in the target during a short x-ray exposure without scanning and is then fully 
scanned after the x-ray beam is turned off. This approach eliminates the wasted x-ray expo-
sure seen for continuous x-ray exposure scanning. It does this by separating exposure and 
readout times.

There are other aspects of the video camera important in a digital radiographic system. 
First, the magnitude of the video signal should be directly proportional to the input x-ray 
fluence, that is, linear response. Second, the video camera must have low lag. This means 
that an image acquired at one point in time by the video camera should not persist on 
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FIGURE 12.5 Layout of even and odd fields for interlaced video scanning.
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FIGURE 12.6 Problem with x-ray exposure for the interlaced scan mode.
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its target for more than one readout period. This is especially important where rapidly 
moving objects, such as the heart, are being imaged by the digital radiographic system. 
A type of analog video camera that has good linearity and low lag is the plumbicon target 
camera. The plumbicon is a videcon with a lead oxide (PbO2) target. Another benefit of 
plumbicon cameras is that they have excellent electronic noise characteristics in compari-
son to other types of video cameras, with a dynamic range of 1000:1 and perhaps as high 
as 2000:1. Newer digital cameras can have high dynamic range with minimal lag with 
more pixels.

Commercial television frame size has increased to 1280 × 720 (horizontal × vertical) 
or 1920 × 1080, and these are referred to as 720 or 1080 based on their vertical size. The 
1920 × 1080 size is called 2K due to its nearly 2000 horizontal specification. There are also 
 versions of each that are interlaced (1080i) or progressive scan (720p). Frame rates are simi-
lar to earlier standards with interlaced scans of 1/30 second per frame and 1/60 second per 
field. Another standard that is becoming popular has 4096 × 2160 pixels and is called 4K, 
though its spatial resolution is well beyond the needs of DSA.

12.4 DIGITAL IMAGE PROCESSOR
The block diagram and component descriptions for a typical digital image process-
ing system for DSA are shown in Figures 12.8 and 12.9. The basic functions include 
(1) acquiring and digitizing the video images, (2) storing the digital images in random 
access memory, (3) performing arithmetic operations on the images (subtraction, addi-
tion, and multiplication), (4) displaying images on monitors, and (5) storing the images 
as files on various storage media. The image processor contains a microprocessor or sys-
tem controller that manages the basic operation of the x-ray generator, and other analog 
components, as well as coordinating and controlling operations of the digital imaging 
system (Figure 12.1).

12.4.1 Analog-to-Digital Conversion

We will assume that an analog video image has been acquired by the x-ray system, image 
intensifier, and video camera (Figure 12.8). The analog signal is preprocessed to adjust the 
amplitude, level, and bandwidth of the video signal to match the signal range and sampling 
rate of the ADC. The step size of the ADC is selected so that it does not introduce addi-
tional noise to the image signal after digitization, which is approximately equal to the stan-
dard deviation of the electronic noise. Because the SNR of most video cameras is ~1000:1, 
the dynamic range of the video signal must be covered by more than 1000 quantization 
steps, corresponding to an ADC with 10 bits (210 = 1024 steps) or more. The temporal sam-
pling rate (samples/time) of the ADC is selected to capture the desired number of pixels 
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FIGURE 12.7 Problem resolved using pulsed x-ray exposure and progressive scan mode.
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per image frame. The location of a sample within a scan line determines its column index 
(zero starts on left), and the scan line number determines its row index (zero starts at top 
of video image). The controlling microprocessor formats these data into an image matrix 
where sampled values at each location can be indexed using a row, column scheme. Each 
location in the digital image is called a picture element or “pixel” and the associated value 
is called the pixel value. Time is recorded for each image in a series acquisition.

Angiographic images may be acquired in a 512 × 512-pixel matrix though some systems 
use a 1024 × 1024 or larger matrix. The image matrix and image-framing rate determine 
the temporal sampling rate of the ADC. For example, if a 512 × 512 image matrix is used 
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to digitize an image that is acquired over 1/30 of a second, the sample period of the ADC 
equals 1/30th second (time per image) divided by 5122 (number of pixels per image). The 
sampling period is approximately 100 ns/pixel, corresponding to a sampling rate of about 
10 MHz. This sampling rate limits the bandwidth of the digital system to approximately 
5 MHz and preprocessing of the analog signal must be done using a low-pass filter to avoid 
aliasing by limiting the spatial frequency of the incoming analog video signal to 5 MHz or 
less. In newer DSA systems, the functions of the analog video camera, ADC, and framing 
microprocessor are combined in a digital video camera.

12.4.2 Logarithmic Transformation

Following digitization, image data are logarithmically transformed, meaning that the 
pixel values are replaced by their logarithm. The logarithmic transformation is required 
to remove stationary anatomical structure during image subtraction (Section 12.4.4). The 
logarithmic transformation can be done on the analog signal prior to digitization with 
an analog logarithmic amplifier (i.e., a specialized operational amplifier). However, most 
imaging systems currently perform the logarithmic transformation following the ADC 
with a digital look-up table that simply replaces each digital value with a new value pro-
portional to its logarithm.

12.4.3 Image Memory and Integration Feedback Loop

After digitization and logarithmic transformation of the incoming video signals, images are 
stored in the memory of the image processor. Often more than one image from a series 
is summed (integrated) to reduce noise. This averaging can be done on the fly where 
incoming images are added to previously stored images. If the image processor uses a 
10-bit ADC, image memories must have enough bits to deal with this. Many 10-bit images 
(max value= 1,023) can be averaged or added to reduce the noise without overflowing the 
maximum value for systems using 16-bit memory (max value = 65,535). A signed 16-bit 
format is used to support negative values (ranging from −327,678 to 32,667) with half the 
maximum value. Virtually all DSA image processors have more than one memory bank. 
This requirement is obvious in the case of DSA where a mask image is acquired in one mem-
ory and then subtracted from an opacification image acquired in a second memory. Where 
a series of images are acquired, and with sufficient memory, all can be stored in digital mem-
ory in the image processor. However, this is expensive, so it is advantageous to process on 
 the fly and store the subtraction images on high-speed digital storage media. Many systems 
also store unprocessed images, which are later processed to test different approaches.

12.4.4 Image Subtraction

In DSA, at least two images are acquired. The first is called the “mask” image, which is 
obtained before contrast media is injected into the patient. The second is called the “con-
trast” or “opacification” image, obtained following injection of the contrast media when 
the contrast bolus reaches the artery to be imaged.

The signals over the artery in mask and opacification images can be modeled mathemati-
cally by assuming that the patient has a thickness xt and a linear attenuation coefficient of μt. 
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Before contrast media is injected into the patient, the photon fluence through the artery and 
input to the image intensifier is

 I I e x
m

t t= -
0

m .  (12.1)

The contrast media is then injected to opacify the artery. If the artery has a thickness xI 
(where xI ≪ xt) and has a linear attenuation of μI, the photon fluence is reduced as follows:

 I I e x x
I

t t I I= - +( )
0

m m . (12.2)

To simplify this example, we assume that xt is unchanged. If α is the conversion factor, 
which scales the video signal to the photon fluence received by the image intensifier, the 
mask and opacification image signals produced by the video camera are

 I I e x
m

t t= -a m
0 ,  (12.3)

 I I e x x
I

t t I I= - +( )a m m
0 .  (12.4)

We now will use Equations 12.3 and 12.4 to demonstrate the difference between subtraction 
of the images without logarithmic transformation (linear subtraction) and subtraction of 
the images following logarithmic transformation (logarithmic subtraction).

12.4.5 Linear Subtraction

Some of the early investigators of digital subtraction techniques used linear subtraction in 
an attempt to isolate the opacification signal. In linear subtraction, the opacification image 
is subtracted from the mask image without logarithmic transformation. Linear subtraction 
produces a subtraction image (Slin) having the following form:

 S I I I e I e I e ex x x x
lin m I

t t t t I I t t I= - = - = --( ) - +( ) -( ) -a a am m m m m
0 0 0 1[ xx I( )].  (12.5)

If we assume a small iodination signal such that μIxI ≪ 1, then e xx- » -m mI I
I I1  and

 
S x I e x Ix

lin I I I I m
t t= ( ) = ( )-( )m a mm

0 .  (12.6)

This shows that, when using linear subtraction, the opacified signal (μIxI) is modulated by 
the patient mask image Im, that is, patient anatomy. Therefore, linear subtraction produces 
images that retain the unwanted patient anatomy superimposed on the desired opacified 
arterial image.
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12.4.6 Logarithmic Subtraction

In comparison to linear subtraction, logarithmic subtraction does not retain stationary 
anatomical structure that can obscure the small signal contributed by the opacified artery. 
The mask and opacification images are subtracted after they are logarithmically trans-
formed. Mathematically, the logarithmic subtraction image Slog is

 S I I I x I x x xlog ( ) ( ) [ ( ) ] [ ( ) ]= - = - - - - =ln ln ln lnm I t t t t I I I Ia m a m m m0 0 ..  (12.7)

Therefore, for logarithmic subtraction, the opacification signal (μIxI) is not modulated 
by the patient thickness or the anatomy on which the opacified artery is superimposed. 
However, the resulting signal-to-noise level will be low and must be managed.

12.4.7 Image Display and Archival

Digital images are delivered to a digital-to-analog converter that produces standard video 
signals that can be viewed on a video monitor. The analog video signal can be stored on 
analog or digital video media to share with others. The dynamic range of older technol-
ogy (i.e., analog tape or disk recorders) was approximately 200:1, in comparison to the 
1000:1 dynamic range of video cameras, which we previously discussed. Conversion to 
digital video format for storage helps to preserve the dynamic range of the digital radio-
graphic images.

However, digital image storage is the preferred method for absolute fidelity of the 
image data. This includes storage on magnetic disk, magnetic tape, optical disk, and 
digital memory devices (card or plug-in). Digital storage keeps the image data in its 
original form and virtually avoids the possibility of noise being added by conversion to 
video and by the storage media. Digital image storage can be done before subtraction 
and is often used when extensive processing (image integration or iodine quantification) 
is needed.

12.5 NOISE IN DIGITAL SUBTRACTION ANGIOGRAPHY
In Chapter 8, we discussed how quantum statistical noise σq, electronic noise σe, and digi-
tal quantization noise σΔ all contribute to system noise, and that if we design our DSA 
system correctly, quantization noise will be negligible.

By way of summary, if a radiographic signal is composed of N photons per pixel, then 
the uncertainty (i.e., standard deviation) in that signal is N1/2, since photon generation and 
attenuation behave according to Poisson statistics. Assuming that the system responds 
linearly to the input (Figure 12.10), it would produce a maximum video output of Vmax at 
Nmax photons per pixel. Based on this relationship, a pixel’s video signal VN corresponding 
to N photons is given by the proportionality relationship:
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where both Nmax and Vmax are constants for a system’s configuration. The uncertainty 
in the video signal per pixel due to quantum statistical sources (σq) scales like the sig-
nal and is
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The electronic noise contributed by the video camera is typically characterized in terms of 
the camera’s dynamic range, defined to be the ratio of the peak video signal Vmax divided 
by the standard deviation (σe) of the video camera (Figure 12.10). If D is the dynamic range 
of a video camera, then the standard deviation of the electronic noise from the camera σe 
is given by
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FIGURE 12.10 In an ideal video camera, the video signal output is proportional to the level of light 
exposure up to a maximum saturation level (Vmax). The video dynamic range is defined as the maxi-
mum video signal divided by the standard deviation of the noise (σ) in the video signal.
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Finally, the signal quantization error or quantization noise is the error introduced into 
the signal when the pixel value is digitized from the analog signal. If Δ is the width of 
the quantization step in volts (i.e., the interval associated with the least significant bit of the 
ADC) where all analog values from μI − Δ/2 to μI + Δ/2 are equally likely and are converted 
into the value μI by the ADC, then the variance of the signal quantization error is
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Note that all three of these noise components are measured using the same units (volts).

12.5.1 System Noise in DSA

The system noise variance in DSA is obtained by adding the noise variance from each 
noise component; assuming that these noise contributions are independent. For this 
calculation, we assume that the imaging system consists of a video camera viewing the 
output phosphor of the image intensifier, and that the quantization error/noise contrib-
uted by the ADC is negligible.

The camera output contains a component Vq proportional to the exposure to the input 
phosphor as well as a time-varying term Ve arising from the “dark current” of the system.

 V = Vq + Ve. (12.12)

The uncertainty in the video output can be calculated using propagation of errors

 s s sv q e
2 2 2= + ,  (12.13)

where contributions from the video dark current σe and quantum statistical sources σq 
add in quadrature to give the total noise σv in the video system.

Using the expressions derived (Equations 12.9, 12.10, and 12.13), we can obtain the noise 
in the video signal (σv) in terms of the number of photons (N), that is, number of photons 
per pixel, the dynamic range (D) of the video camera, the maximum video level (Vmax), 
and the number of photons per pixel (Nmax) corresponding to the maximum video level 
as follows:
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From Equation 12.14, and with signal V, the SNR is
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Since the analog signal is proportional to the number of photons (N) per pixel in the 
digital image,
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we can express the analog SNR in terms of the number of photons (per pixel) N absorbed 
at the input phosphor of the image intensifier as
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We will investigate the SNR given in Equation 12.17 in several important special cases.

12.5.2 Special Cases

Case 1. High dynamic range (ideal system):

If the dynamic range D is large compared to Nmax, then the system SNR (Equation 12.17) 
reduces to

 SNR = N  (12.18)

such that electronic noise is negligible and the DQE of the system is unity. Thus, when the 
video dynamic range is very large, the noise is contributed entirely by photon statistics and 
is Poisson-distributed. This case is not realistic given that Nmax should be large for imaging 
and that D is limited to a range of 1000–2000.

Case 2. High signal levels (N = Nmax, Figure 12.11, top graph):

If we are operating at a high signal level where the number of photons used to generate the 
image is at the maximum value for the system, then
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For example assume an exposure of 16 mR, 0.5 mm × 0.5 mm pixel area, energy = 60 keV, and 
dynamic range D = 1000. At 60 keV, the mass energy absorption coefficient of air is
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so that the photon fluence at 60 keV corresponding to an exposure of X = 16 mR is (using 
Equation 8.17)

 F = ´5 03 108 2. .photons/cm  (12.21)

Over a 0.5 mm × 0.5 mm pixel area, the number of photons is

 Nmax = (5.03 × 108 photons/cm2) (0.052 cm2/pixel)= 1.26 × 106 photons/pixel. (12.22)

Therefore, the system’s SNR (i.e., the ratio of the maximum signal Vmax divided by the 
standard deviation of the system) is
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FIGURE 12.11 The best SNR in a subtraction image is obtained when the image data are acquired 
at the highest possible video signal level. Because video noise is approximately constant in ampli-
tude, the SNR diminishes as the video signal decreases.
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At this point, we ask whether this signal-to-noise level is adequate to see a small low-
contrast object in a noisy image. This question can be answered approximately using the 
Rose model that relates SNR, contrast, size and fluence. The Rose model equation is

 k C A C N2 2 2= =F ,  (12.24)

where
k = 5 (a constant specifying the SNR at which the low contrast signal is visible)
N = ΦA is the number of photons used to image object of area A
C is the contrast level of signal = ΔN/N
Φ is the photon fluence in background region = N/A
A is the area of object
ΔN is the difference in number of photons used to image the object and a background 

region of equal area

Therefore, from the Rose model,
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Let N = σ2 be the variance of the noise and taking the square root of the leftmost and 
rightmost terms in Equation 12.25 leads to an alternative way to express the Rose model:

 kσ = ΔN. (12.26)

Intuitively, this states that the difference in the background and object’s signals must be 
k times the standard deviation of the noise. From our derived value of the SNR at 100% 
contrast,

 SNR = N/σ (12.27)

and rearranging to follow the format of (12.26), we have

 SNR σ = N. (12.28)

Now dividing Equation 12.26 by Equation 12.28 and substituting values for k from the 
Rose model equation and SNR from Equation 12.23 yields

 C = ΔN/N = k/SNR = 5/747 = 0.67%. (12.29)

Thus, the operating level in this example where the image is at its maximum exposure 
level, the minimal perceptible contrast is

 C = ΔN/N ≈ 1%. (12.30)
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Note that this contrast limit is approximately defined as the ratio of the SNR at the 
threshold of detectability (k = 5) to the SNR produced by this imaging system where 
N = Nmax = 747.

Case 3. If N = 1/10Nmax, Figure 12.11, middle graph, then
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With Nmax = 1.26 × 106 photons and D = 1000 as before, we have SNR = 96.3. From 
Equation 12.29, when SNR = 96.3, an observer would be able to see a minimal contrast 
level of

 C = ΔN/N = k/SNR = 5/96.3 = 5.2%. (12.32)

Case 4. If N = 1/100 Nmax, Figure 12.11, bottom graph, then
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With Nmax = 1.26 × 106 photons and D = 1000, we have an SNR = 9.96 in which case only 
contrast levels greater than 50% are visibly detectable in the image.

 C = ΔN/N = k/SNR = 5/9.96 = 50.2%. (12.34)

At this point, the SNR of the image is severely limited by the electronic noise, not by the 
quantum statistics. It is important to point out that Cases 2 through 4 exist simultane-
ously within an image, so we need to use care in applying these when we are assessing the 
minimally detectable contrast.

12.6 METHODS TO MANAGE SNR IN DSA
12.6.1 Bright Spots

From the examples discussed, it is obvious that digital radiographs obtained with image 
intensifier systems will be severely limited by electronic noise if the image is not obtained 
with the maximum number of photons per pixel Nmax. What is not obvious is that we often 
are forced into this undesirable situation since the image contains regions with both high 
and low x-ray transmission. High transmission is seen at the edge of the patient or in body 
regions containing air (lungs or bowel gas). If these regions of high x-ray transmission are 
imaged at maximum video levels, then patient regions of interest with lower transmission 
will be imaged at lower video levels where the data can be compromised by electronic noise 
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(signals closer to electronic noise level). A technique to reduce this problem is to place bags 
of saline over the high transmission areas “bright areas” or to place pieces of aluminum in 
the x-ray beam to decrease the exposure to regions where the patient is highly transmis-
sive (Figure 12.12). Ideally, the input exposure field could be a nonuniform exposure field 
tailored to the patient so that the exposure field reaching the image intensifier in the image 
region of interest is high, leading to an improved SNR.

12.6.2 Video Camera Aperture

Another method to improve the SNR in DSA is to increase the exposure delivered to the 
patient, decreasing the noise contribution from quantum statistical sources. However, 
because a specific light level delivered to the camera target will produce a maximum 
video response, the x-ray exposure cannot be increased indefinitely without making other 
adjustments in the system to ensure that this maximum light level is not exceeded in 
regions of importance. As such, the video camera aperture assumes a fundamental role 
to control the level of quantum noise in the digitally subtracted angiogram. Because the 
aperture is located between the output phosphor of the image intensifier and the input 
optics of the video camera (Figure 12.8), decreasing the aperture diameter also decreases 

Transmissive regions of the patient create “bright spots,” which force other regions
 to be imaged at lower signal levels where video noise degrades the image

By eliminating the bright spot with proper bolusing, all regions of the image
can be imaged at maximal signal levels to achieve the maximum video SNR 
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FIGURE 12.12 A saline bag can be used to minimize the effect of bright spots in DSA studies.
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the amount of light reaching the camera target and lowers the camera response for a given 
x-ray exposure. Correspondingly, the x-ray exposure level must be increased if the aper-
ture diameter is decreased to maintain a constant video signal level. When the camera 
 aperture is decreased, more x-ray photons are used to acquire the image at the quantum 
sink (i.e., the input phosphor of the image intensifier). Therefore, the overall SNR of the 
video signal increases (assuming that the x-ray exposure is adjusted to maintain a maximal 
video signal in the patient image). This reduces quantum statistical noise and improves the 
overall noise characteristics of the image.

It is important to stress the complementary roles of the x-ray exposure level and the 
video camera aperture. If the x-ray exposure level is increased without adjusting the aper-
ture, then the increased light output of the image intensifier can drive the video camera 
into saturation, producing a useless signal that saturates at its maximum level. Similarly, 
decreasing the camera aperture, while holding x-ray exposure fixed, will reduce the light 
delivered to the video camera, resulting in a smaller video signal. The quantum noise 
component scales with the video signal, but the SNR of the video signal will be reduced 
due to the fixed level of electronic noise in the video system. Thus, the camera aperture 
must be adjusted to provide a video signal near the maximum level to minimize the noise 
contribution from the electronic signal, and this should be adjusted for the region of inter-
est in the body. However, the x-ray intensity must be limited such that the signal from the 
image intensifier does not saturate for the region in the image of diagnostic interest.

12.6.3 Image Integration

Another way to improve system SNR is to use various processing schemes that add (or 
“integrate”) images together either before or after subtraction to reduce the noise in the digital 
radiographic images. The simplest way this can be performed is by means of frame integra-
tion where two or more sequential image frames are added together. If M sequential frames 
are added together, where all the frames are nearly identical except for the random noise 
content, and if N represents the signal (and N1/2 the noise) in each image, then the inte-
grated signal will be MN and the noise (MN)1/2. The SNR before image integration was N1/2 
and that for the integrated frames is (MN)1/2, so the SNR increases by (MN)1/2/N1/2 = M1/2. 
Frame integration has the advantage of reducing both the effects of quantum noise and elec-
tronic noise sources. By comparison increasing radiation exposure per frame only reduces 
quantum noise effects. However, frame integration has the serious disadvantage that it is 
more prone to motion blurring, since each integrated image is an average over a longer 
time period than the original frames.

12.7 SPATIAL RESOLUTION IN DSA
There are several factors to consider concerning spatial resolution in DSA. The first is the 
digital matrix size (such as 512 × 512 or 1024 × 1024) used to acquire the image data. The 
second is the spatial resolution of the image intensifier. The third is the degree of geometric 
unsharpness due to focal spot size. There is a fundamental trade-off between the increase 
in object detail that can be seen due to image magnification and the loss in object detail due 
to increased geometric unsharpness. Object detail increases with greater magnification 
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due to the fixed resolution of the image intensifier and digital image matrix. On the other 
hand, increasing geometric unsharpness (magnification of focal spot) degrades spatial 
resolution with greater object magnification. The relative effects of these spatial resolution 
components can be evaluated using a cut-off frequency approach.

If an image is recorded with an object magnification of M and if the focal spot has width 
a,  the width of the focal spot when projected onto the detector is (M − 1)a. This is equal to a 

structure in the object plane having a width of  ( )M a

M

-1 . We can define the cut-off frequency 

us due to geometric unsharpness in the object plane using the inverse of this width as
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(see Figure 12.13a)
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FIGURE 12.13 (a) The spatial resolution of a DSA image can be limited by geometric 
unsharpness from the x-ray focal spot, by image intensifier resolution, or by the digital 
image matrix. (b) At low magnification, resolution is limited by the image matrix, but at a 
higher magnification, geometric unsharpness limits the resolution.
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The derivation of the cut-off frequency based on width is as follows: (1) we model the 
projected spread function as a rectangle, (2) the Fourier transform of a rectangle is a sinc 
function, and (3) the value of the sinc function first goes to zero at a frequency equal to 
1/width, which is called the cut-off frequency.

Similarly, the resolution width of d for the image intensifier is d/M in the object plane, 
giving a cut-off frequency for the image intensifier of
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The cut-off frequency due to the digitizer is based on the Nyquist frequency limit, since no 
frequencies above that limit can be displayed. If the width of the field of view (FOV) of the 
detector is D and the image is digitized into an N × N matrix with object magnification of 
M, the limiting spatial frequency udig imposed by the digitization process is
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Here, N/2 is the limiting frequency for the FOV (lp/FOV) and D/M is the width of the FOV 
at the object plane (mm/FOV).

The trade-off between the decrease in detector unsharpness and the increase in geo-
metric unsharpness with increasing object magnification is best seen by graphing the 
cut-off frequencies for focal-spot blurring and for detector response as a function of 
object magnification. As shown in Figure 12.13b, the curve labeled “source” shows how 
increasing magnification produces the resolution loss (i.e., decreasing the cut-off spatial 
frequency) due to geometric unsharpness and increased resolution for the image inten-
sifier and digitization.

Example 12.1

A focal spot size of approximately 1  mm is common in DSA, and according to 
Equation 12.35, this corresponds to a cut-off frequency of
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We will consider two different components of detector resolution, one from the 
image intensifier and the other from the digital image matrix. The image intensi-
fier (II) has a  spatial resolution of about d = 0.2 mm, and according to Equation 12.36, 
the cut-off  frequency is

 uII = 5M lp/mm. (12.39)
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If we assume that a 512 × 512 image matrix is used to digitize an inscribed circular 
FOV with a diameter of 23 cm (approximately 9 in.), then according to Equation 12.37, 
the digital cutoff frequency is
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In this example, the digital image matrix rather than the image intensifier limits the spatial 
resolution of the detector at low magnification. However, at higher magnification, geo-
metric unsharpness becomes more problematic. For this example, the intersection of the 
cut-off spatial frequency curve for the digital image matrix with that for focal spot blur-
ring indicates the magnification at which the cut-off frequency would be highest, yielding 
the best spatial resolution. Therefore, the optimal magnification for this system would be 
2.11/1.11 ~ 1.9.

HOMEWORK PROBLEMS
P12.1 You are visiting a hospital that has just acquired a DSA system. You watch as the 

radiologist sets the kVp and mA to obtain an exposure level that gives a maximum 
video signal output. The radiologist then looks at the settings on the x-ray con-
sole and decides to decrease the patient exposure and tolerate the accompanying 
increase in noise by decreasing the x-ray tube current (mA) to 25% of its original 
value. You immediately remember that it is important to adjust the video cam-
era aperture for this new exposure level and alert the radiologist of the problem. 
The radiologist thanks you for the information, readjusts the aperture to achieve a 
maximum video signal output with the lower exposure level, and then continues 
the examination.

For the following calculations, assume that the dynamic range of the video cam-
era is 1000:1. Before the radiologist decreased the exposure or increased the camera 
aperture, a maximum video signal was obtained at a setting of 70 kVp and 200 mA. 
At this setting for a 40 ms exposure, the x-ray tube produces a photon fluence of 
1.031 × 106 photons over a resolution area of 1 mm2.

 (a) When the initial exposure settings were established, the diameter of the aper-
ture was 4 mm, corresponding to an f-stop of f/5.6. What is the correct diameter 
and f-stop of the camera aperture after the patient exposure has been decreased 
to 25% of its original value?

 (b) How is the SNR of the image affected if the patient exposure is reduced by a fac-
tor of 4, but the camera aperture is not adjusted for the new exposure level?

 (c) What is the SNR of the image if the patient exposure is reduced by a factor of 4 
and the camera aperture is adjusted to maintain a maximal video signal output?
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 (d) Explain to the radiologist why the video camera aperture must be adjusted for 
the new exposure level. Use your calculations from parts (b) and (c) of this 
problem to guide your thought processes, but give the radiologist conceptual 
and intuitive (rather than quantitative) explanations.

P12.2 You take a research position in an x-ray imaging laboratory at a major university in 
the United States. Your first development is a new video camera especially designed 
for pediatric coronary angiography. Because the infant heart beats at a higher rate 
than that of the adult, the camera has a video frame rate of 100 fps. Second, because 
you want to limit both the radiation exposure and the amount of contrast media 
required for the angiographic study, the camera is designed with a dynamic range 
of 4000 to 1. Finally, because the infant is small, the camera is designed with a video 
signal bandwidth high enough to be compatible with a 2048 × 2048 digital image 
matrix. You then begin to develop a digital image processor that is compatible with 
this new video camera.

All of a sudden, your grandmother drops by with a batch of chocolate chip cook-
ies. Grandma has been very lonely lately since grandpa bought a new Macintosh 
computer and discovered “Internet browsing,” so she starts asking lots and lots of 
questions. While munching on her delicious cookies, you try to explain to grandma 
what you are doing.

 (a) Grandma first asks you what a “video signal bandwidth” is, and why a higher 
“video signal bandwidth” is needed if you want to obtain a 2048 × 2048 (rather 
than a 512 × 512) image. What problems will you encounter if you have too low 
of a bandwidth? What problems will you encounter if your camera has too 
high of a bandwidth? (By the way, if you use the word “aliasing” in her presence, 
Grandma will make you wash your mouth out with soap.)

 (b) Grandma then asks you what a “video dynamic range” is and why a higher 
“video dynamic range” might let you decrease the radiation exposure and 
amount of contrast media needed for the study.

As you are explaining these things to grandma, a doctor who is walking 
through the corridor outside the door of your laboratory distracts her. Feeling 
rather frisky because of the lack of attention by grandpa, grandma decides to 
chase after this new target rather than listen to you talk about medical imaging. 
As she runs out the door, she almost knocks over Bruce Hasegawa who over-
heard your conversation; he has lost interest in a nurse he was talking to in the 
hall, and has entered the room to join the conversation. Noting the expression 
of intense curiosity on his face, you moan, wishing grandma were asking ques-
tions rather than Bruce. By now, grandma has left you alone with Bruce who, 
to your horror, is busily gobbling up the cookies and who also is starting to ask 
some questions about your new invention.

 (c) How many bits are needed by the ADC to minimize quantization errors in the 
digitized image data?
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 (d) If you eventually want a 2048 × 2048 image at a rate of 100 video frames per 
second, what is the digitization rate of the ADC for a digital image processor 
compatible with this video camera? What is the maximum video bandwidth 
the camera should deliver to be consistent with the sampling rate of the ADC?

 (e) The image intensifier has two different operating modes, one with a 6 in. 
diameter FOV and other with a 9 in. diameter FOV. What spatial frequency 
(in cycles/mm), as measured in the detector plane, will the 2048 × 2048 image 
matrix support for each of the two operating modes?

 (f) Assume that your image intensifier has a point-spread function width of 
200 microns and that you operate the image intensifier with a 6 in. diameter 
FOV with an x-ray tube having a 300-micron focal spot size. Determine the 
optimal magnification for imaging the infant heart and the corresponding 
optimal cut-off spatial frequency for this system? Is this magnification compat-
ible for imaging a 2 in. diameter infant heart and sufficient to see 400-micron-
diameter coronary arteries?

 (g) The infant thickness can be modeled as 15 cm of water and the effective energy 
of the x-ray beam is 30 keV. What should the entrance exposure to the infant be 
if you want to see a 1% contrast level in a 400-micron-diameter infant coronary 
artery with your video camera?

 (h) Bruce comments that your calculations for parts (c) and (d) of this question 
show that you need an ADC that is technically impossible to design and build 
at this time. However, he tells you that the important issue in coronary imaging 
is one of limiting motion unsharpness rather than one of frame rate. He would 
rather have a few images each with minimal amounts of motion unsharpness 
rather than many images acquired over the entire cardiac cycle. In other words, 
he prefers an imaging system with a short acquisition time per frame, but does 
not need one with a video frame rate faster than about 15 fps.

With this in mind, you start thinking about using a video camera with a 
progressive readout to be used in combination with a short x-ray exposure 
time. If you want to maintain the optimal spatial resolution as defined by your 
calculation in part f, how short of an exposure time do you need if the infant’s 
myocardium has a maximum velocity of 5  cm/s at the point of maximum 
 cardiac contraction.

P12.3 Let us think a little about digital look-up tables such as those utilized in DSA for the 
logarithmic transformation. (We can offer you a hint that a digital look-up table is 
built out of random access memory).

 (a) How might you design a digital look-up table in hardware? How would you 
load the digital look-up tables with the transformed values? What circuit design 
would allow you to deliver digital values and obtain the transformed values 
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from the digital look-up table? How much random access memory (RAM) is 
needed for a look-up table with a 10-bit input and a 10-bit output?

 (b) If the look-up table has a 10-bit input, the largest value that will be delivered 
to the look-up table will be 1023 (i.e., 210–1). However, the natural logarithm of 
1023 is 6.93. Describe how we can represent the logarithmically transformed 
values if we want a 10-bit output from the look-up table. You should be able to 
give a specific mathematical algorithm to make this possible. What effect will 
this have on the digitally subtracted angiograms?

P12.4 Compare the contrast resolution (at peak video signal) associated with a TV fluo-
roscopy system with a dynamic range of 1000:1 for the following cases. Assume that 
the dynamic range refers to a characteristic resolution element of (0.5 mm2).

 (a) Fluoroscopy at an exposure of 1 mR per image.

 (b) Digital radiography at an exposure of 1 R per image (neglect digitization noise)



http://taylorandfrancis.com


249

C h a p t e r  13

Temporal Filtering

13.1 BACKGROUND
The primary problem in dynamic imaging such as digital subtraction angiography is the 
presence of noise in the subtracted images. This situation arises because the opacification 
signal in these studies occupies only a small portion of the video signal’s dynamic range, 
which is mostly dominated by the patient’s anatomical structure. For example, assume 
that the mask image Im and opacification image Io are acquired, each with a signal-to-noise 
ratio of 1000:1. The opacification image, acquired following arterial injection of the con-
trast media, can be subtracted from the mask image to determine a positive signal differ-
ence image (S):

 S I I= -m o. (13.1)

Inspection of this image will reveal that the signal due to opacification in the artery is 
a small portion of the dynamic range of the video signal. Indeed, we can approximate 
the arterial signal difference at 1% of the maximum video signal Vmax. Second, if the 
noise variances in the mask and opacification images are uncorrelated and both equal 
to σ2, then the noise variance in the subtracted image is twice that in the unsubtracted 
images:

 s ss
2 22= . (13.2)

Therefore, if the signal-to-noise ratio of the unsubtracted images is

 
SNR = =Vmax

s
1000  (13.3)
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such that Vmax = 1000σ, then the signal-to-noise ratio of the arterial signal difference image S is
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Even though the mask and opacification images are acquired at a signal-to-noise ratio of 
1000:1, most of the signal is contributed by the patient’s anatomy (~99%). As a result, after 
subtraction, the image has a low signal-to-noise ratio over the artery, <10 in this example. 
In actual clinical practice, the signal-to-noise ratio of a subtracted angiogram is even 
lower due to the existence of bright spots or limitations in the electronic imaging system. 
This calculation and these comments emphasize that digital subtraction angiography is 
an examination in which the diagnostic task will be limited by noise. The noise-limited 
nature of the images forces us to consider various methods to increase the signal-to-noise 
ratio of the resulting subtracted angiograms. This example was provided without logarith-
mic  subtraction to emphasize the nature of the raw signals.

As mentioned in the previous chapter, there are several ways in which the signal-to-
noise ratio can be improved. The first is utilization of an image intensifier with high detec-
tion efficiency and contrast ratio, a video camera (or other electronic detector) with the 
low electronic noise, and an analog-to-digital converter with an adequate number of levels 
so that it does not introduce quantization errors into the image data. The second is the 
use of bolusing so that bright spots do not compromise the opacification signal in regions 
of interest. The third is adjustment of the camera aperture so that the region of interest is 
acquired with a maximal video signal but at the smallest radiation exposure consistent 
with the quantum statistical requirements of the study. The last method is that of “image 
integration” in which multiple images containing the opacification signal are combined 
using a weighted averaged to reduce effects of random noise (from both electronic and 
quantum statistical sources), while preserving the opacification signal. The average is taken 
over sequential time images and is therefore called “temporal filtering” to distinguish the 
approach from “spatial filtering.”

The basic theory of temporal filtering methods is provided in Sections 13.2 and 13.3. We 
then will present three different temporal filtering techniques (mask-mode subtraction, 
matched filtering, and recursive temporal filtering), describe them mathematically, and 
discuss the advantages and disadvantages of each.

13.2 MATHEMATICAL CONVENTIONS
Each image in a sequence of dynamic images will be designated as Ii where “i” is the image 
index. This is a mathematical simplification of the 3-D array I(row, col, time) that indexes 
both position within 2-D images and time within the sequence. For this simplification, 
we drop the row and col indices (same for all images) and index each 2-D array by time 
using the subscript “i.” The image formed by summing or subtracting such images will be 
designated as S. For example, in the expression

 S I I= -2 1 , (13.5)
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each pixel in the image S is calculated by subtracting pixel values in I1 from pixel values 
in I2 at corresponding row–column locations at the time indicated by the 1 and 2 indices.

13.3 THEORY
Assume we have a sequence of N images Ii where i = 1, 2, …, N. The images have both a 
static component, representing the stationary anatomical background, as well as a dynamic 
component, that in the case of angiography can represent the time-varying arterial opacifi-
cation contributed by the iodinated contrast media.

The filtering process is represented mathematically in Equation 13.6, where we choose 
a weight factor hi for each Ii and sum their product over all time indices to form the single 
image S:
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Regions within images without contrast material represent anatomical structures that are 
not changing over time, so for these images, Ii = I. We can remove the constant-signal ana-
tomical structures by choosing the constants hi such that the sum in Equation 13.6 is zero:
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This leads to the constraint that the sum of h’s must be zero to remove constant anatomical 
structures as follows:
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This equation constrains the sum of the filter weights used in temporal filtering but does 
not provide individual values for the weights.

For those pixels with a time-varying opacification signal (pixels where contrast is seen), 
the value of S depends on the relationship between hi values and the time-course signal due 
to the iodine bolus as the contrast material moves through the artery. We can calculate the 
noise variance (ss

2) of the filtered image S assuming that each of the images has the same 
noise variance σ2:
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This equation shows that the variance in S is altered by the sum of squared filter weights 
used for temporal filtering. The objective of temporal filtering is to choose values for h’s 
that reduce noise and increase the signal S associated with the bolus of contrast material as 
it traverses an artery. Three approaches for assigning h’s will be given.

13.4 MASK-MODE SUBTRACTION
A widely used image-processing technique is simple integrated mask-mode subtraction in 
which the opacification image Io (average of images post injection of iodine contrast) is 
subtracted from the mask image Im (average of images obtained before injection of iodine 
contrast), producing the subtraction image:

 S I I= -m o. (13.10)

For this subtraction, the filtering constants are hm = +1 and ho = −1 and the noise variance 
calculated from Equation 13.9 is

 s ss
2 22= . (13.11)

Another mask-mode subtraction technique is called series mask-mode subtraction where a 
single mask image is calculated as the average of images before the bolus injection (0–20 s 
in Figure 13.1). Then each opacification image is subtracted from the single mask image 
producing a series of subtraction images. This results in near-zero pixel values for tissues 
outside of the artery and a bolus signal from the artery after injection (bottom of Figure 13.1). 
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FIGURE 13.1 Pixels values over artery and other tissues before (0–20 s) and after (20–40 s) injec-
tion of contrast media (top).  Series mask mode subtraction for the artery (bottom).
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The resulting image series can be viewed as a subtraction cine where the signal is approxi-
mately proportional to the concentration of contrast material. Viewing the subtraction cine 
allows physicians to evaluate the extent and time course of the contrast material as it passes 
through the arteries. For simple integrated mask-mode subtraction (Equation 13.10), sin-
gle mask and opacification images are formed as the sum of preinjection and postinjection 
images.

Note: All pixel values are the result of some form of scaling and logarithmic conversion. 
The sense of signals in Figure 13.1 was adjusted such that the contrast media decreased 
pixel values in the artery.

13.5 MATCHED FILTERING
Both Kruger and Riederer utilized signal-processing theory to propose a “matched filter” 
to maximize the signal-to-noise ratio in digital subtraction angiographic (DSA) images 
(Figure 13.2). In this technique, a signal is processed using a filter with a temporal shape, 
defined by h’s, matching the temporal response of the arterial signal. It can be shown that 
the matched filter is the filter that maximizes the signal-to-noise ratio in the filtered signal. 
Matched filtering is a postacquisition processing filtering method.

We can extend this concept to maximize the signal-to-noise ratio of the opacification 
signal in DSA images. In particular, we assume that we are imaging an artery through 
which a contrast bolus represented by a time-varying signal b(t) is passing through but 

Acquire N images Ii=1–N

Place ROI over artery and 
determine bolus contrast curve bi

Calculate average
value <b>

Calculate filter coefficients
hi = bi – <b>

Generate matched filter image
S = hi Ii

FIGURE 13.2 Matched filter algorithm. In matched filtering, the weighting coefficients are equal 
to the difference between the bolus signal and its mean value. This is a postprocessing technique, so 
all images must be acquired before the filter is applied.
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which also contains non-time-varying patient anatomy. Regions containing non-time-
varying patient anatomy correspond to areas in the image having approximately constant 
pixel values. Regions containing opacified arteries are represented by pixels containing 
both a constant anatomical and the superimposed contrast bolus b(t) signals with sequen-
tial values represented as bi.

We will begin by calculating the signal-to-noise ratio in matched filtering and then 
compare this to the signal-to-noise ratio of mask-mode subtraction. The filtered image is 
calculated as per Equation 13.6, but here, it is designated as matched filter using a subscript:
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We choose the filter weights for matched filtering based on the difference between the 
bolus signal and its average (determined from an ROI placed over the artery)

 h b bi i= - , (13.13)

with positive weights for signals above the bolus average and negative weights for those 
below. This choice ensures that the sum of weights equals zero, as needed to remove con-
stant anatomical signals. The average of the bolus signal is
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In regions of the image where signals are not time varying (i.e., tissues with no contrast 
media passing through), Ii = c, so that
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This result shows that the matched filter removes nonarterial areas (the anatomical back-
ground) from processed images. In arteries where the signal is time varying as indicated 
by a bolus Ii = bi, the filter output is
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This result shows that Smf for an artery is equal to N times the variance due to the bolus 
signal sb

2. The image variance (σi) is assumed to be constant over time for nonbolus regions 
such that σi = σ, so the variance due to the matched filter ( )smf

2  can be estimated as follows 
using propagation of variance:
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The signal-to-noise ratio for the matched filtering technique is therefore
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So the SNR increases by N1/2 and is proportional to the standard deviation of the bolus and 
inversely proportional to the temporal standard deviation (noise) of the image sequence. 
Importantly, if σb is larger than σ, the SNR will increase for all values of N. For nonbolus 
regions where σb = σ, the SNR is N1/2, the same as for averaging N images.

We will now compute the signal-to-noise ratio for integrated mask-mode subtraction 
over the artery with bolus signal bi. We will assume that the first N/2 values are integrated 
to form a mask and remaining N/2 are integrated to form the opacification image. The 
signal is
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where <bm> and <bo> are averages over each half of the signal range. The noise in this sig-
nal is then

 s smm = N  (13.21)

so that the signal-to-noise ratio is
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The ratio of the SNRs obtained with matched filtering to that obtained with DSA inte-
grated mask-mode subtraction is

 

SNR

SNR
mf

mm

b

m o

b

m o

=
-éë ùû

=
-

N

N b b b b

 s
s

s

s

2

2 . (13.23)

So whenever σb exceeds half of the difference in mean values in the mask and opacified 
artery, matched filtering increases the SNR beyond that of integrated mask-mode DSA. 
For an ideal bolus (a rectangle shape where mask and opacification durations are identical 
with constant levels bm and bo), we see that σb = (<bm> − <bo>)/2, so both match filtering 
and integrated mask-mode subtraction give the same result. However, such an ideal bolus 
is not seen in practice and matched filtering shows improvement over integrated mask-
mode subtraction for realistic boluses. For example, the ratio calculated for the data from 
Figure 13.1 yielded an SNR improvement of approximately 2X for the matched filter.

Selection of the ROI for determining b(t) for matched filtering.

 1. To focus on a particular artery, position the ROI within the artery. Placement will 
determine the timing of b(t) and will produce best results near the ROI.

 2. To improve the noise for the arterial ROI, it can be enlarged slightly along the artery, 
but can reduce the peak value of b(t) compared with smaller ROI.

 3. Let each pixel be an independent ROI. No ROI tracing is needed. This will lead to a 
large number of b(t) curves (one per pixel), which can enhance all arteries. This is 
more noisy than methods 1 and 2 but still suppresses anatomy. The entire artery is 
enhanced using this method.

13.6 MODELING THE BOLUS CURVE
An alternative method to improve SNR is to fit the ROI signal for the range of images cov-
ering the changing bolus signal to an analytical model, such as that from 20 to 40 s in the 
net arterial curve of Figure 13.1. One approach is to use a gamma variate function to model 
the natural rising and falling characteristics of a bolus curve

 b t At eB Ct( ) = - , (13.24)

where A, B, and C are parameters adjusted to best fit the bolus curve. In practice, t = 0 is 
just prior to the arrival of contrast material. Riederer has suggested the values B = 4.0 and 
C = 0.9 s−1, with A chosen such that b(tmax) = 1 for a bolus curve with maximum value set 
to unity. The maximum of b(t) is seen when db/dt = 0 so that
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showing that the maximum is obtained at
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Using the values B = 4.0, C = 0.9 s−1, and tmax = 4.44 s, and satisfying the condition that

 b t b A e A( ) ( . ) ( . ) .max
. * .= = = =-4 44 1 4 44 7 1464 0 9 4 44s , (13.27)

we find that

 A = 0.140. (13.28)

Thus, a typical contrast bolus curve with t in seconds is given by the following equation:

 b t t e t( ) . .= -0 140 4 0 9 . (13.29)

In fact, this equation was used to model the data seen in Figure 13.1. Using the range over 
just the bolus to fit an assumed model is attractive, but may not work as well in nonarte-
rial regions. Fitting of theoretical models of the bolus activity leads to fitted values of 
A, B, and C. The time point for fitting must be just as the bolus enters the ROI over the 
artery. The fitted model curve can be used to illustrate the bolus dynamics for various 
ROIs over the artery.

13.7 RECURSIVE FILTERING
Mask-mode subtraction requires highly stable components including electronic compo-
nents as well as the x-ray system. Also, this subtraction could not begin until the study data 
had been acquired. In 1981, Kruger and Gould independently proposed a technique that 
could accept the signal from a standard fluoroscopy system where filtered images could be 
acquired continuously, providing real-time subtraction (Figure 13.3). This method, called 
time-domain recursive filtering, avoids the requirement for timing control of the x-ray 
system and can be incorporated into a non-DSA fluoroscopy system. In addition, this tech-
nique is relatively immune to small instabilities in the video camera or x-ray system, which 
otherwise might seriously affect images produced by mask-mode subtraction.

The methods of Kruger and Gould both use the recursion relationship

 S kI k S nn n n= + - =-( ) , , ,1 1 2 31 … (13.30)

where
k is a constant, 0 < k < 1
In is the nth video frame of an imaging sequence
Sn is the nth image obtained from recursive filtering process
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If the initial video frame of the imaging sequence is

 S kI0 0= , (13.31)

then the following frames are generated according to Equation 13.30. For example,

 S kI k S kI k k I1 1 0 1 01 1= + -( ) = + -( ) , (13.32)

 S kI k S kI k k I k k I2 2 1 2
2

1 1 1= + -( ) = + -( ) + -( )1 0, (13.33)

 S kI k S kI k k I k k I k k I3 3 2 3
2

1
3

01 1 1 1= + -( ) = + -( ) + -( ) + -( )2 , (13.34)

and in general
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We will use this equation to evaluate the response of recursive filtering to a constant signal 
(stationary anatomy), to transient signals (the iodine contrast bolus), and to random noise.

Acquired image IN

Multiply by k Multiply by 1 – k

Previous
result Sn–1 

Add 

Recursive filtered image Sn

Image memory

FIGURE 13.3 The recursive filter creates an output image that is a weighted sum of prior images 
in a time sequence.
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13.7.1 Response to Constant Signal

If all of the video frames are identical (with the exception of noise) as in the case of station-
ary patient anatomy, we will show that in the limit of a large number of video frames, the 
recursive filter returns this constant input. Assume that we have identical frames where

 I fori i N= =1 1 2 3, , , ,…  (13.36)

so that the recursive filter generates the new image following the Nth image as

 S kl k k I k k I K k IN N N N
N= + -( ) + -( ) + + -( )- -1 1 11

2
2 0� , (13.37)

which, for this special case, equals
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The geometric sequence in Equation 13.38, with a ratio of (1 − k), approaches 1/[1 − (1 − k)] = 1/k 
for large N such that

 SN = I (13.39)

so that the recursive filter retains the constant input signal in its output. Therefore, since 
constant Ii suggests constant patient anatomy, the recursive filter retains that anatomy in 
the final filtered image, unlike the two previous filtering methods.

13.7.2 Response to Noise

In calculation of response to random noise, we will assume that all images have the same 
noise variance σ2. Since the recursive filter generates an image SN where

 S kl K k I k k I k k IN N N N
N= + -( ) + -( ) + + -( )- -1 1 11

2
2 0�  (13.40)

and from propagation of errors we know that
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With all σN ~ σ, this becomes
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As N → +∞, this geometrical sequence with a ratio of (1 − k)2 simplifies to
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which becomes infinitesimal for small values of the recursion constant k. Thus, the noise 
σs becomes negligible as k approaches zero. However, inspection of Equation 13.40 shows 
that the signal also approaches zero under this condition.

For imaging coronary arteries, Kruger has suggested using a value of k = 1/16. This 
means that for large N, the noise level for recursive filtration is
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so that the standard deviation of the noise in the recursively filtered image is reduced to 
approximately 18% that in the unfiltered images. This gain is made at the expense of higher 
patient exposure since in theory, it is obtained only after an infinite number of images have 
been filtered and combined by the recursive algorithm. In actual use, and as we will see 
in the following section, the recursive filter has a limited temporal response so that only a 
finite number of images need to be combined.

13.7.3 Response to Transient Signals

One of the more interesting properties of the recursive filter is its response to a transient signal 
such as the passage of an iodine contrast bolus through an artery. The output of a recursive 
filter for a transient (i.e., time-varying) input signal can be approximated as the convolution 
of the time series with an exponential function. If the output of the recursive filter is

 S kI k k I k k I k k IN N N N
N= + - + - + + -- -( ) ( ) ( )1 1 11

2
1 0� , (13.45)

it can be expressed as weighted sums of individual image terms as SN = s0 + s1 + s2 + ⋯ + sN,
where sm is the mth term of the recursive filter output:

 s k k Im
m

N m= -( ) -1 . (13.46)

Equation 13.46 can be expressed as
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And for small values of k,

 1
1

1-( ) » -k ek . (13.48)
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For example, with k = 1/16, then (1 − 1/16)1/16 = 0.3461 and e−1 = 0.3679. We can therefore 
approximate sm using an exponential term as

 s ke Im
mk

N m» -
- . (13.49)

Therefore, the filtered image (SN) can be approximated using a discrete convolution of 
 temporal functions:
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The recursive filter operation performs low-pass filtering of the input image with a filter of 
the form

 h m ke mk( ) » - . (13.51)

The effect of filtering is to retain constant input signals (i.e., anatomical structures) since 
h(m) sums to unity rather than zero and suppresses noise through image integration.

The response of a recursive filter to the time-varying bolus requires a closer look to its 
temporal response. An example can help with this. If m is the frame number in a sequence 
of images acquired with a fluoroscopic system, and if the frames are acquired at 1/30 s 
intervals (i.e., 30 fps), then

 m = 30tm, (13.52)

where tm is the time in seconds of the mth frame, and hence, the filter function can be 
written as

 h t kem
ktm( ) » -30 . (13.53)

This shows that the approximated recursive filter function h(tm) has a time constant 
τ = 1/(30k) s (Figure 13.4). As mentioned before, Kruger found that a recursion con-
stant having a value of k = 1/16 was useful for coronary arteriography. For this example, 
this provides a filter function with a time constant of τ = 16/30 = 0.53 s. The temporal 
response of a recursive filter (Equation 13.53) illustrates the temporal change in filter 
weighting (Figure 13.5, bottom). The filtered image SN receives the greatest weight with 
weight at 37% after one time constant, at 13% after two time constants, and at 5% after 
three time constants. When the temporal history prior to image IN is similar to that of 
reflected temporal filter response, then a larger signal will be seen.

Motions that are slow relative to the filters time constant are minimally affected, 
while those that change too rapidly will be averaged with the earlier times. A time con-
stant of τ = 0.34 s will help to suppress motion artifacts due to breathing, will blur cardiac 
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FIGURE 13.5 In recursive temporal filtering, images in a sequence are convolved with the filter 
and response is higher where the shape of the bolus matches the filter (bottom).
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FIGURE 13.4 Recursive filter h(tm) in Equation 13.53 with τ = 0.53 s.
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motion over a fraction of a cardiac cycle, and will average out the bolus passing through 
the artery for the same period of time. A shorter time constant would also be usable, but 
would integrate fewer frames and increase noise. If the time constant were longer, say, 
τ = 1 s, the coronary artery would be blurred since the images would be integrated over an 
entire cardiac cycle.

13.8 TEMPORAL SUBTRACTION USING RECURSIVE FILTERS
As we have shown, the recursive filter retains anatomical structure. In many cases, we 
want to suppress anatomy as we do in mask-mode subtraction. Using two recursively fil-
tered images with different time constants from the same data set can accomplish this. The 
recursive image with a long time constant can be subtracted from the recursive image with 
a short time constant (Figure 13.6). Objects having motions faster than that corresponding 
to the short time constant would be suppressed by the recursive filter, while those station-
ary objects retained in both recursive images would be removed by subtraction. This is 
the concept behind a recursive band-pass filter that simultaneously eliminates stationary 
anatomy, reduces noise, and suppresses the appearance of structures, such as the heart, 
which are moving rapidly in the image.

We begin this discussion by looking at Figure 13.7 showing the various temporal fre-
quency components in a fluoroscopic imaging sequence following the intravenous injection 
of a contrast agent into the circulatory system. The delta function at zero temporal frequency 
represents the patient’s anatomy that is stationary [obviously a gross simplification unless the 
person is dead or sleeping (as during a medical imaging class)]. The contrast bolus passing 
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FIGURE 13.6 Subtraction following recursive filtration is equivalent to convolving (in the tempo-
ral domain) with the short-long filter.
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through the artery is imaged over the period of 3–10 s and, therefore, is represented by the 
temporal frequency components in 0.1–0.3 Hz range. Finally, the subject’s heart beats every 
1–2 s, representing the temporal frequency in the highest range of this example.

To image the contrast bolus as it passes through the artery, but to eliminate station-
ary patient anatomy and suppress cardiac motion, we can design a temporal band-pass 
filter. This is formed using a recursive filter to obtain a low-pass filter to remove spatial 
frequency components above 1  Hz (where cardiac motion resides). From this, we can 
subtract a second low-pass recursive filter (with longer time constant) that retains only 
patient anatomy. The combined effect is that of a composite band-pass filter that removes 
patient anatomy and any structures subject to cardiac motion, but retains information 
about the contrast bolus passing through the artery in the intermediate frequency range. 
We also assume that other motions such as breathing can be controlled, for example, by 
breath holding.

Given the frequency distributions in Figure 13.7 for stationary anatomy, contrast bolus, 
and cardiac motion, it is instructive to look at the frequency response of recursive tempo-
ral filters. Using h(t) derived from Equation 13.53 as the temporal domain filter response, 
we can calculate the magnitude |H(f)| of a recursive filter as
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normalized to unity output at f = 0. The bandwidth of this recursive filter is when |H(f)| = ½, 

which is BW = »3

2

0 276

pt t
.

, so when τ = 0.53 s, the BW = 0.52 cycles/s. When the spatial 

versions of individual recursive filters are subtracted as illustrated in Figure 13.6, the net 
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FIGURE 13.7 In recursive temporal subtraction, the filter function is formed by subtracting a filter 
with a long time constant with one with a short time constant. The recursive subtraction filter then 
is convolved with the set of images in the temporal domain. This helps to isolate the contrast bolus 
as it passes through the circulatory system with a given range of temporal frequencies.
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frequency response is the difference in frequency response of the filters. Figure 13.8 shows 
how subtraction of two recursive filters can result in a band-pass type filter. The |H1| − |H2| 
filter has a zero magnitude at zero frequency, so it suppresses stationary anatomy. This filter 
has its highest magnitude for a bolus through an artery (f = 0.1–0.3 cycles/s) and attenuates 
higher frequencies such as those associated with cardiac motion.

While it is instructive to review recursive filters, medical image-processing software for 
temporal filtering can be achieved using high-level scientific programming applications 
such as MATLAB®. This topic is explored further in image-processing courses.

HOMEWORK PROBLEMS
13.1 A radiologist brings you a set of 600 digitally subtracted video frames, stored on 

videotape, and obtained during an angiographic study following a single injec-
tion of contrast agent. The radiologist comments that the artery is barely visible 
in images and asks you if you have any “image-processing tricks” to recover the 
images.

After viewing the tape, you realize first that the digital subtraction process has 
already removed the stationary anatomical information. You also discover that the 
images are very noisy and you decide to try a temporal matched filter to integrate 
the images to improve the signal-to-noise ratio. You place a large region of interest 
over the image and quantitate the total opacification in each frame Ii to obtain the 
contrast bolus curve with the individual values denoted by bi.

 (a) The matched filtering technique described in this chapter is used for process-
ing unsubtracted images and was designed to suppress stationary anatomical 
information. For the image sequence given to you by the radiologist, the station-
ary anatomical information has already been removed by digital subtraction. 
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FIGURE 13.8 Magnitude frequency responses of recursive filters H1 and H2 with τ1 = 0.53 s and 
τ2 = 2.13 s. The |H1| − |H2| band-pass filter response peaks in the 0.1–0.3 cycles/s range.
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Specify a matched filter for this new image sequence (i.e., specify the coefficients hi) 
that maximizes the signal-to-noise ratio of the integrated image obtained from 
the digitally subtracted angiograms.

 (b) If <b2> is the average value of the squared opacification values, 
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1
 

  show that the signal-to-noise ratio of the integrated image obtained with the 

matched filter for N images frames is SNRmf = < >N b 2

s
.

 (c) We can compare the matched filter technique with an unweighted image integra-
tion technique where the image frames are simply added together without any 
constant multiplication. If the mean value of the opacification values is
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  show that this technique produces an integrated image having a signal-to-noise 
ratio of

 
SNRuw = < >N b

s

  We would like to estimate the improvement in the signal-to-noise ratio produced 
by the matched filter in comparison to a single image and to unweighted tempo-
ral image integration. To do this, we will use the contrast bolus curve function 
given in the lecture notes:

 b t t e t( ) . .= -0 140 4 0 9
,

  which we will sample 30 times/second for 20 s, for a total of 600 frames. 
Furthermore, while the following calculations can be easily performed with 
a spreadsheet, you may also estimate the discrete samples with the continu-
ous function b(t) given earlier, and estimate the sums with integrals using the 
formula
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 (d) Prove that the maximum value of b(t) is bmax = 1 at t = 4.44 s.
Use this result to calculate the improvement in the signal-to-noise ratio obtained 
with the matched filter in comparison to that obtained from the best single frame 
in the entire image sequence.
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 (e) Calculate the percentage difference in signal-to-noise ratios obtained with the 
matched filter in comparison to unweighted temporal integration of the digitally 
subtracted angiograms.

13.2 We want to design an image processor capable of video-rate subtractive imaging 
with two recursive filters. Let Ii represent the ith (logarithmically transformed) 
unsubtracted image frame received by the image processor. Furthermore, the 
nth subtraction image Sn is defined by

 S U Vn n n= - .

 Un and Vn are the recursively filtered images defined by

 U k I k Un n n= + -( ) -1 1 11

 and

 V k I k Vn n n= + -( ) -2 2 11 ,

  where k1 and k2 are the recursion constants, which define the temporal response of 
the filter.

 (a) Show that the nth recursively filtered subtraction image can be written explic-
itly as
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 (b) For large values of n (i.e., in the limit as n → +∞), assuming that the unprocessed 
images Ii each have a noise variance equal to σ, show that the noise variance ss

2  
in the recursively subtracted image is given by
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 (c) Draw a block diagram for an image processor that would allow you to perform 
the subtractive recursive filter described in this question.

 (d) The unprocessed image sequence I(t) was acquired at a rate of 30 frames a second. 
Using the partial results given in the lecture notes, show that the recursively filtered 
subtraction image S(t) can be represented as the temporal convolution
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  where τ1 and τ2 are time constants obtained from the recursion constants

 t1
1

1

30
=

k
seconds  and  t2

2

1

30
=

k
seconds.

 (e) For k1 = 1/16 and k2 = 1/32, graph the temporal filter function (as a function 
of time) derived in part (d) of this question. Intuitively discuss the temporal 
response of this filter on the image sequence with respect to stationary anatomy, 
the contrast bolus from an intravenous injection, and cardiac motion. Calculate 
the noise variance of this image using the equation you derived in part (b) of this 
question.
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V
Tomographic Imaging
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C h a p t e r  14

Computed Tomography

14.1 BACKGROUND
In 1917, Johann Radon showed that 2-D section images could be reformulated using math-
ematical transformation of projection data (i.e., using a Radon transform). Projection 
data are line integrals (summations of image values) recorded across an object at some 
angle (Figure 14.1). The connection between projection data and x-ray images was not 
initially obvious. However, motivation was high, since x-ray section images would have 
the ability to provide high contrast viewing of the body by removing interference from 
overlapping tissues. Later in this chapter, we will see how the x-ray projection dilemma 
was resolved. Even with the knowledge concerning how to make x-ray images into pro-
jections, imaging instrumentation and computing power were not able to provide this 
capability early on, so we had to wait many years for technology to match up with theory. 
By the 1960s, several research labs were able to reconstruct x-ray section images from 
x-ray projections acquired from physical objects, and these successes spurred intensive 
research on devices that could be used in medicine. In the 1970s, x-ray computed tomog-
raphy (CT) was formally introduced in clinical use and was followed by rapid tech-
nological refinements. Since reconstructed images looked like the thinly sliced tissue 
sections used for microscopic inspection, the term “tomography,” literally meaning a 
picture of a cut section, was adopted, and early x-ray tomographic imaging systems were 
called computed axial tomographic or “CAT” scanners. However, this was later dropped 
in favor of computed tomography or just CT. In 1979, two early researchers in the field, 
Allan M. Cormack and Godfrey N. Hounsfield, were jointly awarded the Nobel Prize in 
Physiology or Medicine for the “development of computer-assisted tomography.”

Figure 14.1b is an image of the set of projections [pθ(r)] for θ = 0°–180° for the CT image 
in Figure 14.1a. The top row in Figure 14.1b is at 0° and the bottom row at 180°. Columns 
index positions within projections (r). The sinusoidal appearance of paths formed by 
points 1 and 2 led us to call this image a sinogram. The 0° projection is a posterior view, 
while the 90° projection is a view from the right. Values at each x′ = r in the projection 
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pθ(r)   are  integrations across the object along a line perpendicular to the projection 
(i.e., line integrals along y′). The equation for mapping a point in the x-y image to a point 
in the r-θ sinogram (Figure 14.1) is as follows:

 r rxy( ) cos( )q j q= × - , (14.1)

where

 
r x y

y

x
xy = + = æ
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-2 2 1f tan ,

with rxy as the distance from the origin to the point x, y, φ as the counterclockwise (CCW) 
angle from the positive x-axis to the point, and θ as the angle of the projection. The three 
parameters of Equation 14.1 (r, θ, and ϕ) determine the key features of the sinusoidal path 
followed by a point in the object:

• The amplitude of the sinusoid is determined by distance from the axis of rotation (rxy).

• The phase of the sinusoid is determined from its starting phase ϕ.

• The sinusoid is theoretically fully defined over a range of θ from 0 to π or 180°.

The goal of CT imaging of the body is to obtain a set of 2-D section images, on(x, y), from 
the body’s 3-D object o(x, y, zn). During reconstruction, the z extent of the object (Δz) is 
collapsed into a 2-D section image. For simplicity, a tomographic section image will always 
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FIGURE 14.1 An x-ray CT image (a) and its projections pθ(r) (b) presented as an image called a 
sinogram.
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be treated as a 2-D function, realizing that integration along the z extent of each section of 
the object is involved.

14.2 THEORY
Fourier transform theory provides a good theoretical approach to understand the Radon 
transform and more generally tomographic reconstruction of images from projections. 
The basis for this is provided in the following equations:

 
O u v o x y e x yi ux vy( , ) ( , ) ( )= - +òò 2p d d , (14.2)

 O u v o x y( , ) ( , ) ,= Á{ } ( )shorthand notation

 
o x y O u v e u vi ux vy( , ) ( , ) ( )= - +òò 2p d d , (14.3)

 o x y O u v( , ) ( , )= Á { }-1 ,

where the integration is performed over the domains of o(x, y) and O(u, v). Equations 14.2 
and 14.3 (seen in earlier chapters) link these 2-D images as Fourier transform pairs. 
Either O(u, v) or o(x, y) can be calculated from the other, and therefore, each must encode 
a complete description of the other (Figure 14.2). Conceptually, if we are able to obtain 
O(u, v), then we can then compute o(x, y) using Equation 14.3. The following discussion 
focuses on how to obtain O(u, v) from projections.

Figure 14.2 illustrates the correspondence between spatial and frequency domain rep-
resentations of a CT section image in the head. Coordinate origins are assigned to the 

–1

x

o(x, y) |O(u, v)|

x΄y΄ y u΄
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vv΄

FIGURE 14.2 The spatial domain o(x, y) and frequency domain |O(u, v)| representations for a CT 
image of the head. Log10 |O(u, v)| was used in this figure to show the lower-magnitude higher-
frequency terms.
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center of the image arrays for both domains. This is taken to be the axis of rotation for 
imaging (x-ray CT and single-photon emission computed tomography [SPECT]). Image 
spatial coordinates (x, y) are expressed in mm and corresponding frequency coordinates 
(u,  v) in  lp/mm. While the spatial object function o(x, y) is always real, the frequency 
object function O(u, v) is usually complex. Only the magnitude of O(u, v) is illustrated in 
Figure 14.2, but in general, O(u, v) is composed of both magnitude and phase (or real and 
imaginary) parts.

14.2.1 Central Slice Theorem

The feature of the Fourier transform that provides great insight into computed tomography 
is the central slice theorem. This theorem states that the Fourier transform of the 1-D projec-
tion pθ(r) in the spatial domain is identical to the profile Pθ(s) in the 2-D Fourier domain 
(Figure 14.3). Here, r is the distance from the origin measured in the spatial domain and s 
is the distance from the origin in the 2-D spatial frequency domain, with θ as the angle of 
the projection and profile. Calculation of the frequency domain profile from Equation 14.2 
where v = 0 is helpful to illustrate this relationship:

 
O u o x y e x yiux( , ) ( , )0 2= -òò p d d , (14.4)

where the order of integration can be interchanged yielding

 
O u o x y y e xiux( , ) ( , )0 2= é

ëê
ù
ûú

×òò -d dp . (14.5)

x

p θ(r
)

P θ(s
)

θ

2

1

y

x΄y΄

–1

FIGURE 14.3 Formation of a projection pθ(r) and the magnitude of its Fourier transform Pθ(s). 
Note that here x′ = r.
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The term within the bracket is the summation or integration of o(x, y) over all y, while 
holding x constant (a line integral for each x). This is the projection of the object, 
 calculated perpendicular to the x-axis. This projection can be referred to as p0(x) and 
this leads to

 0 0
20 0P u O u p x e xiux( , ) ( , ) ( )= = ò - p d . (14.6)

Equation 14.6 shows that the profile P0(u, 0) in the 2-D frequency domain at v = 0 
 corresponds to the 1-D Fourier transform of the projection p0(x) in the spatial domain. 
Both the projection and the profile correspond to data acquired at θ = 0. A more general 
equation for the frequency domain profile is

 
P s p r e rirs

q q
p( ) ( )= -ò 2 d . (14.7)

The profile Pθ(s) is a central profile, because its origin coincides with the origin in the 
frequency domain. Equation 14.7 can be shown to be true at any angle. As stated previ-
ously, if we acquire sufficient data to determine the 2-D Fourier transform of the object 
O(u, v), then we can reconstruct it using Equation 14.2. The objective is to fill in the 
2-D Fourier space by acquiring a sufficient number of projections about the object, and 
this can be done using projections spanning 0°–180°. The following points summarize 
the theoretical requirements and basis for tomographic reconstruction in computed 
tomography:

• Projections pθ(r) are summations along a line, or line integrals of the object function 
values, at projection angles θ.

• For each spatial domain projection pθ(r), there is a corresponding frequency domain 
central profile Pθ(s). 

• If a sufficient number of spatial domain projections are acquired, then a sufficient 
number of central profiles Pθ(s) can be calculated to fill the 2-D Fourier domain. 
An inverse Fourier transform can be used to calculate o(x, y) using Equation 14.3.

These points help to explain how a tomographic image can be calculated from projections. 
There are various methods to acquire projection data for x-ray CT and nuclear medicine 
PET and SPECT images, but all are based on this mathematical description of computed 
tomography. Several reconstruction methods will be discussed later in this chapter.

14.2.2 Definition of Projection

A challenge for CT image acquisition is to acquire projection data from a section of the 
object that effectively fills the 2-D frequency domain. A strict requirement is that the 
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acquired data conform to the definition of a projection. A projection can be mathematically 
defined using a delta function as

 
p r o x y r x y x yq d q q( ) ( , ) ( cos( ) sin( )= - -òò d d . (14.8)

To help understand the role of the arguments in the delta function, we need the corre-
spondence between locations in natural (x, y) and rotated (x′, y′) coordinate systems. The 
mathematical relationship for a CCW rotation of angle θ about the origin (x, y = 0, 0) is 
determined using the following transform matrix:
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From Equation 14.9, we see that the argument of the delta function in Equation 14.8 
involves x′ = x cos(θ) + y sin(θ).  Therefore, the integration in Equation 14.8 is constrained 
to be along a line r = x′ by δ(r − x′), which is parallel to the y′ axis (see Figure 14.3). 
The coordinate origin for x-ray CT is the axis of rotation or the axis about which projec-
tions are acquired. Equation 14.9 can be used for backprojection and reprojection, since 
given x′, y′, and θ, we can calculate x and y. During projection for each x′ (analogous to r), 
we sum along y′ to calculate pθ(r). For backprojection, we divide the projection data pθ(r) 
equally along y′. 

In x-ray and nuclear medicine tomographic imaging (SPECT) projections, pθ(r) are usu-
ally acquired by rotating the imaging device through a series of angles (θ) about the object. 
Since the projection at angle θ should be identical to that at angle θ + 180°, only 180° scan-
ning is required. This is confirmed by the fact that the 2-D Fourier space is completely 
filled with profiles spanning 180°. For various reasons, the scan angle extent is usually 
larger than 180°. However, angular extent smaller than 180° will not completely fill the 
2-D Fourier space of the object and leads to reconstruction errors. Note: Undersampling 
of the 2-D Fourier space can be partly compensated by interpolating values between miss-
ing profiles or reducing the highest frequency used during reconstruction, but both lead 
to reduced spatial resolution. Additionally, for SPECT, opposing projections are not equal 
due to differences in attenuation, so opposing projections, each spanning 180°, are used to 
estimate corrected projections.

14.2.3 Line Integrals

As stated in the introduction, a projection must be composed of line integrals (i.e., sum-
mation) of object values. This requirement is especially important in x-ray CT, since raw 
projection data are the intensity of the x-rays transmitted through the object, not an inte-
gration of object values. To understand how x-ray CT projection data are converted to a 
proper set of line integrals, the characteristics of the raw x-ray projection data, need to be 
analyzed. The x-ray intensity at a location r in a projection is modeled as follows:
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where
I0(r) is the intensity at r without the object
μ(x, y) is the linear attenuation coefficient at object location x, y

Dividing both sides of Equation 14.10 by I0(r) and taking the natural logarithm leads to an 
equation for the integral of linear attenuation coefficients, that is, projection pθ(r) along a 
line defined by r:
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For x-ray CT, raw projection data are converted logarithmically into proper projection data 
using Equation 14.11. Inspection of this equation shows that in x-ray CT the values computed 
during reconstruction are linear attenuation coefficients μ(x, y). Unlike x-ray CT, for SPECT 
the raw projections do not require such conversion and the computed values in SPECT 
images are activity concentration/voxel (Bq/cc).

14.2.4 X-Ray CT Number Standardization

While x-ray CT directly calculates images with pixel values that are linear attenuation 
coefficients, a different scheme was devised to help standardize CT numbers. Hounsfield 
suggested that it would be useful to report CT values as relative attenuation with the attenu-
ation coefficient of water being the reference value. This led to the following equation for 
CT numbers:

 
CT water

water

# = - ´m m
m

1000. (14.12)

Inspection of these CT#’s shows that the CT#water = 0 and CT#air = −1000. Since 
the   linear attenuation coefficient of fat is less than that of water, the CT number of 
fat is  negative. Most other soft tissues are positive, while that of dense bone can be as 
high as 3000. The adoption of CT numbers has helped to standardize CT image values 
across machines and hospitals. Importantly, x-ray CT numbers can be less sensitive to 
changes in kVp and beam filtration than are linear attenuation coefficients. Can you 
explain why?

14.2.5 Reconstruction by Backprojection

While there are several approaches to determine o(x, y) from O(u, v), the most basic, 
though not mathematically correct, is called simple backprojection. Simple backprojection 
is an attempt to redistribute line integral data into the object. Backprojection uniformly 
redistributes the line integral values within a circle of diameter equal to the length of the 
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projections. This circle is called the scan circle. The entire object must reside in the scan circle 
to be correctly reconstructed; otherwise, it will not be sampled at each projection. Simple back-
projection (unfiltered backprojection in Figure 14.4) fails to correctly reconstruct the object 
from its projections. This is easy to understand from the following example:

If a point-like object (centered in the scan circle) is imaged, each projection will be iden-
tical, having data only at its center. Backprojection of the first projection divides its value 
(sum of image date) equally along a line passing through the origin. A similar uniformly 
filled line will be backprojected for each projection angle. During each backprojection, 
new values are added to previous values. At the center of the image, each backprojection 
contributes to the sum; however, backprojections also sum further away from the center. 
Therefore, the image of the point source reconstructed using simple backprojection is 
spread out. This image is in fact the point spread function (PSF) of image formation using 
simple backprojection (Figure 14.5). This PSF diminishes with distance from the center 
following a 1/r trend, and results from the overlapping of backprojected lines, where all 
lines overlap at the origin.

There is another way to look at the problem associated with simple backprojection. If 
simple backprojection worked properly, then reprojection from the backprojected image 
should produce projections identical to those from the real object. This cannot happen due 
to the overlapping of different projections, which produce nonzero values for line integrals 
away from the center during reprojection. The only solution to this dilemma is for the 

Unfiltered
Backprojection

with sum

Filtered
Backprojection

with sum

Object

256 × 256 object
sinogram 402 projections

with 256 samples/projection
Ramp for filtered BP

FIGURE 14.4 Filtered backprojection image is a faithful reproduction, while simple (unfiltered) 
backprojection image is blurred.
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projection data to be modified to include both positive and negative values to remove such. 
This will become obvious soon.

While simple backprojection forms a blurred version of a point object (Figure 14.5, 
middle), a special ramp-filtered backprojection approach (Figure 14.5, right) produces a 
nearly perfect replica of the point object. The source of this problem can be seen by inspec-
tion of the PSF of simple backprojection (Figure 14.5). The profile through this spread func-
tion reveals that the simple backprojection psf(r) drops off as 1/r. There are two approaches 
to remove the blurring introduced by this 1/r broadening of psf(k). One method to cor-
rect for the blurring is to deconvolve the backprojected image with an appropriate func-
tion in the spatial domain. However, this is not the most straightforward approach, and a 
Fourier domain approach is usually preferred. Blurring in the spatial domain is described 
mathematically as follows:

 i(x, y) = o(x, y) ⊗⊗ psf(x, y), (14.13)

where psf(x, y) = k/r and r = (x2 + y2)1/2. The corresponding equation in the Fourier 
domain is

 I(u, v) = O(u, v) STF(u, v), (14.14)
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FIGURE 14.5 Comparison of PSFs for simple and ramp-filtered backprojection methods.
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where STF(u, v) = K/ρ, ρ = (u2 + v2)1/2. This STF shows a net reduction in frequency response 
following an inverse ρ trend for simple backprojection. For realistic PSFs, neither k/r nor 
K/ρ approach ∞ as their denominators approach zero. In fact for real CT, the value of K/ρ 
is equal to an integral about k/r near r = 0 (determined by voxel size). We will see how this 
can be calculated for discrete CT data later. The drop-off in frequency response in I(u, v) 
can be correctly compensated by multiplication of I(u, v) by the inverse of STF, which is 
ρ/K, to calculate O(u, v) as follows:

 O(u, v) = I(u, v) · ρ/K. (14.15)

The ρ/K term is a straight line with zero intercept as a function of ρ, and due to this appear-
ance is referred to as a “ramp” filter. Similarly, the processing indicated in Equation 14.15 is 
called “ramp filtering.” The ramp filter compensates for the loss in high-frequency response 
due to the oversampling of low frequencies and likewise undersampling of high frequen-
cies associated with summation and backprojection.

Ramp filtering is generally done on a projection-by-projection basis to provide filtered 
projections as follows:

 ¢ = Á × ×-p r P s s Kq q( ) [ ( )1 / , (14.16)

where |s| is the frequency equivalent of ρ from Equation 14.15. Backprojection after filtering 
with a ramp filter is called “filtered backprojection.” Its effect is to create an almost perfect 
reconstruction (Figure 14.5).

An intuitive description of the requirement of a ramp filter for proper CT reconstruc-
tion from projections follows from inspection of pθ(r), Pθ(s), and PSF(u, v) for a point 
object δ(x, y). For a perfect CT imager, that is, no unsharpness, each pθ(r) will be a 1-D 
delta function δ(r) and its Fourier transform, Pθ(s), will be a constant = 1. To model sim-
ple backprojection in the u, v domain, each Pθ(s) must be added to the u, v domain at the 
proper angle. This means that the response at the origin [PSF(u = 0, v = 0)] will be equal 
to Np where Np is the number of projections overlapping at the origin, since the central 
slice theorem states that all Pθ(s) pass through the origin. Also, PSF(u, v) will fall off as 
1/|s| moves away from the origin. This is because at each radial distance from the origin, 
2Np projections are summed along a circle of circumference = 2πρ, so the magnitude 
decreases with increasing radius as Np/(πρ) (|s| and ρ are used synonymously). To achieve 
a constant frequency response (the correct Fourier transform of δ(x, y)), PSF(ρ) must be 
multiplied by a frequency compensation term like (πρ)/Np. While this description does 
not exactly match that in Equation 14.15, the difference decreases with normalization of 
the final data.

The 2-D Fourier transform of δ(x, y) should be uniform across the u, v frequency 
space. The need to increase magnitude as a function of frequency stems from the fact 
that while each profile can have a uniform frequency response, when summed into the 
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2-D Fourier space, the net magnitude decreases following 1/ρ. Compensation for this 
high-frequency drop-off results in “equalized” frequency response and explains the 
necessity for the ramp filter. Since it is simpler to perform the filtering in 1-D, Equation 
14.16 is usually used. Also, when using this technique, reconstruction can be done dur-
ing data acquisition, where each acquired projection is filtered and backprojected as 
soon as it is acquired. Reconstructed slice images are available immediately following 
the acquisition of a complete set of projection data. Filtered backprojection implements 
the Radon transform.

It is certainly possible to reconstruct o(x, y) directly from O(u, v) by taking the inverse 
Fourier transform bypassing the need for backprojection. However, unlike filtered back-
projection where backprojection can be done immediately following acquisition of each 
new projection, the 2-D inverse Fourier transform method can be applied only after all 
projections have been transformed to Fourier space, that is, the end of the scan. Early 
systems were very slow and filtered backprojection soon became the preferred approach. 
It should be noted that filling in O(u, v) from Fourier transform of projections must be 
done carefully to avoid summing of overlapping projections. One way to do this is to sum 
and fill normally, but save a buffer of how many entries were made, and correct to the 
average values once all projections are acquired.

Projection data do not have to be acquired using parallel lines for integration. For 
improved geometrical efficiency, fan beam geometry is commonly used in x-ray CT. The fan 
beam line integrals can be sorted into parallel projections before processing or processed 
using a different filter. However, all discussions in this chapter focus on parallel beam-type 
projections and reconstructions.

14.3 PRACTICAL CONSIDERATIONS
14.3.1 Number of Samples per Projection

The value of each sample point in a projection is a line integral across the object. Each sam-
ple is acquired by a single or grouping of detectors. The number of samples per projection, 
Ns, can be estimated using Shannon’s sampling theorem. Recall that this theorem speci-
fies that the sampling frequency fs ≥ 2fmax where fmax is the highest frequency or limiting 
bandwidth of the imaging system. This sampling frequency is necessary to avoid aliasing. 
The number of samples per projection based on the sampling theorem is

 Ns = 2 [samples/lp] × fmax [lp/mm] × FOV [mm], (14.17)

 Ns = 2fmaxFOV [samples].

Example 14.1

Ns for X-Ray CT
For CT imaging fmax ~ 1 lp/mm and FOV = 256 mm, so Ns = 512 samples.
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Example 14.2

Ns for SPECT
For SPECT, fmax ~ 1 lp/cm, and Ns = 50 for a 25 cm FOV (would likely use Ns = 64). 
This would increase to Ns = 80 for a 40 cm FOV (would likely use Ns = 128).

14.3.2 Number of Projections

The number of projections (Np) is calculated to ensure equivalent sampling around the 
scan circle in u, v space. This is accomplished if sampling along the circumference of the 
scan circle (one sample per projection) in u, v space matches sampling along the diameter. 
The number of samples in a projection Ns is the same as the number of samples along the 
diameter of the scan circle in Fourier space (ranging from –fmax to +fmax). To maintain this 
sample spacing, we need to have πNs samples around the scan circle’s circumference. Since 
each projection’s Fourier profile provides two points in u, v space along this circumference, 
the number of projections needed is one-half the πNs value or

 Np = π/2 · Ns [projections]. (14.18)

Figure 14.6 illustrates the improvement in a reconstructed point object following the 
 guideline given in Equation 14.18. Np is just a multiple of Ns, so it can be calculated simi-
larly from fmax and the FOV:

 Np = πfmaxFOV. (14.19)

The total number of line integrals acquired is equal to the number of samples per projection 
times the number of projections = NsNp. The following table summarizes this for several 
imaging system configurations:

Application Ns Np # Line Integrals 

Nuc Med 64 101 6,464
Nuc Med 128 201 25,728
X-ray CT 512 804 411,648
X-ray CT 1024 1608 1,646,592

14.3.3 CT Filter Response

Though the mathematical form of the “ramp” filter for theoretically correct CT reconstruc-
tion is well known, in most cases, the filter must be modified to reduce output at higher 
frequencies where the SNR can be very low. This is accomplished using a low-pass filter. 
Though the bandwidth of the low-pass filter is user selectable most x-ray CT consoles only 
provide options such as high-, medium-, and low-resolution filters. PET and SPECT systems 
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generally provide a wider range of filters. A common low-pass filter is a Butterworth filter 
(Figure 14.7). It is a two-parameter filter with frequency response as follows:

 
Butterworth
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where
u0 is the frequency where filter output = 1/2 (called the bandwidth of the filter)
N is the order of the filter

The filter magnitude = 1 for u = 0 and approaches zero large values of u. The steepness of 
the filter response around u0 increases as N is increased. The selection of N is based on 
frequency response needs above and below the designated bandwidth.
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FIGURE 14.6 Bottom shows improvement in background around reconstructed point when the 
number of projections Np = π/2 · Ns where Ns is the number of samples per projection.
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The net CT image frequency response is determined as the product of the ramp filter and 
the user-selected low-pass filter (Figure 14.8). The net filter response peaks somewhere below 
u0, tracks the ramp at lower frequencies, and tends to approach zero at higher frequencies.

Figure 14.9 shows the MTF and noise of a tomographic imager prior to application of the 
net CT filter. It demonstrates the need to taper the output of the filter at high frequencies 
where SNR is poor, while following the theoretical ramp at lower frequencies.
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FIGURE 14.7 Frequency response for several Butterworth type filters used with SPECT and PET.

0.6 0.7 0.8 0.9 10.50.40.30.20.1

0.1

0
0

Frequency (1 = Nyquist limit)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
ag

ni
tu

de

Ramp * Butterworth (N = 8, BW = 0.5)
Ramp filter

FIGURE 14.8 Net CT filter response is ramp (dotted) multiplied by a Butterworth filter.



Computed Tomography   ◾   285

Low-pass filtering is critical in nuclear medicine (SPECT and PET), because the projec-
tion data are often very noisy due to the limited number of quanta per voxel. To deal with 
this, low-pass filter bandwidth is set at approximately 1/2 the Nyquist limiting frequency, 
as illustrated in Figure 14.9. While such low-pass filters improve the SNR in reconstructed 
images they degrade resolution, with response above u0 more attenuated.

In x-ray CT, similar low-pass filtering is available, but u0 appears to be well above 1/2 of 
the Nyquist limit, since image detail is maintained with good SNR over a broader range 
of frequencies for most studies. Smoother images result for u0 near 1/2 Nyquist limit with 
sharpness improving as u0 is increased. The higher SNR at any given frequency for x-ray 
CT versus SPECT and PET systems is due to the much larger number of x-ray quanta per 
voxel acquired in x-ray CT.

14.3.4 Beam Hardening

A problem with using the naturally polyenergetic x-ray beam for CT is that the beam will 
be harder (mean energy higher) for thicker body regions, due to the longer attenuation 
path. A common example of this is when imaging a cylindrical phantom (Figure 14.10). 
Note that higher mean energy means less attenuation and indicates a smaller aver-
age  linear attenuation coefficient (μ) for x-rays passing through center of the phantom. 
The profile of a reconstructed CT image will be lower in the middle, since μ is proportional 
to CT#. The cupping seen in the graph of Figure 14.10 is the result of beam hardening in 
x-ray CT images.

There are several ways to resolve this beam-hardening problem. A common method 
is to preharden the x-ray beam with a thicker in-beam aluminum filter so that the addi-
tional hardening caused by the patient leads to a smaller percentage change in the mean 
x-ray beam energy. This approach is supplemented by the use of a higher kVp beam 
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(125–130 kVp) than for routine projection radiographic imaging. A second method to reduce 
the beam-hardening effect seen in Figure 14.10 is to use a “bow-tie”-shaped aluminum filter 
to preharden the periphery (i.e., ray 2) more than the center of the beam (ray 1). This can be 
effective for cylindrical objects, but is not acceptable as a general solution. A third method, 
and one not used much anymore, is to surround the object with a water bag. This was 
mostly used to reduce the dynamic range of x-ray intensity between detectors in the middle 
of the FOV and those at the periphery. Early CT detectors were limited in dynamic range, 
the ratio of highest to lowest x-ray intensity seen by the detectors.

A more analytical approach to correct for periphery-to-center beam hardening is based 
on a measured ratio of I0 (no-attenuation signal) to I (attenuated signal). The logarithm of 
the ratio of I0 to I, if mean energy does not change (i.e., no beam hardening), should be a 
line with slope = μ and intercept = 0 when plotted against diameter of a cylindrical water 
phantom (Figure 14.11). This follows from the simple equation describing attenuation of 
x-rays:

 ln(I0/I) = μd. (14.21)

Data acquired with varying diameter d are used to correct measured values of ln(I0/I) to 
theoretical values using a look-up table. In this example, a value of ln(I0/I) = 4.8 would be 
mapped to a value of 5.6. This is a reasonably good method to correct the periphery-to-
center beam-hardening problem for soft tissues and near cylindrical body sections. Some 
form of this correction is used on all x-ray CT machines.

Another beam-hardening problem often seen in head CT images comes from large 
differences in attenuation for rays traversing bone versus soft tissue. This beam hardening 
cannot be corrected completely without some form of iterative processing. The result is 
streak artifacts near sharp edges of bone.
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FIGURE 14.10 X-ray CT beam hardening for a cylindrical phantom of uniform attenuation illus-
trating dip in attenuation coefficients calculated near the center of the projection profile curve.
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14.4 OTHER CONSIDERATIONS
Attenuation correction for SPECT and PET is required to provide true line integrals for 
projections. PET attenuation correction is quite good though SPECT attenuation correc-
tion is sometimes poor. Both can use 360° data acquisition, and this is needed for good 
attenuation correction. PET acquires multiple slices simultaneously without rotation of 
the detectors. SPECT acquires multiple slices in one rotation of detectors. X-ray CT now 
can acquire multiple sections with high-speed helical scanners.

HOMEWORK PROBLEMS
P14.1 Calculate the projections (Pθ(r) from Equation 14.11) at 0° and 45° for a square object 

10 cm on each side, if μ = 0.2 cm−1. Use the coordinate system given in Figure 14.2.

P14.2 You are working on a research project to build a micro-CT system with x, y, and 
z spatial resolution of 10 microns and a field of view of 5 cm. The system uses a 
pencil beam that is scanned across the object and then the object is rotated. The 
object is translated (stepped) in the z direction and the process is repeated. What 
values would you select for each of the following and show how you arrived at your 
conclusion:

 (a) Dimensions of x-ray beam

 (b) Distance between steps in the z direction

 (c) Number of samples per projection
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FIGURE 14.11 X-ray beam-hardening correction scheme adjusts measured attenuation products 
to match the theoretical values.
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 (d) Number of projections

 (e) Image matrix size

 (f) Form of the reconstruction filter

P14.3 A simple formula can be used to estimate the form of the ramp filter for filtering the 
Fourier transform of projections. Given that Ramp(u) = 1/Np at u = 0 and Ramp(u) = 1 
at u = umax, show that
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P14.4 The mean linear attenuation coefficient for a 40 cm water phantom is 0.2 cm−1. What 
is the dynamic range of x-ray intensity seen by the CT detectors? Can this range be 
properly recorded with a 16-bit binary data format?

P14.5 You have been asked to determine the center of rotation (COR) of a SPECT camera. 
Explain how you might do this using modified Equation 14.1. Also, suppose that 
the SPECT camera is wobbling about its COR during rotation (maybe because of 
gravity), how can you detect this problem?
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C h a p t e r  15

Single-Photon Emission 
Computed Tomography

15.1 BACKGROUND
Single-photon emission computed tomography (SPECT) systems are available with 
single and multiple camera heads. Dual head systems are common, where camera heads 
are set 180° apart on a rotating gantry, a configuration that is naturally counterbalanced. 
Spatial resolution decreases with distance from the face of the camera’s collimators due 
to the overlapping of the field of view (FOV) of adjacent collimator channels. Most 
collimators for SPECT are parallel-channel designs with longer channels than used for 
planar imaging, since resolution does not diminish as rapidly with distance for longer 
channels. Some SPECT systems use body contouring, where the camera follows an 
outline of the body as it rotates about the patient, in order to keep the collimator close 
to the body. Iterative reconstruction techniques can incorporate models of collimator 
resolution changes with distance such that modern SPECT systems can provide spatial 
resolution of ~10 mm at depth. Since sources deep within the body are attenuated more 
than superficial ones, attenuation correction must be included in the reconstruction 
process. Attenuation correction methods are based on estimating attenuation for 
each  projection. For combined SPECT/CT systems, the attenuation coefficients are 
estimated from the CT image with attenuation coefficients adjusted to the energy of the 
radionuclide used (mostly 140 keV for Tc-99(m)).

Spatial resolution, contrast, uniformity, and sensitivity should be routinely evaluated 
for nuclear medicine imaging systems, with more strict criteria for SPECT systems than 
planar gamma cameras. However, many important assessments can be performed using 
only planar images.
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15.2 SPATIAL RESOLUTION
15.2.1 Intrinsic Resolution

It is important to assess the intrinsic spatial resolution (without collimator) of each 
camera head. Routine testing (quality control) of spatial resolution often uses a 
4-quadrant bar phantom to assess limiting spatial resolution (Figure 15.1). Here, the 
bar width and spacing is identical within each pattern and the smaller bars represent 
higher spatial frequencies. For large field of view (LFOV) cameras, the bar phan-
tom image is acquired with a minimum of two million counts. The image should be 
acquired such that these counts are within the bar pattern; however, in Figure 15.1a, 
a large proportion of the counts were outside the range of the bar patterns (an example only). 
Gamma  camera  vendors usually supply a lead device to shield out these peripheral 
counts. In this  example, all bars were visualized, so the limiting intrinsic resolution 
spatial resolution could not be determined visually, since it would have occurred with 
bars smaller than those of the phantom. For visual only assessment of limiting spatial 
resolution, the test should be done with bar phantoms having small bars that cannot be 
visualized and preferably more than four bar patterns.

While visual assessment is common for gamma camera quality control, a more quanti-
tative approach can be used to track changes in spatial resolution and determine when to 
take corrective action. Profile graphs spanning multiple bars in the 256 × 256 pixel image 
show different periods/frequencies and amplitudes for two bar patterns (Figure 15.2, 
bottom). Note the variability in each pattern’s amplitude in the profile graphs.

A quality control bar phantom image such as that in Figures 15.1 and 15.2 can be 
used to assess spatial resolution reliably and quantitatively. Quantitation is based on 

(a)

Bar 1
Bar 2
Bar 3
Bar 4

(b)

FIGURE 15.1 (See color insert.) Bar phantom image for LFOV camera head (a) and ROI for 
assessing change of contrast with decreasing bar size (b).
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statistical measures (mean and variance) within regions of interest (ROIs) for each bar pat-
tern (Figure 15.1b). The ROIs must be properly sized and positioned to stay within the bars. 
Circular ROIs are preferred, since these cover approximately the same bar area regardless 
of phantom orientation. The variance measured within the ROIs is due to three sources: 
(1) the amplitude of the bar pattern, (2) quantum statistical variance (equal to the mean 
value), and (3) variance due to spatial nonuniformity of the gamma camera (Figure 15.4). 
The variance due to the bar patterns is estimated by subtracting quantum and camera 
variance from the measured variance.

The contrast (C) for periodic signals such as those in the profile curves in Figure 15.2 
is the amplitude divided by the mean value, but the amplitudes vary significantly across 
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the profiles, making it difficult to estimate amplitude accurately. However, the standard 
deviation (SD) of the signal in the profile curve is easy to determine and is related to the signal 
amplitude. Additionally, the SD and mean values for profiles can be calculated without 
explicitly determining amplitude, using all of the profile’s data, not just peak and valley 
values. Importantly, the relationship between mean values and SDs for profiles also holds 
for the ROIs used to assess these statistics within the different bar patterns. Therefore, for 
the ROIs, the ratio (estimated SD)/(mean value) can be used as a SD-based measure of 
contrast (CSD), where the SD has been corrected for random and spatial uniformity sources 
of variance. The CSD values calculated for the bar phantom in Figure 15.1b are 0.44, 0.38, 
0.32, and 0.21 for the largest to the smallest bars. The CSD values (0.46 and 0.32) calculated 
for the profiles in Figure 15.2 were similar to those using only the ROIs. While results are 
similar, reproducibility is poorer when using the profiles due to the smaller number of 
samples values (quantum variance), variations due to positioning (location and orienta-
tion) of profile lines, and camera nonuniformity that is not usually assessed for a profile 
line. Therefore, the large circular ROIs are recommended for this assessment.

CSD values by bar size can be recorded and tracked weekly to monitor for changes. Loss 
of spatial resolution will affect smaller bars (higher-frequency sinusoidal pattern) more 
than larger bars, adding to the specificity of this approach. A reduction in CSD of more than 
10% for the smaller bars (the ones with contrast = 0.21) could be designated as a thresh-
old for action. However, actual values and thresholds for action need to be evaluated for 
each gamma camera. The utility of this approach is that the ROIs can be easily positioned 
within each bar pattern as compared with other methods that require careful alignment 
for determining profile values. Additionally, many different points in the bar phantom 
image are analyzed, reducing confounds associated with pixel size and statistical noise.

Since it is important to assess spatial resolution for both horizontal and vertical lines, 
and to do this in each quadrant, this can be done by periodically rotating the quadrant 
phantom to the four 90° orientations, then flipping to swap, and repeating to swap hori-
zontally and vertically oriented patterns. This need not be done routinely, but can be used 
to provide baseline measures of the four patterns in each quadrant of FOV for both hori-
zontally and vertically oriented bars.

Intrinsic gamma camera spatial resolution can also be evaluated from an image of an 
edge of a lead plate formed using a small point source at a distance of ~5 × FOV of the 
gamma camera. Mean counts/pixel due to background radiation (assessed behind the lead 
plate) must be subtracted from each pixel. A profile curve across the edge provides an edge-
spread function (ESF). Multiple profiles can be acquired, aligned, and averaged to improve 
statistics. Setting the maximum value to unity normalizes the ESF. The derivative of the 
ESF is the LSF. To manage random noise, the LSF is usually fit with a Gaussian function 
and where FWHMraw = 2.35σ with σ determined from the fitted LSF.

Unlike the approach with a bar phantom using circular ROIs, the pixel size for edge 
imaging must be small compared to the gamma camera’s FWHM. A pixel spacing of 1/5th–
1/10th the FWHM is adequate, but that may not be possible. For the gamma camera used 
for Figure 15.2, this would require approximately 2×–3× as many pixels in each direction, 
or 4×–9× as many total pixels, and most users would not routinely do this, but physicists 
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and engineers when making this assessment should use the highest detail matrix. The effect 
of pixel size can be partially corrected using

 FWHM FWHMnet raw
2= - D( )2 1 2/

, (15.1)

where Δ is the pixel width.

15.2.2 Extrinsic Resolution

The extrinsic spatial resolution of a gamma camera is measured with the collimator on 
(EXON to help remember). This in an overall measure of system spatial resolution and 
should be evaluated for each collimator at two distances, 0 and 10 cm (or 20 cm for tomo-
graphic systems) from the collimator face. The bar phantom used for intrinsic resolution 
testing is not appropriate for use with the collimator on (due to interference between the 
periodic collimator channel spacing and the bars at 0 cm distance), so visual assessment 
for QC is not reliable at that distance. Extrinsic gamma camera spatial resolution can be 
evaluated using a radioactive edge, line, or point sources, but line and point sources are 
more common. A microhematocrit capillary tube with inner diameter <1 mm containing 
Tc-99(m) can be used for acquiring a line-source image. A Co-57 spot marker (1″ diameter 
acrylic with 3.0–3.5 mm diameter sealed source) can be used to acquire a point source 
image. A line spread function (LSF) or point spread function (PSF) is calculated from these 
images and the FWHM and FWTM determined as an indices of system spatial resolution. 
The larger diameter of the Co-57 marker will lead to an overestimation of the FWHM 
(especially at 0 cm), but this can be partially corrected for using

 FWHM FWHMnet raw
22 2= -d , (15.2)

where d is the diameter of the Co-57 marker source.

15.2.3 Collimator Resolution

The spatial resolution due to collimator alone can be estimated using the following

 FWHM FWHM FWHMextrinsic collimator intrinsic

1 2
= +( )2 2 /

 (15.3)

and solving for FWHMcollimator. This and the equation for correcting for marker (15.2) 
size are based on the assumption that the spread functions are uncorrelated and approxi-
mately Gaussian.

15.2.4 Resolution by Direction and Position

For planar imaging systems, spatial resolution is generally calculated for both vertical 
(y) and horizontal (x) directions. These may differ across the FOV, and detailed studies 
can be performed to test such. For example, a bar phantom can be positioned such that 
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both horizontal and vertical bars of each bar pattern are possible for each quadrant of the 
gamma camera. Then, CSD could then be compared by quadrant. A test such as this would 
not need to be performed weekly but may be indicated annually, or after major upgrades 
or repairs.

Since SPECT produces 3-D tomographic images, there are more directions of interest 
in spatial resolution (including between slices). Additionally, since collimator resolution 
varies with distance, it is important to assess these at the center and periphery of the recon-
structed section images. Point or line sources can be used to assess spatial resolution for 
SPECT. The acquisition parameters (number of samples per projection, number of projec-
tions, and total counts) should be held constant for repeat testing of spatial resolution. 
Also, tomographic spatial resolution should be tested using only the “ramp” reconstruction 
filter. This avoids the effect of low-pass filters on the high-frequency response. Finally, 
sufficient counts should be obtained to minimize effects of quantum noise. It may also be 
beneficial to measure reconstructed spatial resolution with low-pass filters commonly used 
in clinical studies. Further information regarding methods for assessing spatial resolution 
can be found in AAPM Report 52 Quantitation of SPECT Performance.

15.3 CONTRAST
Subject contrast in nuclear medicine images was a topic in Chapter 4. Scatter within the 
subject reduces image contrast. Since scattering reduces the energy of gammas, the effect 
of scatter can be moderated by only accepting counts for events when the energy is within 
±10% of the desired gamma energy (±14 keV for 140 keV photons of Tc-99(m)). This 
energy range preferentially accepts primary radiation while rejecting larger-angle scatter. 
Contrast at different distances can differ with different collimators, so it should be tested 
with consistent energy window settings and collimators. A phantom with two chambers 
containing known radioactivity concentrations (Bq/cc) can be used to evaluate contrast in 
tomographically reconstructed images. The phantom image should be acquired with high 
information density (counts/cc) to minimize statistical noise. Initial testing of new systems 
is recommended to establish acceptable image contrast for the test conditions and phan-
tom. It is common practice to use a commercial ECT phantom to test contrast as a function 
of the size of various spheres. Additional information concerning assessing contrast can be 
found in AAPM Report 52 Quantitation of SPECT Performance.

15.4 NOISE AND UNIFORMITY
SPECT systems are based on Anger-type gamma cameras that acquire planar projection 
images at each projection angle. Tomographic images are computed using filtered back-
projection from the gamma camera’s planar projection images. The ramp filter accentuates 
high frequencies where the SNR is generally lower, and it is important that both signal and 
noise across the camera’s FOV be uniform, that is, that the SNR does not vary spatially.

The most common quality control test for gamma cameras is the uniformity test. This 
test involves imaging with a uniform flux of radiation across the FOV and evaluating the 
image uniformity. The acquired image is called a “flood” image, and uniform radiation 
sources are called flood sources or uniformity phantoms. Uniformity is more critical in 
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the central FOV or CFOV, the region of diagnostic focus, so manufacturers must report 
expected uniformity for both the CFOV (diameter = 75% UFOV) and for the useful FOV 
(UFOV) with diameter 95% = FOV. The full FOV is defined as the FWHM of the flood 
image. For SPECT, uniformity must be consistent across the entire FOV used for recon-
struction. Uniformity testing can be done with the collimator off (intrinsic test) or with the 
collimator on (extrinsic test). The older AAPM Report 9 Computer Aided Gamma Camera 
Acceptance Testing provides detailed methods for testing uniformity. A more recent, 
and excellent source of information is the NEMA publication NU 1-2012 Performance 
Measurements of Gamma Cameras.

It is important to assess spatial uniformity for each camera head. Uniformity testing 
acquires a uniform flux for a total of five million counts for an LFOV camera head (two 
million if planar imaging only). The flood image in Figure 15.3a is an example of not using 
the vendor supplied lead mask to avoid excessive counts at the periphery. The uniformity 
for this older camera was acceptable for use in planar imaging but might lead to artifacts 
if used for SPECT; this older system was only used for planar imaging. The multiple ROIs 
in Figure 15.3b are provided as examples of establishing the FOV, which was troublesome 
due to the excess count density at the periphery. In this case, we defined the FOV using the 
50% threshold of the inner rim of this bright region (FOVin). The UFOV and CFOV were 
based on FOVin. To quantify spatial variance due to the camera nonuniformity for each of 
these ROIs, we must remove the variance due to counting statistics, assumed to be equal 
to the mean value:

 SD SD Meancamera ROI
2

ROI= -  (15.4)

(a)

CFOV
UFOV
FOVin
FOVout

(b)

FIGURE 15.3 (See color insert.) (a) Flood image for LFOV camera head with (b) ROIs for the FOV 
(outer and inter-ridge), UFOV, and CFOV.
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An index of uniformity is the ratio of camera standard deviation (SDcamera) divided by 
the mean for each ROI. This measure indicated acceptable uniformity indices of 3.1% 
for the CFOV, where it should be <5%, and 7.9% for the UFOV, where it should be <10%. 
The uniformity index was excessive for FOVin (16.0%) and FOVout (46.1%). These mea-
sures of uniformity emphasize the need to focus diagnostic attention to the CFOV and 
UFOV of older gamma cameras.

The statistical approach based on the SD in large FOVs is not optimal to detect nonuni-
formity in small regions, so a method was proposed by NEMA to deal with this based on 
an analysis of maximum and minimum values in a moving window that is used to assess 
“regional” uniformity.

All modern gamma cameras use microprocessors for uniformity correction (Figure 15.4). 
Uniformity correction microprocessors store a mapped array of correction factors span-
ning the FOV, and corrections are applied on the fly as the image is acquired. Early ver-
sions of microprocessors approached correction using a postprocessing sensitivity map, 
scaling low-count areas up and high-count areas down. However, this method failed to 
maintain uniform noise levels and the SNR varied across the UFOV.

Uniformity correction microprocessors were subsequently introduced with multiple 
correction methods to improve results: energy correction, linearity correction, and sen-
sitivity correction. These correction methods were based on physical principles derived 
from two fundamental sources of gamma camera nonuniformity: (1) spatial variations 
in energy resolution and (2) spatial nonlinearity. Energy resolution varies between vs. 
beneath PMTs and at the edge of the FOV due to differences in light collection efficiency 

FIGURE 15.4 Modern gamma camera used for SPECT. FOV and UFOV are highlighted.
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Energy resolution is based on the number of light photons collected per scintillation.  
Newer systems deal with the spatially varying energy resolution by varying gain and win-
dow width by location. The gain is adjusted such that the location of the peak in the pulse 
height spectra (called photopeak) is consistent across the FOV. Where fewer light photons 
are collected, the width of the distribution about the photopeak in the pulse height spectra 
changes, wider for fewer light photons. This is corrected by adjusting local energy window 
widths to match the same fraction of the distributions counts across the FOV. When prop-
erly calibrated, energy correction can provide a consistent count rate across the UFOV, 
such that quantum noise is uniform.

However, energy correction alone does not resolve the other fundamental source of non-
uniformity in the gamma camera images, spatial nonlinearity. Spatial nonlinearity is seen 
as mispositioning of the site where gammas interact within the crystal. The energy from 
each gamma absorbed within the crystal is converted to a large number of light photons 
promptly emitted within the crystal (collectively called scintillation). These light photons 
are converted to electrical signals by the PMTs, and a weighted signal calculated based 
on the PMT’s x- and y-location within the FOV. The individual x- and y-signals from the 
PMTs are summed and normalized to estimate the x- and y-location of the scintillation. 
Positional errors vary beneath versus between PMTs, such that parallel lines tend to bow 
toward PMTs. In newer systems, this source of spatial nonlinearity is evaluated by imaging 
a phantom with holes of fixed spacing and known positions and calculating x- and y-shifts 
corrections as a function of raw x and y positions. Microprocessor-based linearity correc-
tions combined with energy corrections provide very good intrinsic uniformity (without 
collimator) (Figure 15.4).

The final correction provided by microprocessors is sensitivity correction, which is used 
to deal with minor differences in transmission across the UFOV of collimators and/or 
residual nonuniformity due to the camera crystal. If these minor sensitivity changes are 
not accounted for, ring-like artifacts can show up in reconstructed SPECT images and will 
be worse near the center of the reconstructed image. The combination of energy, linearity, 
and sensitivity corrections can provide an excellent uniformity for modern gamma cam-
eras. The uniformity index for a modern gamma camera used for SPECT was 3.5% for the 
UFOV and only 3.7% for the full FOV (Figure 15.4). This gamma camera has an acceptable 
uniformity index for the entire FOV, which makes it ideal for SPECT. Since the SNR for 
a gamma camera is calculated as N1/2, ensuring good uniformity also ensures a consistent 
SNR across the cameras FOV.

It is good practice to compute uniformity at a variety of locations within the imaging 
FOV to ensure that noise sources other than quantum noise are minimal. This could be 
done using ROIs such as those in Figure 15.1.

15.5 SENSITIVITY
The sensitivity of each camera head is the count rate divided by disintegration rate (CPM/
mBq) and should be the same, within statistical uncertainty. Sensitivity should be eval-
uated with collimators used for SPECT imaging. Sensitivity for both point and plane 
sources should be determined. The net count rate based on total counts and a background 
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image acquired over the same time period should be used to correct both point and plane 
source measures of CPM. An energy window of ±10% of the peak energy is normally used 
(±14 keV for Tc-99(m)).

Plane source sensitivity is measured with a uniform source larger than the collimator 
FOV placed at the surface of the collimator. The specified source activity must be adjusted 
by the ratio of FOV area to source activity area. Plane source uniformity testing can be 
done as part of uniformity testing if results are reported as CPM/mBq. Differences in plane 
source sensitivity are mainly due to spectrometer differences, NaI(Tl) crystal differences, 
and collimator differences. Collimators can be swapped between camera heads to test 
this, if supported by manufacturer.

Point source sensitivity varies with distance from the collimator. Therefore, it should be 
evaluated at several distances (0, 10, and 20 cm from collimator), and usually done at the 
center of the FOV. Marker sources using Co-57 or small sources of Tc-99(m) can be used. 
The activity of the Co-57 marker source (often <100 uCi) can be calculated from its cali-
bration data (activity with date) and half-life. The activity of the Tc-99(m) source (often >1 
mCi) can be determined using a dose calibrator. While the size of a point source’s image 
increases with distance, the system count is nearly constant at least up to 20 cm. Since 
image size varies with distance, the count rate from the point source needs to be assessed 
with an ROI with size adjusted to match the change in point source size. This can be done 
using an ROI with bounds set to 1%–5% of the peak value in the image. The net count 
within the ROI after background subtraction should be greater than 10,000. The net count 
is determined by subtracting the ROI background count from the raw count, where the 
background count is assessed for the same time but without the point source present. 
Results may be expressed in terms of CPM/uCi or CPM/mBq.

HOMEWORK PROBLEMS
P15.1 Determine the uniformity indices for CFOV and UFOV for the planar flood image 

provided.

P15.2 Estimate the spatial resolution as SD-based contrast for each the bar pattern in the 
bar phantom image provided.

P15.3 The QC tech reports that the plane source sensitivity on one of the gamma cameras 
in the department has dropped by more than 10% in 1 day. What camera problems 
could cause this? What operator errors might lead to this apparent loss in sensitivity? 
How would you test for these?
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C h a p t e r  16

Magnetic Resonance Imaging

16.1 INTRODUCTION
Unlike other medical imaging systems presented in this book, magnetic resonance imaging 
(MRI) does not involve ionizing radiation. Though MRI produces tomographic images, the 
use of terms such as emission-computed tomography (ECT) and transmission-computed 
tomography (TCT) is not appropriate, and these categories are best left to imaging systems 
that employ ionizing radiation. Therefore, it seems reasonable to simply categorize MRI 
as CT, since we are dealing with RF radiations that are both transmitted into the body as 
well as those that are subsequently emitted from the body (rather than something more 
confusing like transmission and emission computer tomography (TECT).

MR images are acquired slice by slice or by encoding the entire volume. I will use the 
slice-by-slice approach common to the spin-echo-style imaging to simplify the descrip-
tion. A slice is selected using a slice-encoding gradient that slightly alters the magnetic field 
and frequencies in the slice direction. The slice-encoding gradient takes a short time to 
stabilize when turned on. Then, an RF signal is transmitted into the body to excite spins at 
the desired slice position (based on center frequency) and thickness (based on bandwidth). 
After desired excitation, the RF and slice-encoding gradient are turned off. The timing 
between RF transmissions and timing for reception of RF signals from the slice provide 
the basis for contrast between tissues (Section 4.7.2). During reception, RF signals from 
the selected slice are spatially encoded with frequencies that vary across the slice using a 
second gradient (position-encoding gradient). A mixer circuit in the RF receiver removes 
the high-frequency carrier signal (~43 mHz at 1 T), resulting in a position-encoded lower-
frequency signal (e.g., −16 to +16 kHz). An ADC samples this lower-frequency position-
encoded signal, and the samples are stored as values in one row of a 2-D image called 
a  k-space image (usually 256 × 256). This is repeated, applying phase encoding in the 
direction perpendicular to the frequency encoding direction, to change the row location 
to fill in the k-space array. The 2-D k-space images (actually real and imaginary parts) 
are the Fourier transform of the signals from the slice. An inverse Fourier transform is 
used to convert the 2-D k-space image to real and imaginary 2-D images of the object. 
The real and imaginary images are transformed to magnitude and phase images, and the 
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2-D magnitude image serves as the MR image of signals from the slice. This is repeated to 
acquire multiple slices forming a multislice tomographic image of the object (Figure 16.1). 
Note: Phase encoding is a much slower process than frequency encoding such that motion 
tends to produce artifacts in the phase-encoded direction in the final MR image.

As with all medical imaging systems, it is important to understand the origin and 
features of spatial resolution, contrast, and noise. I will begin with noise as its origin differs 
substantially from that in x-ray and nuclear imaging.

16.2 MODELING RANDOM NOISE
The aforementioned background describing MR image acquisition as a magnitude signal 
helps to understand the nature of the noise distribution function in MRI. Each magnitude 
image’s pixel value is calculated as follows:

 Sm = [(Sr + x)2 + (Si + y)2]1/2 (16.1)

where 
Sm is the signal magnitude
Sr and Si are real and imaginary signals after Fourier transform of the k-space image

Here, x and y are assumed to be zero mean additive random noise (Gaussian random 
variables) with identical standard deviations (σ). Expanding Equation 16.1 leads to

 S S S S x S y x ym r i r i
2 2 1 2

2 2= + + + + +( )2 2 /
 (16.2)

(a) (b)

FIGURE 16.1 (a) The magnitude of k-space used to form the MR image of the head (b) as the 
Fourier transform of k-space. Note: The k-space magnitude is log10(k-values) to capture the range 
of frequencies (zero for kx and ky is at the center of the k-space image).
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The first two terms in this equation relate to the theoretical noise-free signals arising from 
the real and imaginary parts. These are the desired signals, and if they are large compared 
to noise levels, then S S Sm r i

/~ +( )2 2 1 2 with little contamination from the noise terms. A high 
SNR is not always possible, especially for functional MRI (fMRI) studies.

We saw when we calculated the pdf for a squared random variable in Section 7.6 that 
it was not Gaussian. In regions where the signal is nonzero, the pdf is quite complex. 
However, for cases where the signal terms can be assumed to be zero (e.g., outside the 
body), then the noise magnitude is ρ ~ (x2 + y2)1/2 and we find that the pdf(ρ) in these areas 
follows a Raleigh distribution (Figure 16.2) with the following form:
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where
ρ is noise magnitude expressed in 2-D polar coordinates (ρ, θ = 0)
σ is its scale parameter

Using pdfm(ρ) from Equation 16.3, we can determine the following relationships:

 Mean value of noise magnitude = mr = »s p s
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FIGURE 16.2 Raleigh distribution with scale parameter (σ = 28) determined for an ROI in the 
background of anatomical MR image of brain from Figure 16.1b.
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The scale parameter σ can be evaluated using an ROI outside the object, usually in one 
corner of the image. Caution: do not include noise due to phase artifacts. If we measure the 
mean value of the region according to Equation 16.4, it should be ~1.25σ. Alternatively, if 
we measure the standard deviation within the region according to Equation 16.5, it should 
be 0.665σ. If all is well both approaches should lead to the same value for this measure of the 
standard deviation of the noise.

Signal-to-noise ratio (SNR): There is a problem when attempting to calculate the SNR, 
since signal magnitude also includes noise terms (Equation 16.1). One approach to deal 
with this problem and to estimate SNR is based on the analysis of an image of a uniform 
cylindrical phantom. A large region of interest (ROI) can be placed over the phantom 
image, and the mean value of this ROI can be used to estimate the signal. In this case, the 
ROI mean value is a good approximation of the true signal since the ROI should contain 
several hundred pixels, and the average of the mixed signal–noise terms in Equation 16.2 
should therefore average toward zero. Variance in a signal-void ROI can be used to calcu-
late the noise standard deviation. SNR can be estimated using the signal determined from 
the mean of the signal magnitude within the phantom corrected for noise magnitude 
estimated from the signal-void region.

16.2.1 Tissue-to-Tissue SNR

The aforementioned method is good for specifying SNR of an object relative to a zero 
signal, as is done when specifying system SNR by manufacturers, but the SNR of impor-
tance for medical imaging relates to low-contrast signals and is the focus of most signal 
detection problems in imaging. As described in Chapter 1, this low-contrast SNR is based 
on the signal difference between adjacent tissues and associated noise fluctuations. For 
practical purposes, we can draw ROIs in adjacent tissues to estimate tissue-to-tissue SNR. 
This SNR is calculated using the mean (μ) and standard deviation (σ) from each tissue 
ROI as follows:

 
SNRtissue tissue 2

tissue 1 tissue 2
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The ROIs should be approximately the same size for both tissues. Equation 16.6 is consistent 
with the definition of tissue SNR in Chapter 1 and takes into account the inhomogeneity of 
the tissues in its noise estimate. This measure is based on an estimate of the average standard 
deviations for the two tissues.

16.2.2 Noise Bias in Estimating T1 and T2

An important issue arises when determining T1 or T2 from relaxation data at numer-
ous time points along a signal magnitude relaxation curve Sm(t). This is particularly 
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important for T2 where we want to sample early and late time points in the relaxation 
curve and may be modeling relaxation as a multiexponential process (Figure 16.3). From 
Equation 16.2, we see that the random noise that is added to the magnitude signal due 
to the x2 and y2 terms is always positive, and this leads to a positive bias relative to the 
true signals, that is, the measured signal magnitude will be larger than the true signal 
magnitude. Interestingly, if we fit the square of Equation 16.2 (sometimes called the 
power), we can correct for this bias by assuming noise variance (ρ2) is constant, which 
is to be determined during the fit. This removes the bias since the expected value of 
ρ2 = (x2 + y2) should be the same at each time point. Potential bias due to the cross terms 
in Equation 16.2 will be minimized by the fitting process as x and y are approximately 
zero mean. The resulting fit can be used to determine the corrected relaxation curve, and 
T2 values are determined.

16.3 SPATIAL RESOLUTION
The concern with spatial resolution in clinical MRI is for those pulse sequences that need 
to provide resolutions of 1 mm or less. These are usually acquired with a 3-D-style acquisi-
tion and a gradient echo technique.

16.3.1 Readout Direction

There are several factors that affect spatial resolution in the readout direction. During 
readout, a magnetic field gradient is applied to encode position using a range of frequencies 
about the Larmor frequency. The Larmor frequency is removed in the RF receiver, leaving 
the encoded frequency range of –fmax to +fmax. This range is selected to cover the desired 
FOV for the readout direction. The maximum frequency is that supported by the sampling 
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FIGURE 16.3 Two-compartment T2 relaxation curve with and without random noise (in com-
partment 1, T2 = 25 ms; in compartment 2, T2 = 120 ms). Signal from compartment “1” was ~2–2/3 
that from compartment “2.”
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rate of the ADC (fs), and according to Shannon’s sampling theorem, fs ≥ 2fmax to avoid 
aliasing. Following are data for two commercial systems:

System 1
ADC (sampling rate) = 33.333 kHz Dwell time = 30 us
Gmax = 45 mT/m Max FOV = 50 cm

System 2
ADC (sampling rate) = 50 kHz Dwell time = 20 us
Gmax = 45 mT/m Max FOV = 55 cm

Such specifications change periodically, so they should only be considered examples. 
The maximum FOV is based on the magnet bore size with gradients and RF coils in place. 
The dwell time is the time between samples by the ADC, so it is just the inverse of the 
ADC’s sampling rate.

The image field of view (FOV) in the readout direction is based on the range of frequen-
cies supported by the ADC (±16.67 kHz for System 1, or bandwidth BW = 33.33 kHz), 
and the gradient strength is adjusted to produce this range about the Larmor frequency. 
During setup for acquisition, the gradient strength is set to select the desired FOV with 
smaller gradient strengths providing larger FOVs and larger gradient strengths for smaller 
FOVs. The readout FOVx is determined from the following equation:
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This equation shows that FOVx (in the readout direction) is inversely related to the readout 
gradient’s strength, since BW (fixed by ADC) and γ are constant. If the FOV is smaller 
than the object, there will be frequencies present above the ADC’s Nyquist limit (16.67 kHz 
in this example) and these will be aliased to lower frequencies. Aliasing in the readout 
direction causes the object outside of the image’s FOV to appear on the opposite end of 
the reconstructed image (Figure 16.4). As noted in other chapters, a low-pass analog filter 
is used to reduce the magnitude of frequencies beyond the BW of the ADC prior to digi-
tization. The success of such antialiasing filters depends on the strength of signals arising 
outside of the FOV.

Within plane pixel spacing (ΔX or ΔY) is calculated as follows:

 ΔX = FOVx/Nx

 ΔY = FOVy/Ny

where FOVs are in mm and Nx and Ny are the number of samples in the frequency encode 
(x) and phase encode (y) directions. For a 25  cm FOV (used for brain imaging) with 
Nx = Ny = 256, the pixel spacing is slightly less than 1 mm. Since dwell times are very small, 
the readout of 256 samples is completed in less than 10 ms. However, the time between 
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samples in the phase encode direction is >10 ms/sample, and with 256 samples, the total 
time to complete phase encoding is >2.5 s in this example.

For System 1 with Nx = 256, the bandwidth/pixel abbreviated as BWpp = 33.333 kHz/256 
pixels ~130 Hz/pixel. The BWpp must be large compared with magnetic field inhomogeneity 
to ensure that tissue signals fall within the intended voxel.

16.4 CONTRAST
We covered T1-weighted, T2-weighted, and proton density–weighted signals and their 
contrast in Chapter 4. However, MRI pulse sequences can be manipulated in a variety of 
ways to produce images with differing contrast. The following are discussions of contrast 
mechanisms for several other important pulse sequences used in MR imaging.

16.4.1 Blood Oxygen Level–Dependent Weighting

Blood oxygen level–dependent (BOLD) weighting is used in functional brain MRI or fMRI 
studies. When neurons are active, they change the arterial hemoglobin from oxyhemoglobin 
to deoxyhemoglobin, increasing its magnetic moment and the local magnetic susceptibility. 
This reduces the local tissue spin–spin relaxation times (T2 and T2*) potentially reducing 
BOLD MRI signals. However, there is also vasodilation and increased blood flow that offsets 
the increase in deoxyhemoglobin by delivering additional oxyhemoglobin. The end result 
is that BOLD pulse sequences, which are susceptibility weighted, have increased signals 
in the brain where there is more neural activity. Acquiring a series of images with and 
without planned stimulus of brain activity provides a means to formulate images where 
activated brain areas are significantly different from nonactivated areas. These images are 
formulated as statistical parametric images, and when fitted to a standard brain atlas, they 
are called statistical parametric maps or SPMs.

FIGURE 16.4 Note the aliased nose and neck appearing at the top of the head. This aliasing is 
attenuated strongly and does not interfere with the brain. The display window and level settings 
were adjusted to show the weaker signals from the aliased signals.
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16.4.2 Diffusion Tensor Imaging

Diffusion tensor imaging (DTI) provides a means to assess the magnitude and direction 
of water molecule diffusion in vivo. Since water diffusion is multidirectional, we attempt 
to model this using a 3-D ellipsoid model. The ellipsoid model has three major axes (rep-
resented by three orthogonal vectors) and three associated diffusion magnitudes for each 
voxel within a 3-D image, usually spanning the brain. The tensor nature of the ellipsoidal 
model leads to an image representation problem. One approach calculates scalars from 
the ellipsoid model to use as voxel values. The most common scalars are axial, radial, and 
mean diffusivity and fractional diffusion anisotropy. Axial diffusivity is along the major 
axis of the ellipse, radial diffusivity is the average of the two smaller axial directions, and 
mean diffusivity is the average of all three. Fractional anisotropy (FA) is a measure of 
asymmetry of water diffusion with values ranging from near zero for symmetric diffusion 
to near unity where diffusion is much longer along the major axis. FA tends to be larger in 
more heavily myelinated white matter tracts and is often assumed to follow myelin levels, 
but other methods are needed to ensure this.

In addition to producing a variety of scalar signal images for DTI, we are challenged to 
represent directions of the major axis of diffusion in images. This has led to displays using 
3-D graphics where voxels have been linked based on similar directions to mimic nerve 
tracts, a method called tractography. The linked voxels are formed into tube-like objects for 
graphical display and analysis. DTI imaging is mostly used to assess white matter integrity in 
the brain. More complex models are now being used to deal with limitations of the assump-
tions of the ellipsoidal model in the complex white matter structure within the brain.

16.4.3 Arterial Spin Labeling

Arterial spin labeling (ASL) in MRI is similar to blood flow studies in nuclear medicine. 
In ASL studies, arterial blood is labeled by altering its magnetization, and the difference 
between labeled and unlabeled signals is used to estimate tissues’ blood flow downstream. 
The advantage is that no ionizing radiation is needed and the assessment can be repeated 
many times under a variety of conditions to assess changes in blood flow. ASL is gaining 
popularity for use in brain functional imaging studies.

Contrast in these special MR procedures is not as important as the uniqueness of their 
signals. This does not mean that we are not interested in having high contrast between 
tissues of interest. In MR imaging, the pulse sequences can be chosen to provide signals 
that are more physiologically based than options for acquisition parameters for x-ray 
images. Additionally, MR imaging sessions often provide several types of MR images with 
pulse sequence weighting selected to optimize diagnostic and/or research objectives.

HOMEWORK PROBLEM
P16.1 Use the Equation 16.3 given for the Raleigh distribution to derive the equations for 

mean and standard deviation of the noise (Equations 16.4 and 16.5). Show that the 
peak value of the Raleigh distribution given in Equation 16.3 occurs at r s= 2 .
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Solution: 
Raleigh equation

 (a) Mean value
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 (b) Peak value of probability density function occurs where first derivative = 0.
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  =0 since both must be positive.
  This can be verified by graphing the pdf in excel and is consistent with graph in the 

chapter.
P16.2 A problem involving relaxometry to estimate T1 and T2 relaxation times (see 

excel file).
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Advanced performance measures
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X-ray number standardization, 277

2-D section images, 272
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Continuous probability distribution, 139
Contrast, 43–44
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film-screen systems, 55–57
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blood oxygen level–dependent weighting, 305
diffusion tensor imaging, 306

spatial resolution, 9
SPECT, 294
X-ray image

confounds, 46
detector contrast, 45
display contrast, 45
physical perturbations, 45
radiographic contrast, 44
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Contrast asymptote correction, 209
Contrast-detail analysis, 12–13

film-screen radiography, 204
imaging systems, 204–205
linear attenuation coefficient, 206
low-contrast conditions, 207
plastic thickness, 206
Rose model phantom, 204, 206
Rose model phantom design, 207–208
threshold contrast and thickness, 207

Contrast/opacification image, 231
Convolution, 83–84
CT, see Computed tomography

D

Detective quantum efficiency (DQE), 161–163, 
196–197

Detector contrast, 45, 54
electronic detectors, 57–59
film-screen systems, 55–57

Detector-dependent contrast factors, 72
MRI, 70–71
planar nuclear medicine imaging, 66
X-ray computed tomography, 72

Detector material
calcium tungstate, 166
gadolinium oxysulfide, 167
helium neon laser, 168
lanthanum oxybromide, 167
linear attenuation coefficient, 165
phosphor material, 166
zinc-cadmium sulfide, 167–168

Detectors
gas filled, 21–22
image intensifier

abdominal radiography, 20
added components, 19
barium contrast agent, 19
fluoro image, 19
X-ray fluorography system, 17–18

scintillator, 20–21
solid-state, 22

Diameter asymptote correction, 209–210
Diffusion tensor imaging (DTI), 306
Digital image processor

analog-to-digital conversion, 229–231
image display and archival, 233
image memory and integration feedback loop, 231
image subtraction, 231–232
linear subtraction, 232
logarithmic subtraction, 233
logarithmic transformation, 231

Digital image resolution
aliasing, 122
frequency characteristics, 120
frequency domain representation, 122
image digitization, 120–121
low-pass filter kernel, 123
rectangular pixels, 120
rect function, 120
sampling frequency, 121
Shannon’s sampling theorem, 122–123
smoothing/blurring function, 123

Digital image storage requirements, 33–36
Digital intensity precision, 33–34
Digital planar imaging, 22

computed radiographic systems, 24–25
digital position, 31–32
digital radiographic systems, 26
digital value, 32–34
film digitizer, 23
scanning detector array, 25–26

Digital position, 31–32
Digital radiographic (DR) systems, 26
Digital sampling requirement

compressed sensing, 38
Nyquist frequency, 37–38
Shannon’s sampling theorem, 36–37

Digital spatial precision, 33
Digital subtraction angiography (DSA), 

178–179
classical analog imaging system components

image intensifier, 225–226
light aperture, 226
video camera, 226–229

digital image processor
analog-to-digital conversion, 229–231
image display and archival, 233
image memory and integration feedback 

loop, 231
image subtraction, 231–232
linear subtraction, 232
logarithmic subtraction, 233
logarithmic transformation, 231

hybrid system design, 223–225
noise

electronic, 234
high dynamic range, 236
high signal level, 236–239
ideal video camera, 233–234
Poisson statistics, 233
proportionality relationship, 233
quantum statistical sources, 234
signal quantization error, 235
system, 235–236
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SNR management
bright spots, 239–240
image integration, 241
video camera aperture, 240–241

spatial resolution
cut-off frequency approach, 242–243
digital cutoff frequency, 244
digital image matrix, 244
factors, 241
focal-spot blurring, 243
geometric unsharpness, 242
Nyquist frequency limit, 243

Digital-to-analog converter (DAC), 31
Digital value, 32–34
Dirac delta function, 81–82
Discrete probability distributions, 138–139
Display contrast, 45, 59–61
DSA, see Digital subtraction angiography

E

Edge spread function, 112–113
Electronic detectors, 57–59
Electronic imaging systems

noise
digital quantization, 175–177
quantum statistics, 173–175
video system, 175

system noise, 177–178
Extrinsic spatial resolution, 293

F

False-positive fraction (FPF), 215
Fan beam X-ray scanning system, 25
Film digitizer, 23
Film granularity, 172–173
Film-screen quantum sink, 168–170
Film-screen systems, 55–57, 172–173
Film-screen unsharpness

Bessel function, 118
constant of proportionality, 117
Hankel transform, 118
intensifying screen of finite thickness, 119
inverse square law, 117
light diffusion, 116
phosphor layer, 116
phosphors, 120
probability density function, 119

Flood image, 294–295
Fourier transform, linear systems

classic Gaussian function, 86
Comb/Shah function, 86

integral equation, 84
inverse transform, 85
spatial frequency domain, 84
spatial frequency variable, 84
template functions, 86–87
trigonometric functions, 86

Frequency domain model
delta functions, 103
focal spot distribution, 102
Gaussian transmission function, 101
magnified focal spot distributions, 103
more realistic focal spot, 100
multiple convolutions, 99
1-D image distribution, 102
spatial variables, 99
system transfer function, 99

G

Gas filled ionization detector, 21–22
Gaussian distribution, 142–144
Geometric unsharpness

detector resolution
curve labeled “detector”, 125
curve labeled “source”, 125
cutoff frequency, 123, 125–127
detector cutoff frequency, 124
object detail, 123
source cutoff frequency, 124

magnified focal spot distribution, 114
object magnification, 114
penumbra, 113
source/focal spot magnification, 114
two-dimensional transfer function, 115
umbra, 113

H

Hankel transform, 127–129
Hybrid digital imaging system, 31–32
Hybrid DSA system design, 223–225

I

Image contrast, 5–7
Image contrast math

absorption edges, 47
attenuation, 46
mass attenuation coefficients, 

47–48
peak kilovoltage, 46
planar X-ray imaging, 47
tissue-specific factors, 46
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Image display and archival, 233
Image integration, 241
Image intensifier, 225–226

abdominal radiography, 20
added components, 19
barium contrast agent, 19
fluoro image, 19
X-ray fluorography system, 17–18

Image intensifier veiling glare, 63–64
Image memory and integration feedback 

loop, 231
Image subtraction, 231–232
Imaging system performance, 3–4
Intermediate performance measures

modulation transfer function, 9
signal-to-noise ratio, 10
Wiener spectrum, 11

Intrinsic spatial resolution
bar phantom image, 290
contrast, 291
edgespread function, 292
gamma camera quality control, 290
pixel size and statistical noise, 292
pixel width, 293
profile graphs, 290–291
regions of interest, 291
standard deviation, 292

L

Light aperture, 226
Linear systems

convolution, 83–84
Dirac delta function, 81–82
Fourier transform

classic Gaussian function, 86
Comb/Shah function, 86
integral equation, 84
inverse transform, 85
spatial frequency domain, 84
spatial frequency variable, 84
template functions, 86–87
trigonometric functions, 86

frequency domain model
delta functions, 103
focal spot distribution, 102
Gaussian transmission function, 101
magnified focal spot distributions, 103
more realistic focal spot, 100
multiple convolutions, 99
1-D image distribution, 102
spatial variables, 99
system transfer function, 99

medical imaging
geometry of source projection, 89–90
linear additivity, 88
linear imaging system, 87
linear shift invariant system, 90
multiplicative constant, 88
point image, 90
point spread function, 89
spatial response function, 89
system transfer function, 91
two-dimensional shifting property, 88
X-ray photon fluence, 87

rect and sinc functions, 105
scaling and shifting

common imaging functions, 104
template functions, 104–105

X-ray image formation
geometry and triangles, 91–92
inherent magnification, 91
object magnification, 94
object transmission distribution, 96
photon fluence, 92
point object, 96–97
point source, 97–99
source and object geometry, 93
source distribution, 95–96
source magnification, 96
source-to-detector distance, 93
zero magnification, 91

Line integrals, 276–277
Line spread function, 110–112
Linear subtraction, 232
Logarithmic subtraction, 233
Logarithmic transformation, 231
Low-energy all-purpose (LEAP) collimator, 67
Low-energy high-resolution (LEHR) collimator, 67
Low-energy high-sensitivity (LEHS) collimator, 67

M

Magnetic resonance imaging (MRI), 28–29
contrast

arterial spin labeling, 306
blood oxygen level–dependent 

weighting, 305
diffusion tensor imaging, 306

detector-dependent contrast factors, 70–71
k-space image, 299–300
random noise

noise bias, 302–303
pixel value, 300
Raleigh distribution, 301
signal-to-noise ratio, 302
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standard deviations, 300
tissue-to-tissue SNR, 302

slice-encoding gradient, 299
spatial resolution, 303–305
subject-dependent contrast factors, 69–70

Mask image, 231
Mask-mode subtraction, 252–253
Matched filtering

algorithm, 253
bolus signal, 254
ideal bolus, 256
non-time-varying patient anatomy, 254
opacification image, 255
propagation of variance, 255
time-varying signal, 253

Medical imaging
computed tomography

MRI, 28–29
PET, 26–27
SPECT, 27–28
X-ray CT, 27–28

detectors
gas filled, 21–22
image intensifier, 17–20
scintillator, 20–21
solid-state, 22

digital planar imaging, 22
computed radiographic systems, 24–25
digital radiographic systems, 26
film digitizer, 23
scanning detector array, 25–26

geometry of source projection, 89–90
linear additivity, 88
linear imaging system, 87
linear shift invariant system, 90
multiplicative constant, 88
noise, 159–160
point image, 90
point spread function, 89
spatial response function, 89
system transfer function, 91
two-dimensional shifting property, 88
X-ray photon fluence, 87

Modulation transfer function (MTF), 9
Motion unsharpness, 115–116
MRI, see Magnetic resonance imaging

N

NaI(T1) detector, 162–163
Noise

bias, 302–303
and contrast, 10

descriptive quantitation, 160–161
detective quantum efficiency, 161–163
signal-to-noise ratio, 161

DSA, 178–179
electronic, 234
high dynamic range, 236
high signal level, 236–239
ideal video camera, 233–234
Poisson statistics, 233
proportionality relationship, 233
quantum statistical sources, 234
signal quantization error, 235
system, 235–236

electronic detectors, 159
electronic imaging systems

digital quantization, 175–177
quantum statistics, 173–175
video system, 175

medical imaging, 159–160
Poisson distribution, 159
radiographic system SNR

photon energy, 163–166
selection of detector material, 165–168

random, MRI
noise bias, 302–303
pixel value, 300
Raleigh distribution, 301
signal-to-noise ratio, 302
standard deviations, 300
tissue-to-tissue SNR, 302

sources in film-screen systems, 172–173
film granularity, 173

sources in medical image
film-screen quantum sink, 168–170
screen viewing quantum sink, 170–172

and spatial resolution, 11
SPECT

energy resolution, 297
flood image, 294–295
microprocessor-based linearity corrections, 

296–297
photopeak, 297
ramp filter, 294
regional uniformity, 296
spatial nonlinearity, 297
spatial variance, 295
uniformity correction microprocessors, 296
uniformity index, 296
uniformity testing, 295

system noise in electronic imaging systems, 177–178
Noise-resolution model

autocorrelation and autoconvolution functions, 188
definition, 185–187
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DQE, 196–197
film/screen resolution measurement, 193–196
power spectral density function, 188–189
Wiener spectrum

autocorrelation function, 193–194
|I(µ, ν)|2, 189–190
magnitude of frequency spectrum, 191–192
9 × 9 Gaussian filter, 193–194
9 × 9 Gaussian point spread function, 191–192
profile along smoothed point, 193, 196
radial frequency plot, 190
2-D image, random values, 189
white noise, 191
zero-mean random noise, 193

Nyquist frequency, 37–38

O

1-D average filter, 149–150

P

Photon energy optimization, 163–166
Photostimulable phosphor (PSP) screens, 24
Physical determinants

detector contrast, 54
electronic detectors, 57–59
film-screen systems, 55–57

display contrast, 59–61
effective atomic number, 76
image contrast math, 46–48
linear attenuation coefficients, 75
magnetic resonance imaging

detector-dependent contrast factors, 70–71
subject-dependent contrast factors, 69–70

mass and linear attenuation coefficients, 75–76
mass energy absorption coefficient, 75
physical characteristics of tissues, 74
physical perturbations

image intensifier veiling glare, 63–64
scattered radiation, 61–63

planar nuclear medicine imaging
collimator, 67–68
crystal, 66
detector-dependent contrast factors, 66
solid-state gamma cameras, 68–69
spectrometer, 68
subject-dependent contrast factors, 65–66

radiographic contrast of biological tissues
bone, 50–51
contrast agents, 51–55
fat, 50
soft tissue, 48–50

Rose model equation, 75
X-ray computed tomography

detector-dependent contrast factors, 72
special considerations, 72–73
subject-dependent contrast factors, 

71–72
X-ray image contrast, 43–44

confounds, 46
detector contrast, 45
display contrast, 45
physical perturbations, 45
radiographic contrast, 44

Physical perturbations, 45
image intensifier veiling glare, 63–64
scattered radiation, 61–63

Picture archiving and communicating system 
(PACS), 22

Picture element, 31
Pixels, 31
Pixel value, 230
Planar nuclear medicine imaging

collimator, 67–68
crystal, 66
detector-dependent contrast factors, 66
solid-state gamma cameras, 68–69
spectrometer, 68
subject-dependent contrast factors, 

65–66
Plane source sensitivity, 298
Plumbicon cameras, 229
Point source sensitivity, 298
Point spread function (PSF), 4, 89, 

109–110
Poisson distribution, 140–142
Positron emission tomography (PET), 

26–27
Power spectral density (PSD) function, 

188–189
Primary photons, 61
Probability density functions (PDFs)

Gaussian to normal distribution 
transformation, 153

higher-order polynomials, 152
mapping function, 151
nonlinear transformation of Gaussian 

distribution, 153–154
positive and negative ranges, 151
shifting and scaling, normal distribution, 

152–153
Probability distributions

continuous, 139
discrete, 138–139

Progressive scanning, 228–229
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Propagation of errors, 147
attenuation coefficient, 148–149
common formula, 150
1-D average filter, 149–150

Pseudocolors, 60

Q

Quality control bar phantom image, 290–291

R

Radiographic contrast, 6, 44
Radiographic contrast of biological tissues

bone, 50–51
contrast agents

air, 54
barium, 52
cerium, 54
iodine, 51
K-absorption edges, 52
K-edge filters, 54
60 kVp spectrum, 53
linear attenuation coefficient, 54–55
samarium, 54

fat, 50
soft tissue, 48–50

Ramp filtering, 280
Random noise, 7–8

noise bias, 302–303
pixel value, 300
Raleigh distribution, 301
signal-to-noise ratio, 302
standard deviations, 300
tissue-to-tissue SNR, 302

Random processes
attenuation of radiation, 137
basic statistical concepts

algebraic manipulation, 144
mean and variance, 145
mean value of random variables, 145
population mean, 146

central limit theorem, 146–147
probability density functions

Gaussian to normal distribution 
transformation, 153

higher-order polynomials, 152
mapping function, 151
nonlinear transformation of Gaussian 

distribution, 153–154
positive and negative ranges, 151
shifting and scaling, normal distribution, 

152–153

probability distributions
continuous, 139
discrete, 138–139

propagation of errors, 147
attenuation coefficient, 148–149
common formula, 150
1-D average filter, 149–150

special distributions, 139
binomial distribution, 140
Gaussian distribution, 142–144
Poisson distribution, 140–142

statistical descriptors, 137
transforms of random variables, 154–155

Receiver operating characteristic (ROC) analysis, 13–14
calculation of TPF and FPF, 218
data, 218
false-positive fraction, 215
imaging system, 219
operating point, 216–217
phantom approach, 217
probability distributions, 213–214
ROC curves comparison, 216
test characteristics

accuracy, 214
diagnostic imaging system, 215
prevalence, 214
sensitivity, 213–214
specificity, 214

test result vs. disease condition, 213–214
true-positive fraction, 215

Recursive filtering
imaging sequence, 258
Kruger and Gould method, 257
non-DSA fluoroscopy system, 257
response to constant signal, 259
response to noise, 259–260
response to transient signal, 260–263
time-domain recursive filtering, 257–258

Resolution by direction and position, 293–294
Rose model, 12

contrast asymptote correction, 209
contrast-detail analysis

film-screen radiography, 204
imaging systems, 204–205
linear attenuation coefficient, 206
low-contrast conditions, 207
phantom, 204, 206
phantom design, 207–208
plastic thickness, 206
threshold contrast and thickness, 207

derivation
contrast, 200
exposure calculation, 201–204
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low-contrast situations, 200
threshold of visualization, 201
visual detection/perception, 201

diagnostic radiology, 199
diameter asymptote correction, 209–210
illumination level, 199
painstaking data, 199
probability distributions, 200

S

Scanning detector array, 25–26
Scanning slit system, 62–63
Scattered photons, 61
Scattered radiation, 61–63
Scintillator, 20–21
Screen viewing quantum sink, 170–172
SE pulse sequence diagram, 70
Series mask-mode subtraction, 252
Shannon’s sampling theorem, 36–37
Signal-to-noise ratio (SNR), 10, 161

bright spots, 239–240
image integration, 241
video camera aperture, 240–241

Simple integrated mask-mode subtraction, 252
Single-photon emission computed tomography 

(SPECT), 27–28
attenuation correction methods, 289
contrast, 294
dual head systems, 289
noise and uniformity

energy resolution, 297
flood image, 294–295
microprocessor-based linearity corrections, 

296–297
photopeak, 297
ramp filter, 294
regional uniformity, 296
spatial nonlinearity, 297
spatial variance, 295
uniformity correction microprocessors, 296
uniformity index, 296
uniformity testing, 295

planar images, 289
sensitivity, 297–298
spatial resolution

collimator resolution, 293
extrinsic resolution, 293
intrinsic resolution, 290–293
resolution by direction and position, 293–294

SNR, see Signal-to-noise ratio
Solid-state detectors, 22

Solid-state gamma cameras, 68–69
Spatial resolution, 4–5

components of unsharpness
digital image resolution, 120–123
film-screen unsharpness, 116–120
geometric unsharpness, 113–115
motion unsharpness, 115–116

and contrast, 9
definitions and measurement

edge spread function, 112–113
line spread function, 110–112
point spread function, 109–110

DSA
cut-off frequency approach, 242–243
digital cutoff frequency, 244
digital image matrix, 244
factors, 241
focal-spot blurring, 243
geometric unsharpness, 242
Nyquist frequency limit, 243

geometric unsharpness and detector 
resolution

curve labeled “detector”, 125
curve labeled “source”, 125
cutoff frequency analysis, 125–127
cutoff frequency approach, 123
detector cutoff frequency, 124
object detail, 123
source cutoff frequency, 124

Hankel transform and Bessel function, 
127–129

MRI, 303–305
noise, 11
SPECT

collimator resolution, 293
extrinsic resolution, 293
intrinsic resolution, 290–293
resolution by direction and position, 

293–294
Spatial response function, 89
SPECT, see Single-photon emission computed 

tomography
Spectrometer, 68
Spin-echo MR images, 71
Structure mottle, 173
Subject-dependent contrast factors

MRI, 69–70
planar nuclear medicine imaging, 65–66
X-ray computed tomography, 71–72

System noise, electronic imaging systems, 
177–178

System transfer function, 109
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T

Temporal filtering
arterial signal difference image, 250
bolus curve, 256–257
image integration, 250
mask image, 249
mask-mode subtraction, 252–253
matched filtering

algorithm, 253
bolus signal, 254
ideal bolus, 256
non-time-varying patient anatomy, 254
opacification image, 255
propagation of variance, 255
time-varying signal, 253

mathematical conventions, 250–251
noise-limited nature, 250
opacification image, 249
recursive filtering

imaging sequence, 258
Kruger and Gould method, 257
non-DSA fluoroscopy system, 257
response to constant signal, 259
response to noise, 259–260
response to transient signal, 260–263
time-domain recursive filtering, 257–258

temporal subtraction, 263–265
theory, 251–252
unsubtracted images, 249

Temporal subtraction, 263–265
Tissue-to-tissue SNR, 302
True-negative fraction (TNF), 214
True-positive fraction (TPF), 215

U

Unsharpness, components of
digital image resolution

aliasing, 122
frequency characteristics, 120
frequency domain representation, 122
image digitization, 120–121
low-pass filter kernel, 123
rectangular pixels, 120
rect function, 120
sampling frequency, 121
Shannon’s sampling theorem, 122–123
smoothing/blurring function, 123

film-screen unsharpness
Bessel function, 118
constant of proportionality, 117

Hankel transform, 118
intensifying screen of finite thickness, 119
inverse square law, 117
light diffusion, 116
phosphor layer, 116
phosphors, 120
probability density function, 119

geometric unsharpness
magnified focal spot distribution, 114
object magnification, 114
penumbra, 113
source/focal spot magnification, 114
two-dimensional transfer function, 115
umbra, 113

motion unsharpness, 115–116

V

Video camera
aperture, 240–241
digital radiographic system, 228
frame rates, 229
interlaced scan mode, 227–228
interlaced video scanning, 227–228
photoactive element, 226
plumbicon, 229
progressive scanning, 228–229
schematic of, 226–227

W

Wiener spectrum, 11
autocorrelation function, 193–194
|I(µ, ν)|2, 189–190
magnitude of frequency spectrum, 191–192
9 × 9 Gaussian filter, 193–194
9 × 9 Gaussian point spread function, 

191–192
profile along smoothed point, 193, 196
radial frequency plot, 190
2-D image, random values, 189
white noise, 191
zero-mean random noise, 193

X

X-ray computed tomography, 27–28
beam hardening, 286
detector-dependent contrast factors, 72
number standardization, 277
special considerations, 72–73
subject-dependent contrast factors, 71–72
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X-ray image contrast, 43–44
confounds, 46
detector contrast, 45
display contrast, 45
physical perturbations, 45
radiographic contrast, 44

X-ray image formation
geometry and triangles, 91–92
inherent magnification, 91
object magnification, 94

object transmission distribution, 96
photon fluence, 92
point object, 96–97
point source, 97–99
source and object geometry, 93
source distribution, 95–96
source magnification, 96
source-to-detector distance, 93
zero magnification, 91

X-ray spatial resolution, 5
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FIGURE 4.7 The linear attenuation coefficient is the product of the mass attenuation coefficient 
(cm2/g) and density (g/cm3). This figure shows the tremendous difference between air and other 
body tissues, making it an excellent contrast agent.
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FIGURE 4.5 Both iodine and barium and K-absorption edges in the range of diagnostic x-ray 
imaging. Their mass attenuation coefficients are significantly larger than those of water (tissue 
equivalent) and air, so they are excellent contrast agents to distinguish vessels or gastrointestinal 
tract bounded by air and/or soft tissues.
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FIGURE 4.13 MRI brain image with display range settings (a) over the full range of values 
(0–7700), (b) for high contrast between gray and white matter (1000–3300), (c) highlighting fat 
 tissue in the scalp (3189–4535), (d) spanning brain tissue values (0–3300), (e) range as in (d) but 
with a negative LUT, and (f) a color LUT can be used to distinguish tissue ranges by color.
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FIGURE 15.1 Bar phantom image for LFOV camera head (a) and ROI for assessing change of 
contrast with decreasing bar size (b).
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FIGURE 15.3 (a) Flood image for LFOV camera head with (b) ROIs for the FOV (outer and 
inter-ridge), UFOV, and CFOV.
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